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Abstract: Artificial Intelligence (AI) technologies have recently been applied to medical imaging for
diagnostic support. With respect to fetal ultrasound screening of congenital heart disease (CHD), it is
still challenging to achieve consistently accurate diagnoses owing to its manual operation and the
technical differences among examiners. Hence, we proposed an architecture of Supervised Object
detection with Normal data Only (SONO), based on a convolutional neural network (CNN), to
detect cardiac substructures and structural abnormalities in fetal ultrasound videos. We used a
barcode-like timeline to visualize the probability of detection and calculated an abnormality score of
each video. Performance evaluations of detecting cardiac structural abnormalities utilized videos of
sequential cross-sections around a four-chamber view (Heart) and three-vessel trachea view (Vessels).
The mean value of abnormality scores in CHD cases was significantly higher than normal cases
(p < 0.001). The areas under the receiver operating characteristic curve in Heart and Vessels produced
by SONO were 0.787 and 0.891, respectively, higher than the other conventional algorithms. SONO
achieves an automatic detection of each cardiac substructure in fetal ultrasound videos, and shows
an applicability to detect cardiac structural abnormalities. The barcode-like timeline is informative
for examiners to capture the clinical characteristic of each case, and it is also expected to acquire one
of the important features in the field of medical AI: the development of “explainable AI.”

Keywords: fetal ultrasound video; deep learning; cardiac substructure detection; barcode-like
timeline; cardiac structural abnormality

1. Introduction

In recent years, deep learning techniques have been developing rapidly, and there
is much interest in the adoption of deep learning for medical applications. More than
60 Artificial Intelligence (AI)-equipped medical devices have already been approved by the
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Food and Drug Administration (FDA) in the United States [1]. Indeed, it has been pointed
out that diagnostic systems using deep learning may detect abnormalities and diseases
more quickly and accurately than humans can; however, this requires the availability of
enough datasets on both normal and abnormal subjects for different diseases [2,3].

It is estimated that congenital heart disease (CHD) exists in approximately 1% of live
births, and critical CHD accounts for the largest proportion of infant mortality resulting
from birth defects [4–6]. In this regard, abnormal cardiac findings on routine prenatal
ultrasound screening by mainly obstetricians should trigger a more precise examination as
soon as feasible. Proper prenatal diagnosis, allowing for prompt treatment within a week
of the birth, is known to markedly improve the prognosis [7]. Fetal ultrasound screening of
every pregnancy at risk for CHD is generally recommended at 18 to 22 weeks of gestation
worldwide [8,9]. Despite its importance, however, the total prenatal diagnostic rate of
30–50% remains insufficient due to differences in diagnostic skill levels between exam-
iners [8,10,11]. Due to its manual operation, effective fetal cardiac ultrasound screening
requires high skill levels and experience among examiners coupled to feedback from fetal or
pediatric cardiologists and cardiovascular surgeons. The relatively low incidence of CHD
and different levels of medical expertise at hospitals result in inconsistencies. Hence, it is
important to develop a system that can always conduct fetal cardiac ultrasound screening
with a high skill level.

In the present study, we have used deep learning with relatively small and incomplete
datasets of fetal ultrasound videos, to provide diagnostic support for examiners in fetal
cardiac ultrasound screening. Each video consisted of the informative sequential cross-
sections in our datasets; hence, no high skill levels were required to accurately describe the
standardized transverse scanning planes. Generally, experts use their own judgement to
determine whether certain cardiac substructures, such as valves and blood vessels, are in
the correct anatomical localizations, by comparing normal and abnormal fetal heart images.
This process is like the object detection technique, which allows us to distinguish the local-
izations and classify multiple substructures appearing in videos. Here, we demonstrated
a novel deep learning approach for automatic detection of cardiac substructures and its
application to detect cardiac structural abnormalities in fetal ultrasound videos.

Related Works

Some supervised deep learning models have been reported for fetal ultrasound images
and videos. Temporal HeartNet could automatically predict the visibility, viewing plane,
location, and orientation of the heart in fetal ultrasound videos [12]. SonoNet could detect
the fetal structures via bounding boxes in fetal ultrasound videos, such as the brain, spine,
abdomen, and also the four standardized transverse scanning planes of fetal heart, which
were the four-chamber view (4CV), three-vessel view (3VV), right ventricular outflow
tract (ROVT), and left ventricular outflow tract (LOVT) [13]. These models focused on
plane-based detection of fetal heart and their input data depended on the skill levels of
examiners. However, it is still difficult for non-experts to identify the cardiac substructures
and describe the scanning planes precisely.

The application of image segmentation methods to fetal ultrasound has been reported.
Arnaout et al. used plane-based detection of fetal heart for CHD screening, and performed
segmentation of the thorax, heart, spine, and each of the four cardiac chambers using
U-net to calculate standard fetal cardiothoracic measurements [14]. We previously em-
ployed the time-series information of fetal ultrasound videos in the module that calibrates
segmentation results of the ventricular septum [15]. These pixel-by-pixel detection tech-
niques are useful to detect the target with a small shape changing in accordance with the
fetal heartbeat.

In fetal ultrasound, deep learning-based detection of cardiac abnormalities is still
challenging because CHD is relatively rare and noisy acoustic shadows affect ultrasound
images, making it a daunting task to prepare complete training datasets [16]. To overcome
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these issues, we have to consider an applied method for detection of cardiac structural
abnormalities using small and incomplete datasets.

2. Materials and Methods
2.1. Data Preparation

A total of 363 pregnant women having a fetus with a normal heart or CHD underwent
fetal cardiac ultrasound screening at 18–34 weeks. Patients were examined in the four
Showa University Hospitals (Tokyo and Yokohama, Japan). All women were enrolled in
research protocols approved by the Institutional Review Board of RIKEN, Fujitsu Ltd.,
Showa University, and the National Cancer Center (approval ID: Wako1 29-4). All methods
were performed in accordance with the Ethical Guidelines for Medical and Health Research
Involving Human Subjects, and with regard to the handling of data, we followed Data
Handling Guidelines for the Medical AI project. Not only expert sonographers, but also
obstetricians with at least three years of experience, obtained fetal ultrasound videos under
the guidance of experts. A total of 772 screening videos were acquired using commercially
available ultrasonography machines (Voluson® E8 or E10, GE Healthcare, Chicago, IL, USA)
equipped with an abdominal 2–6 MHz transducer in accordance with the guidelines [17,18].
A cardiac preset was used, and images were magnified until the chest fills at least one-half
to two-thirds of the screen. Each video consisted of the sequential cross-sections from the
level of the stomach, through the heart, to the vascular arches, mainly in apical view. All
data consisted of 349 normal cases and 14 CHD cases, and were randomly assigned for
deep learning, as shown in Figure 1. The characteristics of the CHD cases are listed in
Supplementary Table S1.
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2.2. Cardiac Substructure Detection

In the present study, we propose a novel architecture of Supervised Object detection
with Normal data Only (SONO) to detect fetal cardiac substructures and structural abnor-
malities, as shown in Figure 2. The experimental flow charts also show our key-feature
methods (Supplementary Figure S1). Using the checkpoints in the standardized screening
for CHD, the expert annotated the correct positions of 18 different anatomical substructures
with bounding boxes in 8182 frames from 247 normal fetal ultrasound videos, including a
crux, ventricular septum, right atrium, tricuspid valve, right ventricle, left atrium, mitral
valve, left ventricle, pulmonary artery, ascending aorta, superior vena cava, descending
aorta, stomach, spine, umbilical vein, inferior vena cava, pulmonary vein, and ductus
arteriosus. The selected substructures are shown in Figure 3. The performance of our
SONO, based on a convolutional neural network (CNN) for real-time object detection,
YOLOv2 [19], was evaluated using the annotated dataset which was randomly assigned
into 191 videos for training, 22 videos for validation, and 34 videos for test data. The
implementation details and training details of the CNN are shown in Appendix A. This
CNN can predict the localization and classification of each substructure simultaneously,
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measuring the intersection over union (IoU) of the ground truth and the predicted box, and
the conditional probability, given that there was an object. It defined that a substructure
was detected somewhere in the same frame of the ground truth in 0 IoU. To evaluate the
detection accuracy, the mean average precision (mAP) was calculated in IoU > 0 [20].
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2.3. Visualization of the Detection Result

The detection probability of each substructure was measured and described in a
barcode-like timeline to visualize its progress along with the sweep scanning. The vertical
axis represented the 18 selected substructures, and the horizontal axis represented the
examination timeline in a rightward direction, which followed the probe scanning in the
order of the abdomen, heart structure, outflow tracts, and vessels. A probability ≥0.01 was
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set as well-detected and shown as a blue bar, and <0.01 as non-detected and a gray bar.
The whole cardiac ultrasound screening video of a case of tetralogy of Fallot (TOF), one of
the most common CHDs, was used as test data. The resulting colored barcode-like timeline
was examined and compared with that from normal fetal heart videos.

2.4. Performance Evaluations of Detecting Cardiac Structural Abnormalities

To conduct performance evaluations of detecting cardiac structural abnormalities, we
used 104 sets of the sequential 20 video frames of cross-sections around a 4CV (Heart) and
around a three-vessel trachea view (3VTV) (Vessels), acquired from 40 normal and 14 CHD
cases. They were randomly assigned into 10 videos for validation and 42 videos for testing
in both the normal and CHD datasets. In SONO, the abnormality score was calculated using
the total number of well-detected substructures among the eight selected substructures
(crux, ventricular septum, right atrium, tricuspid valve, right ventricle, left atrium, mitral
valve, and left ventricle) for Heart, and the four selected substructures (pulmonary artery,
ascending aorta, superior vena cava, and ductus arteriosus) for Vessels in each set. These
selected substructures were important checkpoints for fetal cardiac ultrasound screening;
in particular, the guidelines recommended that the evaluation should be done around each
standardized transverse scanning plane [17,18]. We defined,

abnormality score for Heart = 1 − 1
T

T
∑

t=1

h(t)
8

abnormality score for Vessels = 1 − 1
T

T
∑

t=1

v(t)
4 .

The abnormality score ranged from 0 to 1 where t represented the frame number and
T represented the maximum number. In this study, we focused on the abovementioned
20 video frames (T = 20) and calculated the abnormality scores in Heart and Vessels. h(t)
and v(t) represented the total number of substructures with the probability ≥0.01 in each
frame. Then, we compared the accuracy of detecting cardiac structural abnormalities in
SONO, using 191 videos of 83 normal cases for training, with other conventional anomaly
detection algorithms for general images, such as a typical convolutional autoencoder
(ConvAE) for a frame (ConvAE-1frame), ConvAE [21], AE + global feature [22], and
anomaly detection with generative adversarial networks (AnoGAN) [23], for which the
training data consisted of 668 videos of 309 normal cases. ConvAE and AE + global feature
directly applied to video analyses; however, the other methods were originally intended
for still image analyses. The reconstruction errors for each individual frame were used.
We assumed that the minimum value of reconstruction errors reflected the background
noise and calculated an abnormality score for each method using the range between the
maximum and minimum value of reconstruction errors. The code has been uploaded to
GitHub (https://github.com/rafcc/2020-prenatal-sono).

2.5. Statistical Analysis

Dependent continuous variables were compared using nonparametric tests (Mann–
Whitney U test). All statistical tests were two-tailed and a p value < 0.05 was considered
statistically significant. To evaluate the performance of detecting cardiac structural ab-
normalities in SONO and the other algorithms, a receiver operating characteristic (ROC)
analysis was performed and the area under the ROC curve (AUC) produced by each
algorithm was compared in Heart and Vessels.

3. Results
3.1. Average Precisions of Cardiac Substructure Detection

Table 1 shows that our SONO achieved a mAP of 0.70 in test data and suppressed
over-fitting in the training data through validation. According to the average precision
(AP) for each substructure, a crux, ventricular septum, both sides of the ventricle, and
atrium were all well-detected. The outflow tracts, pulmonary artery, and ascending aorta

https://github.com/rafcc/2020-prenatal-sono
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were all detected with enough precision. In contrast, the detection performance of the
tricuspid valve, mitral valve, inferior vena cava, pulmonary vein, and ductus arteriosus
was still poor.

Table 1. Average precisions (AP) of cardiac substructure detection and its mean value (mAP)
were demonstrated.

Test Validation

Crux 0.701 0.714
Ventricular Septum 0.708 0.571

Right Atrium 0.856 0.910
Tricuspid Valve 0.451 0.598
Right Ventricle 0.823 0.865

Left Atrium 0.900 0.831
Mitral Valve 0.289 0.635
Left Ventricle 0.830 0.833

Pulmonary Artery 0.677 0.767
Ascending Aorta 0.768 0.841

Superior Vena Cava 0.574 0.720
Descending Aorta 0.898 0.925

Stomach 0.969 0.951
Spine 0.974 0.932

Umbilical Vein 0.944 0.647
Inferior Vena Cava 0.472 0.276

Pulmonary Vein 0.416 0.091
Ductus Arteriosus 0.380 0.220

mAP 0.702 0.685

3.2. Barcode-Like Timeline

The whole examination time was 10–15 s per video, which consisted of approximately
300–600 sequential ultrasound frames. With the exception of the screening videos with
the probe shake and sweep iteration by each examiner, the representative barcode-like
timelines of normal cases were clearly distinguished between three parts consisting of the
abdomen, heart structure, and outflow tract/blood vessels. In normal cases, the diagnostic
components of a 4CV and 3VTV were well-detected and located in their correct anatomical
positions; the other substructures were also well-detected along with their correct scanning
timing (Figure 4a). On the other hand, in the TOF case, the detection probabilities of the
heart structures around the 4CV and 3VTV were poor. The probabilities raw data and the
whole examination timeline is shown in Supplementary Table S2. In particular, a pulmonary
artery was not clearly detected, which was an obvious difference from the normal cases
in the timelines (Figure 4b). The TOF consists of four features of the heart and its blood
vessels: ventricular septal defect (VSD), pulmonary stenosis, aortic override, and right
ventricular hypertrophy. A narrowing of the pulmonary artery induces a morphological
change in outflow tracts and around the 3VTV. Through SONO, undetectable substructures
indicated the possibility of their pathological findings.

3.3. Detection of Cardiac Structural Abnormalities

To make a validation and test dataset of CHD for detection of cardiac structural
abnormalities, we collected the ultrasound screening videos obtained from 14 CHD cases.
We defined the abnormality score of each video through a calculation using the probability
of the selected cardiac substructures for Heart and Vessels. The mean value of abnormality
scores in CHD cases (Heart = 0.251, Vessels = 0.418) was significantly higher than normal
cases (Heart = 0.087, Vessels = 0.083; p < 0.001), as shown in Supplementary Figure S2.
These results indicated that this abnormality score was suitable to use to distinguish
morphological anomalies from a normal fetal heart and vessels.
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Furthermore, the ROC analyses were used to assess the performance of detecting
cardiac structural abnormalities in Heart and Vessels, and Figure 5 shows our SONO
compared to other conventional algorithms. The AUCs produced by SONO were 0.787 in
Heart and 0.891 in Vessels. The AUCs produced by ConvAE-1frame, ConvAE, AE + global
feature, and AnoGAN in Heart/Vessels were 0.747/0.706, 0.517/0.542, 0.656/0.673, and
0.656/0.651, respectively (Table 2). Therefore, SONO demonstrated superior performance
to any other conventional ones in this comparison analysis, and detected the abnormalities
more accurately in Vessels than Heart.
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Figure 5. Receiver operating characteristic (ROC) curves showing performance comparison of SONO and the four conven-
tional anomaly detection algorithms in detection of cardiac structural abnormalities in (a) Heart and (b) Vessels.

Table 2. The areas under the receiver operating characteristic curves (AUCs) for SONO and the other
algorithms in Heart and Vessels.

ConvAE-1frame ConvAE AE + Global Feature AnoGAN SONO

Heart 0.747 0.517 0.656 0.656 0.787
Vessels 0.706 0.542 0.673 0.651 0.891

ConvAE, convolutional autoencoder; AnoGAN, anomaly detection with generative adversarial networks; SONO,
supervised object detection with normal data only.

3.4. Graphical User Interface

We integrated abovementioned technologies and proposed a graphical user interface
(GUI) for clinical implementation, as shown in Supplementary Videos S1 and S2. The
cardiac substructure detection and its probability measurement took place at a real-time
speed. The colored bounding boxes automatically indicated where different substructures
are supposed to be located in fetal ultrasound videos. The detection probabilities of cardiac
substructures in each frame were measured and real-timely demonstrated in the upper
right table. Along with the sweep scanning, the abnormality scores were calculated and its
transitive graph were displayed at the bottom right of the screen. The heart and vessels
areas were colored and emphasized. Furthermore, after the examination was finished and
the report button was clicked, another window was opened in the same screen. It displayed
a barcode-like timeline of the whole examination and the mean value of abnormality scores
in the heart and vessels. In the TOF case, the lines of abnormality score dramatically
increased in the graph, and the report window displayed a different timeline from normal
cases and high abnormality scores.

4. Discussion

Fetal cardiac ultrasound assessments of an affected pregnancy should be performed
sufficiently early to provide time for a proper treatment if needed. The importance of fetal
cardiac ultrasound screening, incorporating multiple views of the heart and blood vessels,
has been advocated to improve the prenatal detection rate for CHD [8]. Recent advances
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in computer processing and transducer technology have also expanded the capacity of
fetal ultrasound to include a wide variety of new modalities and sophisticated measures
for cardiac structure and function. Nevertheless, the detection rate remains inaccurate
and dependent on the type of ultrasound practice and experience of the examiners [24,25].
Previous experience with CHDs and exposure to practical advice and feedback from
experts, cardiologists, and cardiovascular surgeons are necessary to become a well-qualified
examiner. The manual operation adds to the practical difficulties of normalizing the
sweep scanning techniques and the resulting images. The research and development of
the modalities with fixed patient or subject and constant measurement time, including
computed tomography (CT), magnetic resonance imaging (MRI), X-ray, and pathological
images, have led to advances in high quality controls [26,27]. However, the characteristic
issues in ultrasound described above have slowed the progress of research, and there
have been few publications and products associated with deep learning-based analyses of
ultrasound images compared to other modalities [28–30]. Some models to support CHD
screening by detecting the standardized transverse scanning planes have been reported,
but the robustness of their input data needs to be considered [12–14].

We investigated deep learning using relatively small and incomplete datasets. The low
incidence rate of CHD limited our ability to collect large volumes of relevant ultrasound
images or videos for deep learning training. On the other hand, most pregnant women
have a singleton fetus with a normal heart, among which there is little structural atypia.
Therefore, we developed a novel application of object detection supervised from the dataset
of normal cases only, to detect fetal cardiac substructures and structural abnormalities in
fetal cardiac ultrasound screening. We analyzed fetal ultrasound videos, which consisted of
the informative sequential cross-sections in an examiner-independent manner. For quality
control, a high quality expert assisted in addressing the technical variety of annotation of
the 18 different anatomical substructures. Our proposed SONO achieved a high detection
ability, whereas the detail of their AP distribution implied that there were the detectable
and undetectable substructures. Relatively small substructures such as a tricuspid valve,
mitral valve, pulmonary vein, and ductus arteriosus were undetectable.

We converted the video data into a barcode-like timeline. Enhancing the perspicuity of
the whole examination, the barcode-like timeline made it easy to identify which substruc-
tures affected the diagnosis and hence, shorten the confirmation time. The examination
results were standardized regardless of the technical levels of examiners, using automatic
cardiac substructure detection. Our analyses comparing normal and some CHD cases
showed that this timeline correctly captured their clinical characteristics. The important
findings were that a pulmonary artery was not detected as normal in TOF, which reflects
its narrowing. In CHD cases, we could see the probability transition and identify the
critical differences from normal cases. While previous methods have tried to hide the
detection variability in video sequences, this study showed the variability in video object
detection as useful information for examiners. The barcode-like timeline is useful in terms
of explainability, and can be highlighted as one of the features of “explainable AI.”

To assess detection ability of cardiac structural abnormalities, we focused on the
sequential 20 video frames of cross-sections around the 4CVs and 3VTVs. Through the
ROC analysis, SONO performed better than the four conventional anomaly detection
algorithms in both test datasets. In addition, SONO used one-third of the videos of the other
algorithms in the training dataset, thereby reducing the cost and effort of data collection.
Furthermore, the detection accuracy of outflow tracts and vessels was higher than the
other heart structures in SONO. The conventional algorithms, ConvAE and AE + global
feature, were engineering advanced and adapted to high quality images photographed
with a security camera; however, their domain specific abilities of anomaly detection were
insufficient for the low-resolution ultrasound videos. AnoGAN, originally intended for
still ultrasound images, and the versatile algorithm ConvAE-1frame were inferior to SONO
regarding fetal ultrasound videos.
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Limitations

There are several limitations in this study. First, owing to the relatively low incidence
of CHD, we used the small volume of CHD data from limited institutions. Our training data
consisted of only normal cases; however, further CHD data collection is needed as test data
for the validity and reliability evaluation of detecting cardiac structural abnormalities, by
cooperating with other hospitals throughout Japan or globally. Second, our fetal ultrasound
videos were obtained using the same type of ultrasonography machine. In terms of the
robustness, we have to verify whether SONO works in a different equipment and setting.
Third, SONO consisted of mainly apical view data and could not handle any kind of
fetal presentations. Inputting further non-apical view datasets to the CNN might resolve
this limitation. Finally, it was still hard for SONO to capture the isomerism, complete
transposition of large vessels, and the subtle changes of the cardiac substructures, such as a
ventricular hypertrophy, ventricular septal defect, and valve abnormalities. Therefore, we
have to consider add-on technologies including image segmentation, for further accurate
detection of these findings.

5. Conclusions

This study demonstrated that our proposed SONO can detect cardiac substructures
and indicate structural abnormalities in fetal ultrasound videos. The barcode-like timeline
is a useful diagram to capture the whole examination process and characteristics of each
cardiac substructure. SONO and the barcode-like timeline require further examinations for
clinical implementation; however, these technologies have the potential to be practically
used as the operation guidance and clinical report to support examiners in fetal cardiac
ultrasound screening.
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Appendix A

This appendix describes implementation details, preprocessing, and training of
YOLOv2. In this study, we followed except slight modification of training parame-
ters for our data [19]. The implementation of YOLOv2 in this paper is available from
(https://github.com/pjreddie/darknet), which is the original code of YOLOv2 developed
by the authors of [19]. YOLOv2 is implemented using C language with a Python wrapper.
About the network configuration and pre-training process, we totally followed the pa-
per [19]. YOLOv2 employs the darknet-19 network, which is a convolutional network with
a leaky ReLU activation function; the detailed configuration is described in the main text
of [19]. In the pre-training process, we pre-trained the darknet-19 network using ImageNet,
and adopted it as the backbone network of YOLOv2 by changing the input resolution
224 × 224 pixels to 416 × 416 pixels according to the description in [19].

The pre-trained YOLOv2 was used to train the fetal cardiac substructures as follows.
The stochastic gradient descent method with the Nesterov momentum was adopted for
optimization. The learning rate was set to 0.001, momentum factor to 0.9, and weight decay
to 0.0005. The mini-batch size was set to 64. The maximum number of iterations (i.e., the
number of processed mini-batches) was set to 80,200. The learning rate was multiplied
by a factor of 0.1 for 40,000 iterations and 60,000 iterations. Models were saved for every
1000 iterations, and the model with the highest mAP of cardiac substructure detection for
the validation data was selected. As for the preprocessing step, the input images were
resized to 416 × 416 pixels.

About the software version, YOLOv2 was compiled using GCC 4.8.5. The Python
version was 3.6, and other libraries used in this study were scikit-learn 0.19.1, OpenCV-
Python 3.4.0.12, and NumPy 1.14.1. About the hardware, we employed the computer
server, which has Intel(R) Xeon(R) CPU E5-2690 v4 at 2.60 GHz, GeForce GTX 1080 Ti.
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