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Abstract: (1) Background: in practical applications, probabilistic and non-probabilistic information
often simultaneously exit. For a complex system with a nonlinear limit-state function, the analysis
and evaluation of the reliability are imperative yet challenging tasks. (2) Methods: an improved
second-order method is proposed for reliability analysis in the presence of both random and in-
terval variables, where a novel polar transformation is employed. This method enables a unified
reliability analysis taking both random variables and bounded intervals into account, simplifying
the calculation by transforming a high-dimension limit-state function into a bivariate state function.
The obtained nonlinear probability density functions of two variables in the function inherit the
statistic characteristics of interval and random variables. The proposed method does not require any
strong assumptions and so it can be used in various practical engineering applications. (3) Results:
the proposed method is validated via two numerical examples. A comparative study towards a
contemporary algorithm in state-of-the-art literature is carried out to demonstrate the benefits of our
method. (4) Conclusions: the proposed method outperforms existing methods both in efficiency and
accuracy, especially for cases with strong nonlinearity.

Keywords: structural reliability; hybrid uncertainty; SORM; random and interval variables;
polar space

1. Introduction

In recent years the influences of uncertainty on dimensions, geometries, material
properties, and load have become more and more profound. Accordingly, the analysis
of complicated structural reliability has been actively studied [1,2]. It has been essential
in designing and analyzing the structural systems in many applications: manufacturing,
civil engineering, and aerospace vehicles [1–5]. Structural reliability is typically estimated
by the probability of failure (POF) and the reliability index based on the probability
theory [5–8]. The probabilistic reliability estimations can be divided into two categories:
the first-order reliability method (FORM) [9,10] and the second-order reliability method
(SORM) [9,11]. Additionally, reliability is evaluated through a considerable amount of
stochastic simulations [12,13].

Due to their well-balanced accuracy, efficiency, and simplicity [14–16], the FORM and
SORM have been widely adopted in many industrial applications [1,10,11,14–16]. In the
FORM, high nonlinearity in the failure surface induces inaccurate and unreasonable POF.
The SORM, using the second-order Taylor series (or other polynomials), was proposed
to address this problem [11,17,18]. Although the POF estimated by the second-order ap-
proximation is more accurate than the POF estimated by the first-order approximation, it
requires a much more complex computation [11]. Since there is no closed-form expression
in a quadratic polynomial function to define the POF, most SORMs adopted a parabolic
approximation of the fitted quadratic polynomial surface in order to estimate the POF of

Appl. Sci. 2021, 11, 346. https://doi.org/10.3390/app11010346 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3895-0717
https://www.mdpi.com/2076-3417/11/1/346?type=check_update&version=1
https://doi.org/10.3390/app11010346
https://doi.org/10.3390/app11010346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11010346
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 346 2 of 16

the limit state [16–20]. In these methods precise probability distributions of the random
variables are inevitably required, which are based on a significant number of experimental
samples that are often limited in many applications [1,7,14,21]. Furthermore, it is challeng-
ing to know the precise distributions for some variables. Only the variation ranges for
parameters can be estimated from the limited data. Thus, their stochastic characteristic are
usually described under subjective assumptions [16]. Consequently, severe errors can be
induced in the structural reliability analysis [17–20].

The use of probabilistic analysis for reliability emerged to assess these uncertainties
and is now widely used in many industries and societies [6–9]. The statistical information
and experimental data of structural design parameters are often insufficient, and the sub-
jective uncertainty is caused by the lack of knowledge of complex structures. Thus, in the
design parameters, loads, and boundary conditions of the system, the uncertainties are ran-
dom and also of interval hybrid [10–14]. Reliability analysis with the coexistence of multiple
uncertain parameters is defined as a hybrid analysis for uncertain reliability [15–20]. Ran-
dom values and interval variables often coexist in practical engineering applications [21,22].
Hybrid reliability analysis (HRA), defined as a task that quantifies the two types of uncer-
tainties [1], has been considered a core task in structural reliability research [22]. The use of
HRA for structures has been extensively researched in recent years [23–26], including the
function approximation [27], probabilistic transformation [28–30], iterative rescaling [31],
the probability bounds approach [32], mixed perturbation Monte Carlo (MC) method [33],
optimization algorithm with single-layer nesting [34,35], two-layer nesting [36,37], complex
nesting [22], and others [38–40]. Du et al. proposed an optimization method to solve struc-
tural reliability, based on the definition of the shortest distance of the structural reliability
index when probability variables and interval variables simultaneously exist [38]. Luo
et al. [37] proposed a concept of using the hybrid model for solving structural reliability
based on the probability-convex set and the reliability index to measure the structural
reliability. Considering the distribution parameters of random variables and the mean and
broadband of interval variables, Guo et al. [36] measured the mean value and fluctuation
range of structural reliability by defining six sensitivity coefficients and sensitivity analysis.
Jiang et al. [41] suggested that the limit-state function is affected by interval variables,
and there are two closed limit-state surfaces in the normal distribution space. With the
limit-state areas, reliability models and algorithms were proposed, respectively. Kang [42]
proposed a mathematical definition of the structural reliability index for measuring struc-
tural safety. In the model, the parameter and load uncertainties were considered, and
two-level nested optimization was adopted with the outer layer used for probabilistic
reliability analysis and the inner layer used for interval analysis. In such a way, the opti-
mization problem of the nested double loop was transformed into an approximate single
loop minimization problem. Although several works aimed at improving the accuracy and
efficiency of the optimization model [35,43,44], there is still room to improve the efficiency
and stability of the algorithm [43,44]. In [23], a mixed uncertainty model was proposed
with the uncertainty expressed by random distribution and some key parameters in the
distribution function expressed by interval values. The structural reliability measurement
was represented by the interval values of the reliability index and the performance target
interval. However, in the HRAs based on the FORM and SORM, several computation
problems need to be solved before practical applied can begin. Accordingly, it is essential
to develop an efficient and robust algorithm for the successful practical application of the
methods [21,22].

To this end, this paper proposes the use of the uncertain-polar coordinates SORM
(UPSORM) that handles random and interval hybrid variables, significantly reducing
computational complexity while achieving comparable precision. The cosine of the angle
and distance in polar coordinates are employed in the proposed method [45]. The hybrid
problem can be formulated as a standard reliability problem by taking this space, where
an n-dimensional limit-state function can be defined using only two random variables.
The probability density functions (PDFs) of boundaries of interval variables and random
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variables can be used to estimate the two variables. In such a way, the integral method can
efficiently compute the interval of failure probability for the new bidimensional function.

A unified reliability framework is proposed to address the reliability of a complex
system in a scenario where stochastic and interval variables are simultaneously available.
The key idea behind the proposed method is to build a generalized bivariate limit-state
function in the polar space, instead of the traditional multivariate limit-state function,
by aggregating both probabilistic and non-probabilistic information. To this end, the
UPSORM approach is developed based on an advanced polar transformation technique.
As the dimension of the original reliability problem is significantly reduced, quantities of
interest such as the upper and lower bounds of reliability are expected to be estimated with
higher precision and improved efficiency.

The rest of this paper is organized as follows: the traditional SORM for structural
reliability analysis is first reviewed in Section 2. The proposed framework of UPSORM is
described in Section 3; Section 3.1 discusses the polar transformation with random and
interval uncertainty, deriving the distribution of the new variable in the polar space. The
proposed computation model is described in Section 3.2, and the procedure for the range
of failure probability is given in Section 3.3. Then, the efficiency and practicability of
the proposed method are demonstrated by two numerical applications. The results with
a single linear expression show the effectiveness and accuracy of the proposed method.
Furthermore, the proposed method is applied in a real structural system, a spacecraft
docking lock, demonstrating that the proposed method is effective.

2. The Analysis of the Structural Reliability Using the Traditional SORM

Computing the multiple probability integrals is the essential problem in structural
reliability analysis, defined as:

Pf = Pr[G(x) ≤ 0] =
∫

G(x)≤0
f (x)dx (1)

where x = (x1, x2, · · · , xn)
T is an n-dimension random variables vector representing the

basic uncertain variables in the structure. G(x) is the state function that determines the
abnormality of the structure by using the condition of G(x) ≤ 0. Pf and f (x) are the
failure probability and joint probability density function of x, respectively. FORM is one of
the most widely used computational methods [14,16]. The accuracy is decreased for the
nonlinear performance function when using the linear function-based approximation of
the state function. The SORM was proposed to enhance the accuracy of the FORM [16],
where the limit-state surface is approximated by a second-order surface [18,20], for the
design point u∗ in the n u-space G(u). The state function can be expressed by second-order
Taylor expansion as follows:

G(u) = G(u∗) +∇G(u∗)(u− u∗) +
1
2
(u− u∗)TH(u− u∗) (2)

where ∇G(u∗) =
∂G(u)

∂u

∣∣∣∣
u∗

, H is the Hessian matrix, which denotes Hij =
∂G

∂ui∂uj

∣∣∣∣∣
u∗

.

However, the structural reliability estimation becomes challenging to solve when
the dimensionality of the state function is high [45]. This is because many samples in
high-dimensional spaces are needed for the failure event estimation with low probability.
Furthermore, the reliability problem cannot be visualized, which is desirable in a general
design process [23]. Thus, we propose to reduce the dimensionality of the problem. The
random samples are represented in polar form in MC simulation using the design point
and the mass center vector in the failure probability [23,29]. Two nonlinear variables: (1)
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the distance to the origin and (2) the angle information, are employed. The two nonlinear
variables v1 and v2 are defined as follows:

v1 = r = ‖u‖2 (3)

v2 = cos θ =
(u,α)

‖u‖ =
(u,α)

v1
(4)

where the design point unit vector α =
∇G(u∗)

‖G(u)∗‖ .

The PDFs of v1 and v2 is written as:

fv1(x) =
21−n/2x(n−1)

Γ(n/2)
exp(− x2

2
) (x > 0) (5)

fv2(x) =
1√

1− x2
∫ π

0 sinn+m−2 αdα
(sinn+m−2(arccosx) + sinn+m−2(π − arccosx)) −1 ≤ x ≤ 1 (6)

According to Hurtado, the v1 and v2 are independent [23,29]. The uncertainty proper-
ties are subjectively assumed: e.g., using the truncated Gaussian distribution representation
for interval uncertainty and uniform distribution. As described in the next section, the new
polar transformation is used to avoid the severe reliability analysis errors that are caused
by subjective assumptions.

3. UPSORM: The New SORM in Polar for Random and Interval Uncertainty
3.1. Polar Transformation For State Function with Randomness and Intervals

The structural state function is defined as:

G(x, z) = b− y(x, z) (7)

where x = (x1, x2, · · · , xn), z = (z1, z2, · · · , zm) is the basic uncertain vectors of G(x, z).
x1, x2, · · · , xn are random variables and z1, z2, · · · , zm are interval variables. y(x, z) is the
structural response and b is the threshold for the y(x, z), whose exceeding defines the
failure state. The random variables x = (x1, x2, · · · , xn) are standard Gaussian transfor-
mations into u = (u1, u2, · · · , un), where ∀ui = Trandom(xi) ∼ N(0, 1), i = 1, 2, · · · , n,
and Trandom(•) denotes the standard independent Gaussian transformation that converts x
into u. The interval variables z = (z1, z2, · · · , zm) are normalized into δ = (δ1, δ2, · · · , δm),
where ∀δj = Tinterval(zj) ∈ [−1, 1], j = 1, 2, · · · , m, and Tinterval(•) denotes the stan-
dard independent interval transformation that converts z into δ. Hence, we denote
ω = (Trandom(x), Tinterval(z)) = (u1, u2, · · · , un, δ1, δ2, · · · , δm). (7) can be expressed as fol-
lows:

G(ω) = b− y(ω) (8)

In this paper, the polar coordinate is improved. The polar axis is set as the cosine
of the angle between the mass center vector of the failure domain and the sample point
in a rectangular coordinate system. The pole is the coordinate origin. It is denoted that
v2 = cos θ, θ = ∠(ω,ω+), whereω+ is the centroid vector of a failure domain in cartesian
coordinate [45], as shown in Figure 1.
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Figure 1 suggests thatω+ is paralleled with the gradient direction of state function
G(ω). ω+ denotes the unit vector of G(ω) at the design point along the gradient direction.
The distance ‖ω+ ‖ = 1:

ω+ =
∇G(ω∗)

‖∇G(ω)∗‖ = − ∇y(ω∗)

‖y(ω)∗‖ (9)

v1 =

√√√√√ n

∑
i=1

ui
2 +

m

∑
j=1

δi
2 (10)

v2 = cos θ =
(ω,ω+)

‖ω‖‖ω+‖ =
(ω,ω+)

‖ω‖‖w‖ =
(ω,ω+)

v1
(11)

(8) is rewritten in the polar space as:

G(v1, v2) = b− y(v1, v2) (12)

for ∀n ∈ N, it is suggested that:√
n

∑
i=1

ui
2 ≤ v1 =

√√√√ n

∑
i=1

ui
2 +

m

∑
j=1

δi
2 ≤

√
n

∑
i=1

ui
2 + m (13)

We denote ∆ =
m

∑
j=1

δi
2, and for ∀ui, i = 1, 2, · · · , n, ui obeys standard Gaussian distri-

bution. It is reduced so that v1
2 − ∆ =

n

∑
i=1

ui
2, ∆ ∈ [0, m], in which

n

∑
i=1

ui
2 ∼ χ2(n), where n

is the number of random variables and m is one of the intervals. Comparing the mean and

variance of
n

∑
i=1

ui
2 and v1

2, it is seen that the shape of the χ2 distribution remains unchanged

with the fixed number of random variables (the variance remains unchanged), but the
position changes (the mean value changes) with the increase of the number of interval
uncertain variables.
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Hence, for ∀∆ ∈ [0, m], where m represents the number of interval variables, according
to (5), the PDF of v1 is written as:

fv1(x) =
21−n/2(x2 − ∆)(n−1)/2

Γ(n/2)
exp(− x2 − ∆

2
) (x ≥

√
∆, ∆ ∈ [0, m]) (14)

The Cumulative Distribution Function (CDF) Fv1(x, ∆) of v1
2 is nonincreasing for the

variable ∆, which is proved by Zhang [22].
With (11), the PDF of v2 is seen as follows:

fv2(x) =
1√

1− x2
∫ π

0 sinn+m−2 αdα
(sinn+m−2(arccosx) + sinn+m−2(π − arccosx)) (15)

As v1 and v2 are independent of each other in the polar coordinate [23], for G(v1, v2),
the failure probability Pf ailure in the structure is deduced:

Pf ailure(∆) =
∫ 1

−1

∫ +∞
√

∆
Ωv={v|G(ξ1,ξ2)≤0}

fv1(ξ1, ∆) fv2(ξ2)dξ1dξ2, ∆ ∈ [0, m] (16)

where fv1 and fv2 obey (14) and (15), respectively.
Considering the nonincreasing of v1 for ∆, when ∆ = m, Pf ailure is the minimum value

which is written:

PL
f ailure

=
∫ 1

−1

∫ +∞
√

m
Ωv={v|G(ξ1,ξ2)≤0}

fv1(ξ1, m) fv2(ξ2)dξ1dξ2 (17)

When ∆ = 0, Pf ailure is the maximum value which is written:

PU
f ailure

=
∫ 1

−1

∫ +∞

0
Ωv={v|G(ξ1,ξ2)≤0}

fv1(ξ1) fv2(ξ2)dξ1dξ2 (18)

where fv1 and fv2 obey (14) and (15), respectively.
Finally, the interval of Pf ailure can be calculated as PL

f ailure, PU
f ailure.

3.2. UPSORM: SORM in Polar for Random and Interval Uncertainty

Assuming that the design point at the failure domain of the structure is
ω∗ = (u∗1, u∗2, · · · , u∗n, δ1

∗, δ2
∗, · · · , δm

∗), the second-order Taylor expansion of G(ω) at
the design pointω∗ is described as:

G(ω) ≈ G(ω∗) +∇G(ω∗)(ω−ω∗) + 1
2
(ω−ω∗)TH(ω−ω∗) (19)

where∇G(ω∗) is the gradient of G(ω) with∇G(ω∗) =
∂G
∂ω

∣∣∣∣
ω∗

, H is the Hessian matrix,

written as Hij =
∂G

∂ωi∂ωj

∣∣∣∣∣
ω∗

.

Then, (19) is simplified as:

G(ω) ≈ b− y(ω∗)−∇y(ω∗)(ω−ω∗)− λ(ω−ω∗)T(ω−ω∗)

= b− y(ω∗) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk
∗
)
−

n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk

)
+2λ

n+m

∑
k=1

ωkωk
∗ − λ

n+m

∑
k=1

(ωk
∗)2 − λ

n+m

∑
k=1

ωk
2

(20)
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where λ is a constant parameter. Obviously, ω∗ = ‖ω∗‖ω+, hence,

n+m

∑
k=1

ωkωk
∗ =

n+m

∑
k=1

ωkωk
+

‖ωk
∗‖ . Then, (20) is written as:

G(ω) = b− y(ω∗) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk
∗
)
−

n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk

)
+

2λ

‖ωk
∗‖
[

n+m

∑
k=1

(
∂y

∂ωi

∣∣∣∣
ω∗

)2
]1/2

n+m

∑
k=1

∂y
∂ωk

∣∣∣∣
ω∗

ωk − λ
n+m

∑
k=1

(ωk
∗)2 − λ

n+m

∑
k=1

ωk
2 (21)

Denote v1 and v2:

v1 =

√√√√n+m

∑
k=1

ω2
i =

√√√√ n

∑
i=1

u2
i +

m

∑
j=1

δ2
i (22)

v2 = cos∠(ω+,ω) =

n+m

∑
k=1

(
∂y

∂ωi

∣∣∣∣
ω∗

ωi

)

v1

[
n+m

∑
k=1

(
∂y

∂ωi

∣∣∣∣
ω∗

)2
]1/2 =

n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗

ui

)
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗

δj

)

v1

 n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗

)2
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗

)2
1/2 (23)

In polar space, involving functions (21) and (22), the state function (24) is expressed as
follows:

G(v1, v2) = b− y(ω∗) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk
∗
)
− λv∗1

2 +

(
2λ

v∗1
− D

)
v1v2 − λv1

2 (24)

Given that G(v1
∗, v2

∗) = 0, it is observed that:

b− y(ω∗) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk
∗
)
+ 2λv∗2 − Dv1

∗v2
∗ − 2λv1

∗2 = 0 (25)

λ =

b− y(ω∗) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk
∗
)
− Dv1

∗v2
∗

2v1
∗2 − 2v∗2

(26)

where D =

[
n+m

∑
k=1

(
∂y

∂ωi

∣∣∣∣
ω∗

)2
]1/2

=

 n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗

)2
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗

)2
1/2

.

Then, (24) can be written as

G(v1, v2) = d +

(
2λ

v∗1
− D

)
v1v2 − λv1

2 (27)

where λ =

b− y(ω∗)+
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk
∗
)
−Dv1

∗v2
∗

2v1
∗2− 2v∗2

, d = b−y(ω∗)+
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗

ωk
∗
)
−

λv∗1
2, and D =

[
n+m

∑
k=1

(
∂y

∂ωi

∣∣∣∣
ω∗

)2
]1/2

=

 n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗

)2
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗

)2
1/2

.
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In polar space, the new reliability domain is d +

(
2λ

v∗1
− D

)
v1v2 − λv1

2 > 0, and the

failure domain is d +

(
2λ

v∗1
− D

)
v1v2 − λv1

2 ≤ 0. The limit stat surface is:

d +

(
2λ

v∗1
− D

)
v1v2 − λv1

2 = 0 (28)

By functions (18) and (19), it is obtained that:

PU
R = 1−

∫ +∞
√

m

∫ 1

−1

Ωv={v|d−λv∗1
2+

(
2λ

v∗1
−D

)
ξ1ξ2−λξ1

2≤0}

fv1(ξ1) fv2(ξ2)dξ1dξ2 (29)

where fv1(x) =
21−n/2(x2 −m)

(n−1)/2

Γ(n/2)
exp(− x2 −m

2
), and

fv2(x) =
1√

1− x2
∫ π

0 sinn+m−2 αdα
(sinn+m−2(arccosx) + sinn+m−2(π − arccosx)),

PL
R = 1−

∫ +∞

0

∫ 1

−1

Ωv={v|d−λv∗1
2+

(
2λ

v∗1
−D

)
ξ1ξ2−λξ1

2≤0}

fv1(ξ1) fv2(ξ1)dξ1dξ2 (30)

where fv1(x) =
21−n/2x(n−1)

Γ(n/2)
exp(− x2

2
), and

fv2(x) =
1√

1− x2
∫ π

0 sinn+m−2 αdα
(sinn+m−2(arccosx) + sinn+m−2(π − arccosx)).

3.3. Implementation Details

(1) For the random variables vector x = (x1, x2, · · · , xn) and interval variables vector
z = (z1, z2, · · · , zm), zj ∈ [zL

j
, zU

j
] in the state function of the structure G(x, z) = b− y(x, z),

transfer x to the independent Gaussian vector u = (u1, u2, · · · , un) and convert z to the
independent normalized interval vector δ = (δ1, δ2, · · · , δm) ∈ [−1, 1]. Then, G(x, z) is
converted into G(ω) withω = (u,δ).

(2) Given an initial design pointω∗(0) = (u∗(0)1 , u∗(0)2 · · · , u∗(0)n , δ
∗(0)
1 , · · · , δ

∗(0)
m ), com-

pute the gradient
∂G
∂ωi

∣∣∣∣
ω∗(0)

of G(ω), d∗(0) and D∗(0) at ω∗(0), and with Equation (27)

transfer G(ω) into G(0)(v1, v2) in polar space.
(3) Using Equations (29) and (30), compute the initial failure probability interval

[PU
f
(0), PL

f
(0)].

(4) Compute ω+
k
(l)(k = 1, 2, . . . n + m)(l = 1, 2, . . .) by Equation (31)

ω+
k
(l) =

− ∂y
∂ωk

∣∣∣∣
ωk
∗(l−1)n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ωk
∗(l−1)

)2
1/2 (l = 1, 2, . . .) (31)

(5) Calculate the new design point ω
∗(l)
k (k = 1, 2, . . . n + m)(l = 1, 2, . . .) with ω+

k
(l)

by function (32)
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ω
∗(l)
k = ω

∗(l−1)
k +‖ω

∗(l−1)
k ‖ω+

k
(l) = ω

∗(l−1)
k +‖ω

∗(l−1)
k ‖

− ∂y
∂ωk

∣∣∣∣
ωk
∗(l−1)n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ωk
∗(l−1)

)2
1/2 (l = 1, 2, . . .) (32)

and parameters d(l) and D(l) with Equation (27).
(6) Compute the failure probability interval PL

f ailure
(l) and PU

f ailure
(l) with Equations (29)

and (30). Taking the robust convergence into account, assume that the iterative errors are

denoted as

∣∣∣PU
f ailure

(l) − PU
f ailure

(l−1)
∣∣∣

1− PU
f ailure

(l)
and

∣∣∣PL
f ailure

(l) − PL
f ailure

(l−1)
∣∣∣

1− Plower
f ailure

(l)
. The thresholds of them

is ε. If

∣∣∣PU
f ailure

(l) − PU
f ailure

(l−1)
∣∣∣

1− PU
f ailure

(l)
≤ ε and

∣∣∣PL
f ailure

(l) − PL
f ailure

(l−1)
∣∣∣

1− Plower
f ailure

(l)
≤ ε, stop the calculating

procedure. Otherwise, repeat steps 2–6. Assign the design point
ω∗(l) = (u∗(l)1 , u∗(l)2 · · · , u∗(l)n , δ

∗(l)
1 , · · · , δ

∗(l)
m ) by the initial design point until the accu-

racy requirement is satisfied. The main steps for implementation are shown in Figure 2.
The pseudo-code that illustrates the process of using the method in more detail is shown
in Appendix A.
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4. Numerical Examples
4.1. A Toy Example

Assume that there is a tension P that forces on a round bar. The diameter of the bar
D is a random variable, obeying the normal distribution with the mean µD = 29.4 m and
variance σD = 3. The tension P is an interval variable with P ∈ [30KN, 90KN], P and D are
independent and the material strength R = 170 MPa, is a constant. In the original space,

the state function G(P, D) = 170− 4P
πD2 , and in standard normal space, the function is

written as:

F(δ, u) = 170− 120000× (δ + 2)

π(3u + 29.4)2 (33)

where P is standard interval transformed into δ in which δ ∈ [−1, 1], and D is standard
Gaussian transformed into u, which obeys standard Gaussian distribution N(0, 1).

In this paper, the accuracy of the UPSORM is compared with the new FORM by
Qiu [22] and MC (107 samples). The comparison results are summarized in Table 1.

Table 1. Comparison result.

Method

Failure Probability Interval Relative Error

Lower
Boundary

Upper
Boundary

Lower
Boundary

Upper
Boundary

MC(107) 0.0591 0.4421
Uncertainty FORM in [22] 0.0537 0.4672 9.13% 5.68%

UPSORM 0.0634 0.4192 7.28% 5.18%

It is found that the proposed method produces better estimation results. In general, it
outperforms Qiu’s method [22] both in accuracy and efficiency, though the improvement is
not significant since the limit-state function is relatively simple.

4.2. A Pracitical Application Example—Space Docking Mechanism

In the space docking mechanism, the docking lock is a key component which realizes
the rigid connection and separation of the spacecraft, as shown in Figure 3. With the
interaction of the docking lock system on the two spacecrafts the connection force is
generated/released between the two spacecrafts and the rigid connection or separation is
realized. Each set of locks is composed of an active lock hook and a passive lock hook. The
active lock hook is driven by a motor and matches with the passive lock hook corresponding
to the target spacecraft. The passive lock hook is installed on the disc spring to match with
the active lock hook corresponding to the target spacecraft [22].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 17 
 

4. Numerical Examples 

4.1. A Toy Example 

Assume that there is a tension P  that forces on a round bar. The diameter of the bar 

D  is a random variable, obeying the normal distribution with the mean 29.4mD   

and variance 3D . The tension P  is an interval variable with [30 ,90 ]P KN KN , 

P and D  are independent and the material strength 170R MPa , is a constant. In the 

original space, the state function   2

4
170 ，

P
G P D

D
, and in standard normal 

space, the function is written as: 

 
 

2

120000 ( 2)
, 170

3 29.4
F u

u






 
 


 

(33) 

where P  is standard interval transformed into   in which [-1,1]  , and D  is 

standard Gaussian transformed into u , which obeys standard Gaussian distribution 

(0,1)N . 

In this paper, the accuracy of the UPSORM is compared with the new FORM by Qiu 

[22] and MC (107 samples). The comparison results are summarized in Table 1. 

Table 1. Comparison result. 

Method 

Failure Probability Interval Relative Error 

Lower 

Boundary 
Upper Boundary Lower Boundary 

Upper 

Boundary 

MC(107) 0.0591 0.4421   

Uncertainty FORM in [22] 0.0537 0.4672 9.13% 5.68% 

UPSORM 0.0634 0.4192 7.28% 5.18% 

It is found that the proposed method produces better estimation results. In general, 

it outperforms Qiu’s method [22] both in accuracy and efficiency, though the improve-

ment is not significant since the limit-state function is relatively simple. 

4.2. A Pracitical Application Example—Space Docking Mechanism 

In the space docking mechanism, the docking lock is a key component which realizes 

the rigid connection and separation of the spacecraft, as shown in Figure 3. With the in-

teraction of the docking lock system on the two spacecrafts the connection force is gener-

ated/released between the two spacecrafts and the rigid connection or separation is real-

ized. Each set of locks is composed of an active lock hook and a passive lock hook. The 

active lock hook is driven by a motor and matches with the passive lock hook correspond-

ing to the target spacecraft. The passive lock hook is installed on the disc spring to match 

with the active lock hook corresponding to the target spacecraft [22]. 

 

Figure 3. Space docking mechanism. 

 

The contact load on the connected 

surface with the other latches

Figure 3. Space docking mechanism.

The load F is defined as an interval variable that ranges [30KN, 40KN] the structural
locking latch. The elastic modulus of the material E, Poisson’s ratio µ, and the density ρ are
random variables shown in Table 2.
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Table 2. The list of random variables.

Random Variables Distribution Type Mean Standard Deviation

elastic modulus E (Pa) normal 117 × 109 117 × 107

Poisson’s ratio µ normal 0.3 0.003
density ρ (kg/m3) normal 4.81 × 103 0.481 × 103

The reliability problem is formulated using the state function as:

g = b− y(F, E, µ, ρ)

where b indicates the yield strength (1300 Mpa), and the contact stress y(F, E, µ, ρ) on the
connective surface of the two latches. Note that the four independent random variables
are assumed and the max value of the contact stress y(F, E, µ, ρ) is a function of the four
variables F, E, µ, ρ, which cannot be an explicit expression. A simplified model for a finite
element analysis is established to estimate the max contact stress y(F, E, µ, ρ), as shown in
Figure 4, which is the data of the red area in the left figure. In order to ensure the accuracy
of the collected data, the test is used, and it is suggested that the damage position of the
structure (the right picture) is the distribution area of the maximum contact stress (the left
picture), which verifies the correctness of the collected data in this case
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In this case, the new method is employed to compute the failure probability of the
latch, comparing the result to the computation made by the MC method with 107 samples
to evaluate the accuracy of the calculation results. The results are shown in Table 3.

Table 3. The comparison of lower and upper bounds.

Method

Failure Probability Interval Relative Error

Lower
Boundary

Upper
Boundary

Lower
Boundary

Upper
Boundary

MC (107) 3.9120× 10−6 4.7801× 10−5 / /
Uncertainty FORM in [22] 4.3580× 10−6 4.3930× 10−5 11.4% 8.12%

UPSORM 4.2203× 10−6 4.4190× 10−5 7.88% 7.55%

Table 3 summarizes the estimation results for the structural latch computed by
Monte Carlo (MC) simulation, the uncertainty FORM, and the proposed UPSORM. As
shown in Table 3, the lower and upper bounds are computed for the failure probability:
[4.2203× 10−6, 4.4190× 10−5], which is measured by the proposed UPSORM after 154 it-
erations. It is matched to the results obtained by the MC simulation, showing that all the
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failure samples were correctly identified. Yet, the relative errors of 7.88% and 7.55% mean
that the adoption of the second-order Taylor expansion improves the efficiency with a
tradeoff in estimation accuracy.

The lower and upper boundaries between the MC and UPSORM are different, as
shown in Table 3, induced by the nonlinear limit-state function. The relative errors of 7.55%
and 7.88%, respectively, are within acceptable ranges for the upper and lower bounds.
Comparing the relative errors of the FORM in Qiu [22] shows the direct influences of the
nonlinearity to the estimation accuracy. The second-order Taylor series is better than the
linear one in resolving the structural reliability problem with nonlinear limit-state function.

5. Conclusions

This paper proposes a unified reliability framework to address the reliability of a
complex system in the presence of both stochastic and interval variables. On the aggrega-
tion of different uncertain variables, a novel SORM method, UPSORM, is proposed. By
introducing a novel polar transformation technique, a multivariate limit-state function is
reformulated as a generalized bivariate limit-state function in the polar coordinate. For this
purpose, we set the gradient direction of the limit-state function as the polar coordinate. In
this manner, the computational cost is significantly reduced as the original n-dimensional
reliability problem is simplified to a two-dimensional problem.

The proposed method was evaluated through a numerical case study. The upper and
lower bounds of reliability were estimated. To further validate its practical feasibility, a
real engineering case was employed as an application example. The proposed method
was compared with the classical MC algorithm and the state-of-the-art method, showing
that the proposed method provides comparable results with lower computational costs.
In particular, the proposed method outperformed the compared methods for cases with
strong nonlinearity.
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Appendix A

(1) Input: the random variables vector x = (x1, x2, · · · , xn) with the mean
µ(x) = (µ(x1), µ(x2), · · · , µ(xn)) and standard deviation δ(x) = (δ(x1), δ(x2), · · · , δ(xn));
the interval variables vector z = (z1, z2, · · · , zm), zj ∈ [zL

j
, zU

j
], j = 1, 2, · · · , m;

(2) Use the Nataf method to transfer x to the independent Gaussian vector
u = (u1, u2, · · · , un).

(3) convert z to the independent normalized interval vector
δ = (δ1, δ2, · · · , δm) ∈ [−1, 1].

(4) Rewrite the limited state function G(x, z) = b− y(x, z) into G(ω) withω = (u,δ).
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(5) Assume an initial design pointω∗(0) = (u∗(0)1 , u∗(0)2 · · · , u∗(0)n , δ
∗(0)
1 , · · · , δ

∗(0)
m ), and

compute:
∂G
∂ωi

∣∣∣∣
ω∗(0)

, v1
∗(0), v2

∗(0), D∗(0), λ∗(0), d∗(0) as follows:

∂G
∂ωi

∣∣∣∣
ω∗(0)

= − ∂y
5

∂ωi

∣∣∣∣
ω∗(0)

(i = 1, 2, · · · , n + m)

v1
∗(0) =

√
n+m

∑
k=1

(
ω
∗(0)
i

)2

v2
∗(0) =

n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗(0)

ui

)
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗(0)

δj

)

v1
∗(0)

 n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗(0)

)2
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗(0)

)2
1/2

D∗(0) =

 n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗(0)

)2
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗(0)

)2
1/2

λ∗(0) =

b− y(ω∗(0)) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗(0)

ωk
∗(0)
)
− Dv1

∗(0)v2
∗(0)

2v1
∗(0)2 − 2v∗(0)2

d∗(0) = b− y(ω∗(0)) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗(0)

ωk
∗(0)
)
− λ∗(0)v∗(0)1

2

(6) compute the initial failure probability interval [PU
f
(0), PL

f
(0)] as follows:

PL
f ailure

∗(0) =
∫ 1
−1

∫ +∞√
m

Ωv={v|G(ξ1,ξ2)≤0}
fv1(ξ1, m) fv2(ξ2)dξ1dξ2

PU
f ailure

∗(0) =
∫ 1
−1

∫ +∞
0

Ωv={v|G(ξ1,ξ2)≤0}
fv1(ξ1) fv2(ξ2)dξ1dξ2

(7) For l = 1, 2, . . . , s, compute ω+
k
(l)(k = 1, 2, . . . n + m) as follows:

ω+
k
(l) =

− ∂y
∂ωk

∣∣∣∣
ωk
∗(l−1)n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ωk
∗(l−1)

)2
1/2 (l = 1, 2, . . .)

(8) For l = 1, 2, . . . , s, calculate the new design point ω
∗(l)
k (k = 1, 2, . . . n + m) with

ω+
k
(l) as follows:

ω
∗(l)
k = ω

∗(l−1)
k +‖ω

∗(l−1)
k ‖ω+

k
(l) = ω

∗(l−1)
k +‖ω

∗(l−1)
k ‖

− ∂y
∂ωk

∣∣∣∣
ωk
∗(l−1)n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ωk
∗(l−1)

)2
1/2 (l = 1, 2, . . .)
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(9) For l = 1, 2, . . . , s, calculate
∂G
∂ωi

∣∣∣∣
ω∗(l)

, v1
∗(l), v2

∗(l), D∗(l), λ∗(l), d∗(l) as follows:

v1
∗(l) =

√
n+m

∑
k=1

(
ω
∗(l)
i

)2

v2
∗(l) =

n

∑
i=1

(
∂y
∂ui

∣∣∣∣∣
ω∗(l)

ui

)
+

m

∑
j=1

 ∂y
∂δj

∣∣∣∣∣∣
ω∗(l)

δj



v1
∗(l)

 n

∑
i=1

(
∂y
∂ui

∣∣∣∣∣
ω∗(l)

)2

+

m

∑
j=1

 ∂y
∂δj

∣∣∣∣∣∣
ω∗(l)

2


1/2

D∗(l) =

 n

∑
i=1

(
∂y
∂ui

∣∣∣∣
ω∗(l)

)2
+

m

∑
j=1

(
∂y
∂δj

∣∣∣∣∣
ω∗(l)

)2
1/2

λ∗(l) =

b− y(ω∗(l)) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗(l)

ωk
∗(l)
)
− Dv1

∗(l)v2
∗(l)

2
(
v1
∗(l))2 − 2v∗(l)2

d∗(l) = b− y(ω∗(l)) +
n+m

∑
k=1

(
∂y

∂ωk

∣∣∣∣
ω∗(l)

ωk
∗(l)
)
− λ∗(l)

(
v∗(l)1

)2

(10) Compute the failure probability interval PL
f ailure

(l) and PU
f ailure

(l) as follows:

PL
f ailure

∗(l) =
∫ 1

−1

∫ +∞
√

m
Ωv={v|G(ξ1,ξ2)≤0}

fv1(ξ1, m) fv2(ξ2)dξ1dξ2

PU
f ailure

∗(l) =
∫ 1

−1

∫ +∞

0
Ωv={v|G(ξ1,ξ2)≤0}

fv1(ξ1) fv2(ξ2)dξ1dξ2

(11) Output: compute

∣∣∣Pupper
f ailure

(l) − Pupper
f ailure

(l−1)
∣∣∣

1− Pupper
f ailure

(l)
and

∣∣∣Plower
f ailure

(l) − Plower
f ailure

(l−1)
∣∣∣

1− Plower
f ailure

(l)
.

(12) Define ε, if

∣∣∣Pupper
f ailure

(l) − Pupper
f ailure

(l−1)
∣∣∣

1− Pupper
f ailure

(l)
≤ ε and

∣∣∣Plower
f ailure

(l) − Plower
f ailure

(l−1)
∣∣∣

1− Plower
f ailure

(l)
≤ ε, stop

the calculating procedure. Otherwise, assume that l = l + 1, assign the design point
ω∗(l+1) = (u∗(l+1)

1 , u∗(l+1)
2 · · · , u∗(l+1)

n , δ
∗(l+1)
1 , · · · , δ

∗(l+1)
m ) by the initial design point and

repeat steps 5–11 until the accuracy requirement is satisfied.
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