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Abstract: The analysis of neurophysiological data using the two most widely used open-source
MATLAB toolboxes, FieldTrip and Brainstorm, validates our hypothesis about the correlation between
event-related coherence in the visual cortex and neuronal noise. The analyzed data were obtained
from magnetoencephalography (MEG) experiments based on visual perception of flickering stimuli,
in which fifteen subjects effectively participated. Before coherence and brain noise calculations, MEG
data were first transformed from recorded channel data to brain source waveforms by solving the
inverse problem. The inverse solution was obtained for a 2D cortical shape in Brainstorm and a 3D
volume in FieldTrip. We found that stronger brain entrainment to the visual stimuli concurred with
higher brain noise in both studies.

Keywords: MEG; FieldTrip; Brainstorm; source reconstruction; flickering; cognitive neuroscience;
visual perception

1. Introduction

The human brain is a complex network consisting of approximately 86 billion neu-
rons [1] subdivided into oscillatory clusters that fire co-dependently/independently to
manifest our consciousness as we know it. These clusters correspond to regions of the
brain specialized in processing certain types of information and are connected to other
specialized regions in complex networks.

Brain connectivity is studied in three forms: functional, structural, and effective [2–5].
Structural connectivity identifies anatomical neural networks that show possible pathways
for neural communication [6,7]. Functional connectivity finds active brain regions that
have a correlated frequency, phase, and/or amplitude [8]. Effective connectivity utilizes
the functional connectivity information and additionally determines the direction of the
dynamic information flow [9,10]. Effective and functional connectivity can be measured
in the frequency domain (e.g., coherence [11]) and in the time domain (e.g., Granger
causality [5] or artificial neuronal network-based functional connectivity [12]).

Inter-neuronal communication is realized by one of 50+ neurotransmitters that can be
either excitatory (e.g., dopamine) or inhibitory (e.g., gamma-Aminobutyric acid (GABA)) [13].
Voltage-gated ion channels on the cell membranes of neurons generate action potentials and
periodic membrane potential activity that synchronizes neighboring neurons [14,15]. These
neighboring neurons may, in turn, affect other remotely located neurons, creating a network
of connectivity. Coherence-based neuronal communications are driven by the dynamics of
neurotransmitters such as amino acid glutamate and GABA.

Only when the synchronous neuronal population is large enough, the produced elec-
trical activity and the concomitant magnetic activity is strong enough to be detected outside

Appl. Sci. 2021, 11, 375. https://doi.org/10.3390/app11010375 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6437-7750
https://orcid.org/0000-0002-3438-5717
https://orcid.org/0000-0003-2787-2530
https://orcid.org/0000-0003-2471-2507
https://doi.org/10.3390/app11010375
https://doi.org/10.3390/app11010375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11010375
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/1/375?type=check_update&version=2


Appl. Sci. 2021, 11, 375 2 of 12

the skull using methods such as electroencephalography (EEG) and magnetoencephalogra-
phy (MEG), respectively [16]. MEG measures the ionic currents inside the neuron (primary
currents), whereas EEG measures the return or volume currents outside the neuron (sec-
ondary currents).

Coherence is commonly used to quantify neuronal synchronicity between spatially
separated EEG electrodes or MEG coils [17]. It is essentially an estimate of the consistency of
the relative amplitude and phase between two signals within a given frequency band. There
is a linear mathematical method resulting in a symmetric matrix, lacking any directional
information. Identical signals produce a coherence magnitude of 1, whereas the coherence
magnitude approaches 0 as the dissimilarity between the considered signals increases.

In the last two decades, significant progress has been achieved in the development
of new computational algorithms that enable connectivity calculations directly between
the different regions of the brain (source space) [5] instead of electrodes or coils (channel
space). The source space analysis provides better anatomical localization [18] and enables
inter-subject or group analysis as the brain activity now can be projected onto a more
standardized space.

In 2004, Hoechstetter et al. [19] introduced a new method to study source coherence
in the brain. Discrete multiple source models were created using brain electrical source
analysis, and the source activity was transformed into time–frequency space. Finally,
magnitude-squared coherence was evaluated to reveal coupled brain sources. The appli-
cation of inverse solutions to estimate brain activity in the source space from the channel
space removes current leakage among adjacent channels. This averts localization errors
that are fundamental to coherence analysis in the channel space [19].

Coherence has henceforth been used in many brain connectivity studies on patients
and healthy subjects, including but not limited to studies on working memory [20], brain
lesions [21], hemiparesis [22], resting-state networks [23], schizophrenia [24–26], favorable
responses to panic medications [27], and motor imagery [28,29].

Owing to the diversity of human brains, we observe various forms of coherent neu-
ronal activity over different subjects in response to the same flickering stimulus. For
example, the presentation of flickering visual stimuli instils coherent responses in the
visual cortex at the flicker frequency and its harmonics with varying coherent neuronal
network sizes among the subjects [30,31].

Another signal processing technique used to measure synchronization in EEG and
MEG is phase synchronization, a measure of how stable the phase difference is over the
considered time duration. Phase synchronization requires considered signals to be phase-
locked with zero or any finite phase difference, regardless of their respective amplitudes.
This is in contrast to the coherence measurement in which phase and amplitude are
intertwined for its estimation [32].

Noise, as known [33], can cause desynchronization in a neuronal network. Each par-
ticipating neuron and interconnecting synapses add to the inherent brain noise when a
stimulus is presented to the subject. Therefore, one could argue that a larger neuronal
network would carry a higher brain noise and, consequently, lower average coherence.
On the other hand, larger active neuronal oscillations in response to the stimulus are likely
to have stronger average coherent activity and would also entail higher brain noise. Thus,
the relation between the observed coherence and the level of inherent brain noise remains
unclear and is the central problem explored in this paper (for comprehensive theoretical
descriptions, see [34,35]).

Recently, an approach to estimate inherent brain noise based on phase synchronization
was proposed [30]. The method is based on the experiments with flickering images and
simultaneous recording of magnetoencephalographic (MEG) data. This paper utilizes the
same methodology to measure brain noise using the same experimental paradigm and
reveal its correlation with the induced coherence or source power in the visual cortex. We
deal with the two most popular open-source MATLAB toolboxes for MEG data analysis,
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namely FieldTrip [36] and Brainstorm [37], to perform two independent analyses that are
more suitable to each software.

2. Materials and Methods

We carried out MEG experiments based on the flickering paradigm with 17 condition-
ally healthy subjects (age: 17–64 years; 10 males) with normal or corrected-to-normal visual
acuity. Two subjects were later discarded. Frequency tags at the stimulus frequency and its
harmonics were absent in subject “sub08”, perhaps due to a lack of focus on the experiment.
Meanwhile, for subject “sub11”, the ECG activity was not recorded during the experiment
due to a technical error, and therefore the signal-to-noise ratio of the subsequently cleaned
data was too low to allow correct data analysis. All subjects provided written informed
consent before the experiment commencement. The experiments were performed as per the
Declaration of Helsinki and approved by the Ethics Committee of the Technical University
of Madrid.

2.1. MEG Acquisition

MEG recordings were performed with an Elekta-Neuromag system with 306 channels
that was housed in a magnetically shielded room at the Centro de Tecnología Biomédica,
Universidad Politécnica de Madrid. The head position was continuously tracked with head
position indicator (HPI) coils and co-registered in the device and head coordinate system
with three fiducial points (nasion, left, and right preauricular points) and around 300 scalp
surface points digitized by a Polhemus Fastrak system. A vertical electrooculogram
(EOG) and electrocardiogram (ECG) were placed to capture eye blinks and cardiac activity,
respectively. The data were sampled at 1000 Hz.

The experiments for all 17 subjects lasted 4 days. Along with MEG recordings of
the subjects, the MEG data were also collected daily in an empty room. All data were
passed through an online anti-alias bandpass (0.1–330)-Hz filter. MaxFilter software was
used for the temporal signal-space separation (tSSS) to reduce magnetic interference and
perform head movement compensation. A 56-ms delay between event triggers and the
actual stimulus was measured separately using a photodiode.

2.2. Flickering Stimulation

A grey square image with varying greyness levels on a grey background (brightness:
127 in 8-bit format) was projected onto a translucent screen positioned 150 cm away from
the subjects with a 60-Hz frame rate. The pixels’ brightness was modulated by a harmonic
signal with frequency fm = 6.67 Hz (60/9) and a 50% amplitude, i.e., between black (0) and
grey (127). This particular frequency was chosen because it produces the most pronounced
spectral response in the visual cortex [30].

2.3. Experimental Protocol

The participants were informed about the experimental protocol beforehand in ad-
dition to the corresponding textual directives on the screen throughout the experiment.
The experiment started with the presentation of a static (non-flickering) square image with
a red dot at the center, on which the participant had to concentrate their gaze for 120 s.
The recorded brain activity was used as a reference signal or background. After a short
rest, the square image started flickering and was presented 2–5 times (depending on the
subject) for 120 s, interrupted by a 30-s resting period between each presentation. The
flickering stimulus was presented at least 3 times to all subjects except for subject “sub10”.
The starting times of the background and flickering recordings were marked with event
triggers using a parallel-port setup.
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2.4. Analysis Pipelines in FieldTrip and Brainstorm

Next, we will discuss the common steps of the MEG data analysis and related imple-
mentation details in both FieldTrip and Brainstorm software. We will focus on the analysis
of our experimental data, which, of course, does not cover the full functionality of the
two toolboxes.

2.4.1. Reading and Segmenting Data

We start our analysis by reading the MEG data stored in the FIFF format and segment-
ing them into trials according to experimental conditions. It is common to segment the
data after decoding trigger sequences in a raw data file. However, in this work, we make
use of additional functions to import events from mat-files in both analyses because there
are slight differences in the experimental protocol for some subjects, and this approach
is more time-efficient than if-else conditions specifying the subjective exceptions in the
batch-processing scripts.

After extracting 120-s epochs for both experimental conditions, including the back-
ground activity trial called “B-trial” and event-related trials called “F-trials”, we split every
120-s trial into 4-s (for FieldTrip; see explanation below) or 3-s (for Brainstorm) sub-trials.

2.4.2. Artifact Removal and Loading Data

Accurate brain source analysis requires the correct integration of MEG data with
structural magnetic resonance imaging (MRI) scans. Both software programs align all data
by defining a subject coordinate system using three fiducial points, namely the nasion and
left- and right-auricular points. Moreover, we complemented the alignment based on only
three points by an automatic refinement procedure utilizing additional points on the scalp,
marked using a 3D digitizer (Polhemus in the considered experiment).

In FieldTrip, we used the “Colin27” head averaged template MRI [38] and adjusted it to
the subject’s head shape recorded by the Polhemus device. In Brainstorm, default anatomy
was warped to fit the scalp shape of every subject with a 2% fit tolerance using digitized
head points from the Polhemus device. After an automatic refinement of head points, the
50-Hz electrical power grid frequency and its harmonics were filtered using notch filters.
The 56-ms trigger delay was corrected in the recordings. The recorded electrooculogram
(EOG) and electrocardiogram (ECG) signals were used to automatically detect instances of
eye blinks and cardiac activity in order to apply signal-space projection (SSP) methods to
alleviate the respective artifacts.

Well-defined artifacts such as eye blinks, cardiac activity, muscle contractions, and
MEG SQUID jumps were detected semi-automatically using FieldTrip/Brainstorm func-
tions or manual screening. Once artifacts were identified, depending on the artifact
intensity, we either discarded trials that contained an artifact or applied linear projection to
remove them.

2.4.3. Source Reconstruction

The first step in localizing sources is the construction of a forward model and lead field
matrix. The forward model allows one to calculate an estimate of the field measured by
the MEG sensors for a given current distribution in the brain and is typically constructed
for each subject. The lead fields or the solution to the forward problem are evaluated
using various algorithms, such as a single sphere [39], overlapping spheres [40], a spherical
harmonics approximation of realistic geometries [41], and boundary element methods [42].

The forward solution was computed in Brainstorm analysis using the overlapping
spheres method, which is the default. The number of cortical sources was kept at 15,000 as
recommended [37]. On the other hand, in FieldTrip, we applied a semi-realistic head model
developed by Nolte [41] called a single-shell model, which is based on the correction of the
lead field for a spherical volume conductor by a superposition of basic functions, gradients
of harmonic functions constructed from spherical harmonics. We thus discretized the head
volume with a grid with a 0.7-cm resolution and obtained a source space consisting of
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9025 voxels. The lead field matrix was calculated using each grid point [41]. Thus, in
Brainstorm, a cortical surface model was used, and in FieldTrip, a volumetric one.

The next step is calculating the inverse solution to estimate the location and strength
of neuronal activity, which can be computed via multiple options, including dipole fitting
based on nonlinear optimization [43], minimum variance beamformers in time and fre-
quency domains [44–46], and linear estimation of distributed source models [47,48]. In both
software analyses, we used standardized low-resolution brain electromagnetic tomography
(sLORETA) [49].

The sLORETA family of solutions was validated against numerous imaging
modalities [50–52] and simulations [53,54]. sLORETA uses standardized current density im-
ages to calculate intra-cerebral generators. Although the image was blurred, sLORETA was
found [55] to have the exact zero-error localization when reconstructing single sources in all
noise-free simulations, i.e., the maximum of the current density power estimate coincided
with the exact dipole location [48]. Meanwhile, in all simulations with noise, sLORETA
had the lowest localization errors when compared with the minimum norm solution.

Note that when working with multiple sensor types to form a joint source model,
the empirical noise covariance is used to compute the weights of each sensor in the
overall model. For this purpose, noise covariance matrices are typically computed from
empty-room recordings that capture instrumental and environmental noise in the absence
of subjects.

2.4.4. Event-Related Coherence

Stimulus-induced coherence in the brain was used to estimate activated brain network
size and characterize its activation strength. The taken approach was different for each
software program. The previous study with the same stimulus [30] found frequency tags
at the flickering frequency (6.67 Hz) and its harmonics. The study also revealed that the
frequency tags were more pronounced at the second harmonic (13.33 Hz) than at the first
harmonic. Therefore, we need to find an index characterizing the spectral power of brain
response at the second harmonic. Since the analysis methods and obtained source models
are significantly different, we would require appropriate and independent indices for both
software programs to estimate event-related coherence (ERC).

In FieldTrip, we first applied a fourth-order Butterworth 13–14 Hz band-pass filter.
The band-pass frequency was determined by the frequency of interest, which in our case
was equal to 13.33 Hz (the second harmonic of the flicker frequency). Then, we redefined
the 3-s length of every trial within the [0.5, 3.5]-s interval to reduce edge effects due to
filtering. Moreover, in this step, we calculated the covariance matrix, necessary when using
the sLORETA method. After performing reconstruction of the sources separately for all 3-s
B- and F-sub-trials using the sLORETA method, we obtained the power distribution of the
activity of the brain sources on the 3D grid with 9025 voxels for every sub-trial.

In the next step, we averaged the resulting source power distributions and obtained a
distribution each for B- and F-condition (PB and PF). Such an approach made it possible to
reduce the influence of instrumental and brain noise on the results of source reconstruction
and, thus, increase the prominence of the event-related pattern of neural activity, compared
to source reconstruction based on a single original 120-s trial. After that, we calculated the
normalized difference of the source power distributions for F- and B-conditions (so-called
baseline correction): D = (PF − PB)/PB. This procedure was needed to isolate the event-
related pattern of source activity. The above steps were repeated for three 120-s F-trials
(all subjects had at least three F-trials except “sub10”), and the average of the obtained
three differences D was calculated. Finally, the distribution of the averaged difference was
interpolated on the used MRI image.

In Brainstorm, we started by calculating magnitude-squared coherence between the
time series of each of the 15,000 brain sources and the reference sinusoidal signal at
frequency 2 fm (13.33 Hz), i.e., the second harmonic of the flicker frequency, for both the
F-trials (CF) and the B-trial (CB). To evaluate the event-related coherence in the brain, we
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calculated differences between the coherence values of the F-trials and B-trials for cortical
sources lying in visual areas V1 and V2 as per the Brodmann atlas, ERC = CF

vis − CB
vis, and

averaged it for each subject.

2.5. Brain Noise Estimation

The proposed brain noise estimation method is based on phase synchronization,
which implies a measurement of a phase difference between the brain’s response in the
visual cortex and the reference signal at the second harmonic frequency (2 fm = 13.33 Hz).
First, to obtain the visual response, we averaged the source activity waveforms from the
V1 and V2 subregions of the Brodmann atlas for each of the F-trials of a subject. We then
bandpass-filtered this average visual response in the 13–14 Hz frequency band. To estimate
brain noise, we calculated the phase difference time series between visual response time
series and the second harmonic of the flicker sinusoidal signal, as [30,56]:

Φ = (tV
n − tm

n )2 fm, (1)

where tV
n and tm

n are the times of nth maxima of the visual response time series and the
second harmonic of the flicker signal, respectively. Intermittent frequency-locking was
observed, superposed with random fluctuations due to phase noise [33]. We also obtained
unimodal probability distributions of these phase differences Φ to characterize the phase-
noise-induced random fluctuations in phase. Kurtosis, a measure of the sharpness of a
unimodal distribution, would be lower for a broader and noisier phase fluctuation distri-
bution, and vice versa. Therefore, from the probability distribution of these random phase
fluctuations, we estimated brain noise as the inverse distribution’s kurtosis. This method
was comprehensively described in the previous paper [30].

3. Results

Based on the obtained normalized distributions of the source power, we calculated for
each subject the average power of source activity in the visual cortex, Davg, in FieldTrip.
It should be noted that we determined the visual cortex using the automated anatomical
labeling (AAL) brain atlas [57] in FieldTrip. The average spectral power Davg in the visual
cortex was plotted in Figure 1 against estimated brain noise to phase synchronization
(in units of inverse kurtosis) for every subject.

Figure 1. The average power of source activity in the brain volume corresponding to visual cortex
versus brain noise for all subjects (numbers denote the subjects). The line is a linear approximation
fit (p = 0.039, R2 = 0.309).

One can see a linear correlation (with p-value equal to 0.039 and an R2-value of 0.309)
of Davg and noise level, although the scatter is significant: Dmin

avg = 0.04, Dmax
avg = 1.34;

Noisemin = 0.22, Noisemax = 0.39.
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Figure 2 shows typical distributions of normalized source power D predominantly
activated within the visual cortex for subjects with low (subject 2) and high (subject 6) brain
noise. Subject 6 is characterized by more pronounced high-amplitude activity spanning a
larger volume in the visual cortex than subject 2.
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Figure 2. Distributions of normalized source power D within the visual cortex plotted superimposed
on anatomical MRI in orthogonal cut view (a,c) and slice mode (b,d) for subject 2 (a,b) and subject 6
(c,d). The blue crosses in (a,c) define the cutting planes. The arrows in (b,d) indicate the direction of
movement along the slices.

We will show now the results of the alternate analysis pipeline in Brainstorm. The val-
ues of average event-related coherence over visual areas V1 and V2 were compared with
the same estimated brain noise as used in Figure 1 for all subjects. A linear relation was
established with a p-value of 0.048 and an R2-value of 0.267, as seen in Figure 3. The distri-
butions of average event-related coherence over the cortex for typical subjects with low
and high noise levels are shown in Figure 4 as per the cortical analysis in Brainstorm.

The methodology to calculate the normalized difference of power on a 3D volume
in FieldTrip was adapted to fit the 2D source model generated in Brainstorm to have
a closer comparison. Figure 5 shows the corresponding linear regression model with a
p-value of 0.209 and an R2-value of 0.118 (Dmin

avg = 0.08, Dmax
avg = 2.18; Noisemin = 0.22,

Noisemax = 0.39). Although the model fails to capture any significant relation, the relative
positions of the subjects in the power–noise state-space of Figure 5 are quite similar to those
which we observe in Figure 1.
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Figure 3. Average event-related coherence in the visual cortex versus estimated brain noise to phase
synchronization. The straight line is a linear regression fit of the data (p = 0.048, R2 = 0.267).

Figure 4. Typical cortical distributions of event-related coherence for (A) Subject 2 (low noise) and
(B) Subject 6 (high noise). The brain activation is more intensive in the latter case.

Figure 5. The average power of source activity in the visual cortex versus brain noise for all subjects
(numbers denote the subjects). The line is a linear approximation fit (p = 0.209, R2 = 0.118).

4. Discussion

We found a linear relation, with a positive slope between the average power of source
activity in the visual cortex and brain noise. The results show that the subjects with more
powerful visual cortex activity demonstrate more substantial brain noise. This relationship
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can be explained as follows. The higher the power of the reconstructed sources, the more
neurons are involved in realizing cognitive activity. In a larger network of neurons, the
number of synapses would also be higher, and both the synapses and the neurons would
feed the phase-destabilizing noise into the system [30].

The two independent methods essentially lead to the calculation of the difference in
spectral activity inside the subject’s brain, corresponding to the second harmonic of the
stimulus frequency when the subject is observing a flickering image, as opposed to when
the subject is gazing at a stationary stimulus. Averaging them over the respective regions
of interest led to very similar trends between average event-related coherence or frequency-
filtered signal power and brain noise using either software program (Figures 1 and 3). One
can see in Figures 2 and 4 that the subject with higher brain noise (“sub06”) has a more
extensive and intensely activated neuronal network, coherent with the stimulus, as distinct
from the subject with lower brain noise (“sub02”).

As we have already mentioned above, we set out to adapt the prescribed analysis
pipelines of both FieldTrip and Brainstorm to our study. The two software programs gave
congruent results following their independent analysis strategies. However, it should not
be a surprise that if we try mixing the two analysis pipelines midway, the results will likely
deteriorate. Figure 5 shows the result of such mindless mixing of the two methods. Even
though the order of subjects’ frequency-filtered signal powers remained conserved from
Figure 1, the linear relation was lost.

Since we calculate brain noise from the phase fluctuation time series and the corre-
sponding probability distribution, which in turn depends upon the signal-to-noise ratio
(SNR) of the source waveforms in the visual cortex to be properly calculated, it can turn
into a circular problem where, for very high brain noises, the SNR would be too low to
correctly determine the phase fluctuations, which would make the calculation of brain noise
impossible. This was the case with subjects “sub8” and “sub11”. For these subjects, we did
not see any frequency tags in the power spectrum during the flickering cube presentation
(signal) and also in the power spectrum for the stationary cube presentation (noise). Thus,
they had to be removed from the study. The subjects who showed frequency tags in the
power spectrum also had clear bandpass-filtered waveforms in the 13–14 Hz frequency
band used to calculate phase difference fluctuations.

We have to emphasize that all codes of our analysis and MEG data used for this study
were made publicly available during the review period. The developed methods, along
with the prescribed codes on the software documentations adapted to a generic MEG study
starting with only a FIFF file, will be accessible to newcomers in the field.

5. Conclusions

Visual flickering experiments were carried out successfully with fifteen healthy sub-
jects, and their brain responses were recorded using MEG. The two most popular open-
source software programs, FieldTrip and Brainstorm, were used to analyze brain source
activity. We calculated the event-related coherence of the brain response with the flickering
visual signal. Using a recently proposed brain noise estimation method, we computed the
relation between the coherent brain network in the visual cortex and corresponding brain
noise. The results obtained by the two software programs demonstrated fair agreement.
The analyses performed by both MATLAB toolboxes evidenced that more extensive brain
activity is accompanied by more substantial brain noise.
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