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ewa.dostatni@put.poznan.pl
* Correspondence: izarojek@ukw.edu.pl

Abstract: A “digital twin” is a dynamic, digital replica of a technical object (e.g., a physical system,
device, machine or production process) or a living organism. Using this type of solution has
become an integral part of Industry 4.0, offering businesses tangible benefits, in addition to being
particularly effective within the context of sustainable production and maintenance. The purpose of
this paper is to present the results of research on the development of digital twins of technical objects,
which involved data acquisition and their conversion into knowledge, the use of physical models
to simulate tasks and processes, and the use of simulation models to improve the physical tasks
and processes. In addition, monitoring processes and process parameters allow for the continued
improvement of existing processes as regards intelligent eco-designing and planning and monitoring
production processes while taking into account sustainable production and maintenance.
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1. Introduction

The term digital twin (DT) stems from the concept of a virtual equivalent to a physical
phenomenon, developed in 2002 at the University of Michigan. A dynamic, digital replica
of a physical system, device, machine, production process or a living organism is more
than just a model [1]. Any changes to which the physical object is subjected are detected
by sensors and reflected in its digital replica. This offers a more in-depth insight into the
processes which occur when using the physical object, rendering it possible to predict
events, enabling effective remote management, early malfunction detection, element wear
monitoring and predictive responding to such situations. Conclusions drawn from an
analysis of a digital twin can subsequently be applied to the original object with reduced
risk and increased return on investment. In addition to being implemented in new and
already established solutions (e.g., production lines that are planned to operate for many
more years), the digital twin technology is also used by businesses to test new products
before committing to serial production and use, enabling the introduction of improvements
and further development. A key requirement for developing a virtual recreation of the
physical world is real-time access to a complete spectrum of appropriate-quality data and
that the virtual world can “learn” the behaviors of the physical world. Currently, avail-
able dedicated solutions meet this requirement. This is rendered possible as a result of the
development of sensors and the Internet of Things, which offers the ability to continuously
acquire data and transfer it in large volumes (currently in exabytes). The other end of
the process of developing a digital twin involves analytical tools, machine learning and
artificial intelligence instruments which make use of this data. Their dynamic development
enables the effective use of data to build knowledge about a physical object, its behaviors
and reactions to changes in its environment, and continuous verification of the recreation,
and in some cases also creating variations for the purpose of analyzing different scenarios.
The ability to visualize a technical object (e.g., a machine) and to simulate its operation
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(both functionally and structurally) is expanded to include communication methods that
enable teamwork. Digital twins, due to their features, revolutionize industrial and business
activities thanks to the results which are possible to achieve with their help, in particular
their predictive potential, product monitoring throughout the entire product life cycle and
the ability to utilize this knowledge to optimize and develop products, including develop-
ing new and improved generations. The availability of technological solutions enabling
the implementation of the digital twin concept, combined with the results it generates,
make its implementation a key part of modern digital transformations. In annual reports
published by Gartner on major strategic technological trends entitled “Top 10 Strategic
Technology Trends for 2019“, “Top 10 Strategic Technology Trends for 2020”, “Top 10
Strategic Technology Trends for 2021”, digital twins and related technologies are frequently
in the top ten. According to the report, half of all large manufacturing companies will
be using digital twins by 2021, resulting in a 10% increase in effectiveness. In the new
generation of the industry—Industry 4.0, digital twins are of key importance. Depending
on the industry, DT offers improvements at every stage of the production process, in partic-
ular: shorter solution modeling time (up to 20%), shorter construction time (up to 25%),
a marked increase in the quality of documentation and reduced amount of design errors
(up to 20%) [2–4]. In the middle and long term, it also increases sales and market share,
as the enhancement of the above-mentioned processes results in businesses being able to
participate in a higher number of projects than in the past, and for specific industries, it also
means larger, more complex projects, possibly featuring more advanced technologies and
offering a higher return on investment. Monitoring product life cycles renders exchanging
information between various departments more effective, which may give rise to com-
pletely new possibilities regarding analysis, prediction and creative applications, including
faster product line replacement and simultaneous demand creation across multiple markets
previously unavailable due to scale of production or logistical limitations, for example.
As a result, the reduction in production, service/helpdesk time and/or cost is a natu-
ral consequence. The digital twin concept becomes even more attractive in sustainable
manufacturing, in both subtractive and additive machining.

Sustainable development is one of the most important issues for current and future
generations. The assumption that natural resources are infinite, i.e., that the ability of the
environment to regenerate is sufficient to repair all damage caused by the entirety of human
activity, is changing. Thus, the idea of sustainable development now influences all orga-
nizational aspects of human life, including economic, political, social and environmental.
Manufacturing, being one of the foundations of the civilized lifestyle, will be profoundly
affected by it and will have an important role to play in creating a sustainable path towards
development. Despite this rising awareness, nearly all current production models are based
on the old, outdated paradigm. The technology on which manufacturing is largely based
must, along with culture and economics, provide tools and opportunities to create new
solutions to bring us closer to sustainable production [5,6]. New technologies, business
models and lifestyles will become a milestone marking the advent of a new, sustainable
world, and nowhere will this be truer than in the manufacturing sector. The inevitable
restrictions and increased requirements will impact the entire industrial sector, as well as
education and science, as we move closer to sustainable development [7,8]. Research and
development will be of key significance, their purpose of enabling society to adequately
satisfy the above-mentioned needs in the form of properly trained staff and innovative
technologies [9,10]. The main research challenges related to sustainable production have
been presented by the authors involved in the international project “IMS2020: Supporting
Global Research for IMS2020 Vision”, promoted by the European Commission for the
purpose of developing a roadmap for future (2020) production [5,6].

The purpose of this paper is to present the results of the authors’ research on the
development of digital twins, which involved data acquisition and their conversion into
knowledge, the use of physical models to simulate tasks and processes, and the use of
simulation models to improve physical tasks and processes. In addition, monitoring pro-
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cesses and process parameters allow for the continued improvement of existing processes
as regards intelligent eco-designing and planning and monitoring production processes,
including sustainable production and maintenance.

The novelty proposed by the authors, which is missing from the literature, is presented
in the following chapters: Materials and methods, Procedures and Results, are the result of
the authors’ own research, simulations and calculations. The industry uses DT technology
to create benchmarks for predictive analysis of asset performance. As an advanced type of
process model simulation, digital twins provide real-time data, and operators can apply
them in a variety of ways throughout planning, production and supply. In our study,
various support systems are being created, which we have included in the article. As for
the digital twins that are being created, they are the research of different researchers,
not patterns.

The Introduction section defines the concept of the digital twin in the context of
Industry 4.0, sustainable production and maintenance. This part also defines research
objectives and methods to achieve them and presents the structure of the article. The rest
of this paper is structured as follows: Section two provides a review of the literature
related to the use of DTs in enterprises and highlights the importance of machine-learning
methods in the context of their use in digitizing data in DTs. The Materials and Methods
section presents the own method used to create a digital twin. The Procedures section
demonstrates the application of the DT in eco-designing, planning and monitoring of
manufacturing processes for sustainability in manufacturing and maintenance. The Results
section contains an assessment of the solution, an example application of digital twins
and a system architecture incorporating DTs. The final two sections contain Conclusions
and References.

2. Literature Review

A comprehensive literature review was carried out using Whittemore and Knafel’s
approach. This integrative method of study is the only approach that combines different
methodologies (including experimental and non-experimental research) and has the po-
tential to play a greater role in practice. Literature research was conducted in scientific
journals and monographs. The most basic criterion for inclusion was the relevance for
this group of technologies, both for their theory, simulation and experimental research,
and practical implementation in the economy.

The authors of article [7] identify eight DT development prospects, including modular
DTs, ensuring modeling coherency and accuracy, incorporating big data analytics into DT
models, improving DT simulations, integrating virtual and augmented reality systems
with DT, expanding the applications of DT, effective mapping of cyber-physical data
and integration with cloud/edge computing. The DT technology is an effective tool that
meets the requirements of smart manufacturing by way of recreating physical processes
in virtual space [8,9]. This is performed within a broad-spectrum of CPS (cyber-physical
systems). The DT paradigm is well suited to a lifecycle-based paradigm [10]. Technology is
increasingly considered to be of paramount importance to improving and evolving global
production, including its globalization. Because DTs are now being used in new sectors to
increase productivity, efficiency and competitiveness, a variety of tools and methods must
be used, which include tools for managing data and connectivity, tools for representing
and storing data, machine learning tools and analytical methods.

Data acquisition and transmission are of key significance to DT as the technology
requires real-time connectivity and data transfer. As an example, Freeman [11] proposes
a data stream processing system in which data are analyzed and queried continuously.
The above-mentioned data acquisition systems are of key significance to the implementa-
tion of DT in production environments containing data collected using temporary (due to
the hardware used, type of materials, etc.) and permanent data storage processes (process-
ing systems utilizing real-time sensors) [12]. Heterogeneous data and industry-specific
knowledge acquired from production processes require modeling and integration with pro-
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duction systems. The most important knowledge representation tools for developing DTs
include NoSQL ontologies and databases [13–17], relational databases [18,19], MySQL [20],
SQLite 3 [21], real-time databases for storing various UML data structures [22], transac-
tional graph databases [23] and databases handling data transformation and predictive
queries [24].

In order to process data into knowledge, it is necessary to utilize machine learning
and data exploration methods. The following methods are used in the case of digital twins:

• Neural networks, used in quality prediction and operation control in metallurgy [25];
smart control in the paint and finishing works industry [26,27], error prediction and
diagnostics in CNC machining [28];

• Deep neural networks, used in autonomous production in smart production plants [29]
and error diagnostics [30];

• Dynamic Bayesian networks, used by DTs to monitor the condition of aircraft wings [31];
• NSGA-II genetic algorithm used to optimize the efficiency of a machine [19,26,28,32].

Businesses utilizing the DT technology also make use of what is referred to as mi-
croservices. These are programming tools developed as a set of loosely connected services.
Thönes [12] defines them as functions that enable the development of an application as a set
of relatively small, coherent, isolated and autonomous services that perform specific tasks.
Rojko [33] analyzed virtualization tools in modern production systems, which enable the
monitoring and tracking of resource services in a production plant for the purpose of auto-
matic conflict resolution and increasing efficiency by way of facilitating decision-making
and control.

Potential applications of DTs in the product lifecycle management process from cre-
ation to disposal (PLM) are analyzed within the general competitive process framework
proposed in Casadesus-Masanell and Ricart [34], which outlines the structure and process
of implementing DTs. It should be noted that introducing a DT renders it possible to limit
the number of samples in product assessment drastically and enables businesses to mitigate
production risks related to production line imperfections.

From an innovation perspective, process innovation involving a marked increase in
the effective utilization of the creative potential of R&D and engineering staff compared
to traditional methods translates into product innovations in the long term (increased
quality of new product and/or service families). Moreover, the process of training the staff
is expedited thanks to increased productivity and the number of projects completed, in
addition to better error identification, including among younger, less experienced employ-
ees. This is due to the increased effectiveness of DT, including in modeling and analyzing
designed objects while accounting for their statics, kinematics and material properties,
space optimization thanks to analyzing large-scale designs and multilayered blueprints
(electricity, piping, etc.), or creating technical documents or visualizations which take
into consideration the technologies used to manufacture the objects (subtractive, additive
or hybrid).

Gharaei et al. proposed a systems engineering approach to define DT requirements to
formalize the DT concept from a systemic perspective, including the conceptual architecture
of DT, which is defined based on ISO 42,010 standard. DT architectures have been identified
by capturing formalized requirements using the EARS approach assessed based on a case
from the IMPULSE project [35].

Some UE projects are also proposed for this topic, such as FACTLOG—energy-aware
factory analytics for process industries, QU4LITY—digital reality in zero-defect manufac-
turing and the Innosuisse, IMPULSE project on digital twins, etc. We strongly believe that
their outcomes will enrich and fuel the future of DT technology and its environment.

3. Materials and Methods

In line with the DT paradigms, research was conducted, which involved data ac-
quisition and the development of the principles according to which these data would be
transferred. The data were then processed into knowledge. In our approach, we try to
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extract the knowledge and experience of the company’s employees, which are hidden in
the developed examples included in databases. Data-mining methods extract knowledge
from data. Based on decision trees, decision rules are created and then included in the
applications used by employees. You could say that knowledge has been extracted and
incorporated into computer applications.

The actual data come from several manufacturing companies in the area of eco-design,
process planning and process supervision. These companies were characterized mainly by
unit and small batch production, for which the knowledge gained for them is very impor-
tant. In order to develop models in the form of decision trees with designers, technologists
and machine operators, important criteria for solving individual problems were established,
and predicators (conditional attributes) and decision classes were defined, which were
used to file learning examples periodically. To make the data useful for exploration, they
were cleaned and transformed. Cleaning the data consisted of standardizing the record,
completing the missing data and identifying remote points, then converting the data into
normalization and coding.

Physical models were used to simulate tasks and processes. Simulation models were
subsequently developed for the purpose of improving physical tasks and processes. Moni-
toring processes and process parameters render it possible to continually improve physical
processes from the perspective of intelligent eco-designing, planning and monitoring
manufacturing processes in line with sustainable manufacturing and maintenance prin-
ciples. Digital twins were created for the above-mentioned areas. The digital twins were
developed in stages:

• Analysis of physical processes and input data collected from real processes using
sensors and measuring devices;

• Development of artificial intelligence models in the form of neural networks, decision
trees and rules, and fuzzy logic;

• AI model assessment;
• Creation of a digital replica of the physical process or machine;
• Simulation of a physical process or machine operation;
• AI model improvement;
• Application of the AI models in existing systems;
• Upgrading and teaching AI models (Figure 1).

We considered individual objects: in eco-design, this is a choice of 3 ways of material.
We broke down the planning of the technological process into simpler elements. We divided
process supervision into the supervision of selected processes. As far as the size of the
teaching files was concerned:

- for eco-design, the files had about 200 examples of learners;
- for design and supervision, there were about 300 examples of learners.

Concerning eco-designing, the focus was primarily on material selection. The goal of
the study was to develop material selection methods and models utilizing AI and simulate
the implementation of these methods to achieve optimal selection from the perspective
of eco-construction. Material selection focused on a multicriteria analysis taking into
consideration realistic factors from industry, i.e., determining the compatibility of materials,
selecting additional materials while accounting for a set compatibility level and selecting
methods of connecting materials. An eco-constructor selects materials and their fastenings
in a way that minimizes their negative impact on the environment and renders recycling
easier. For example, the compatibility of the materials was determined by the compatibility
matrix (Figure 2).
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Figure 1. Main phases of the proposed method.

As regards the planning of manufacturing processes, special emphasis was put on tech-
nological process design. The purpose of the study was to develop technological process
design methods and models utilizing AI and to simulate the operation of these processes to
achieve optimal results from the perspective of a particular business. Decision rules were
used to determine the structure of the technological process, i.e., the order of technological
operations and procedures. Neural networks rendered it possible to construct models
for selecting semi-finished products, instruments, machine tools, tools, tool holders and
machining parameters, and decision trees—models for selecting machine tools, tools and
tooling. Example selections used to create models were processed, i.e., normalized using
fuzzy logic. Subsequently, the models of selecting semi-finished products, tooling, machine
tools, tools, tool holders and machining parameters were implemented in the form of a
prototype expert system for designing technological processes. The system is dedicated to
technologists who do not possess sufficient experience in designing technological processes
or have only just begun working at a given production company and thus are not yet
familiar with the machines or other means of production.
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As regards the monitoring of manufacturing processes, special emphasis was put on
machining process monitoring. Simply designing a technological process was not sufficient.
The product is manufactured under the planned process; however, various disruptions may
occur during this process, which impacts the quality of the final product. Another research
goal was to eliminate this type of hazard using our methods and models of monitoring the
technological process of machining. The monitoring encompassed:

• Machining process disruptions; a simulation of such disruptions was conducted—
when a particular disruption occurs, the operator selects its cause and is provided
with a solution to the issue. The knowledge assumes the form of decision rules;

• Machining process stability—control charts were used to develop process stability
disruption patterns, and a neural network was used to simulate the monitoring of
such a process. After improving the example scenarios, the neural network was
learned to react to instabilities properly. This model was then implemented in the
system. The network is learned and improved based on actual actions;

• Ra and Rz surface roughness value—using a system consisting of models made up
of neural networks and decision trees; the system informs the operator about norms
being exceeded, i.e., it signals that the machining parameters require correcting;

• The CNC machine via controlling and compensating for the thermal deformation
of ball screws—a system was developed which incorporates neural network-based
models for monitoring current speed and load values and predicting the elongation
of the CNC machine ball screw based on these values;

• Monitoring and predicting to predict blade wear based on various input data (cutting
forces, acoustic emission and mechanical vibration). Selected measurements of physi-
cal parameters were made during the processing, and a simulation of blade wear was
conducted based on these values. The neural networks were learned to predict the
wear level of the blade.

A new element introduced in this study was developing DT as a new approach
to selected issues while taking into account maintenance in sustainable manufacturing.
Following the paradigm of sustainable production, this change in approach must be imple-
mented on three levels: product, process and system. At the product level, the traditional
3R (reduce, reuse, recycle) concept was transformed into a more sustainable 6R approach
(reduce, reuse, recycle, recover, redesign, remanufacture) [37,38], which is being gradually
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implemented in eco-designing and manufacturing process planning. At the process level,
an attempt was made to optimize technological processes to reduce resource use, the
amount of waste generated, and hazards related to the work and working environment,
which finds implementation in the designing and monitoring of machining processes.

According to the EN 13306: 2010 standard, maintenance is a “combination of all
technical, administrative and managerial actions during the life cycle of an item intended
to retain it in, or restore it to, a state in which it can perform the required function.” From
the perspective of a business, this means that maintenance operations should focus on,
e.g., ensuring the required level of reliability and availability of machines and devices
and their efficiency, optimal use of the capital invested, ensuring the required level of
safety for users and technical operators, monitoring the environmental aspects of machine
operation and operation processes, modernizations ensuring the economic efficiency of
the objects used, cooperation with providers of machines, replacement parts and services,
regular improvement of technical service employee skills, etc. Therefore, selecting the
correct combination of operational strategies for every technical object (corrective, pre-
ventive, predictive) must take into account not only economic and technical factors but
also environmental and security-related ones and how they relate to the business strategy
of the company [39,40]. It is thus evident that maintenance can have a profound impact
on the effectiveness of sustainable production. Such major maintenance factors, which
are of significance to the development of sustainable production processes, include re-
placement part and consumable management, cooperation with a machine, device and
repair service providers, machine and device modernization, cooperation with design and
product development departments, cooperation with production and quality departments,
cooperation with OHS and environmental departments, employee competences, use of
preventive and predictive operational strategies and systems for collecting and processing
operational data [41–45]. Operational data, as analyzed from the perspective of sustainable
production, find use in all of the analyzed areas: eco-designing, planning manufacturing
and monitoring manufacturing processes. The application of DT in optimizing the physical
processes of a business is presented in Figure 3.
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4. Procedures

The digital twins developed have a profound impact on certain parts of the business
in which they were implemented. At the construction level, data acquired from users
who test and use products in their everyday life were used. Construction changes were
simulated in a digital twin to improve product design via correct material selection. At the
production planning and monitoring stage, a DT rendered the process more efficient,
reliable and flexible thanks to a wide range of innovative research. This was particularly
significant at the technological process design and production process monitoring stage.
DTs can be used to digitize process models to better react to consumer trends. In order
to smartly facilitate tasks in a business, digital twins make use of a range of classification
models that predict particular parameters used in manufacturing goods. The models were
developed in the form of classification trees: C4.5, C&RT, CHAID, reinforced decision trees
and random forests.

DT and eco-designing
In the field of eco-designing, the digital twin offers a series of classification models for

selecting materials that take into consideration maintenance in sustainable manufacturing.
Recycling-focused eco-designing primarily involves selecting appropriate construc-

tion materials and methods of fastening them. Products should be designed to incorporate
the maximum possible amount of normalized and recyclable materials. This has a pos-
itive impact on the environment in the final stages of the product’s life cycle, including
conservation and decommissioning. When selecting materials for use in products, their
compatibility should also be taken into consideration: the materials used should be recy-
clable at the end of the product’s life cycle without the need to separate them. Additional
data were also collected about the materials, based on which they can be recovered, re-
designed and remanufactured. The authors’ previous papers on the development of neural
network classifiers can be found in [46].

Materials can be selected in two ways. The first method involves selecting added
materials based on the primary material and the required compatibility level between the
two. In the second method, the user defines the primary and added materials of a new
element, and the system informs them about the compatibility between these materials.
The fastening of materials is another important issue. Material fastening methods must
ensure quick and smooth disassembly, especially in cases where the use of incompatible or
hazardous materials is necessary due to functional reasons [47]. If the compatibility is high,
temporary or permanent fastening can be used. However, if the compatibility is low or if
the materials are incompatible, only temporary fasteners should be used.

Files containing examples used to develop the classifiers were created based on an
analysis of material properties, including material name (e.g., PVC), a tensile strength
in megapascals (e.g., 35.5), density in grams per cubic centimeter (e.g., 7.88), processing
temperature in Celsius (e.g., 20.8), elongation at yield (Re) in percentage (e.g., 5.5), Young’s
modulus E in gigapascals (e.g., 4.61), dielectric constant (e.g., 2.0), dielectric strength in
kilowatts per millimeter (e.g., 22.0), water absorptivity in percentage (e.g., 22.55), recycling
cost in PLN per kilogram (1 PLN = 0.23 euros) (e.g., 4.25); a positive value denotes profit
from selling the material, while a negative value denotes disposal cost, negative impact on
the environment (e.g., true) and the name of the added material (e.g., ABS). The material
parameters were established with designers.

For the first problem, i.e., material selection where the user defines a material selected
for an element (part) of the product and the required level of compatibility, and the
system recommended which material to add, a file was created containing examples
with the conditional attributes "main material" and "compatibility", and the decision class
"added material". For the second problem, i.e., material selection where the user defines
the main and added material of a new element, and the system informs the user about
the compatibility between these materials, a file containing examples was created with
the conditional attributes "main material" and "added material", and the decision class
"compatibility". For the third problem, i.e., selecting material connections, a file containing



Appl. Sci. 2021, 11, 31 10 of 19

examples was created with the following conditional attributes: "main material", "added
material" and "compatibility", and the decision class "connection type". Example classifiers
are presented in Figure 4 (in the StatSoft Statistica DataMiner software). The root of the
tree shown in Figure 4a,b was the main material attribute, which provided the highest
information gain (the division criterion of examples).
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DT and planning manufacturing
In the field of planning manufacturing, the digital twin contains many classification

models for technological process design while taking into account maintenance in sustain-
able production. The selection models are based on the following criteria matching the
technologies used in a given manufacturing company and related to particular selections:

• Semi-finished products: this selection takes into account production scale, part quality,
part shape, semi-finished product availability and type of material;

• Technological process structure: this selection determines the order of technological
operations and procedures, taking into account production scale, type of semi-finished
product, requirements and shape of the workpiece;

• Workpiece equipment: taking into account production scale, type of semi-finished
product, machining method, part shape; also, the technologist assesses the speed of
mounting and positioning repeatability;

• Machine tools for technological operations and procedures: taking into account
machining accuracy, workpiece dimensions, expected load, production efficiency and
hourly cost of machine tool operation;

• Machining tools for technological operations and procedures: taking into account
the shape of the machined surface, machining method, scale of production, type and
accuracy of the machining, kind of machine tool and type of workpiece material;

• Tooling: taking into account the dimensions of the tooling compatible with the tool
and machine;

• Machining parameters are taking into account the type of machine tool, part material,
surface quality requirements and type of blade material.

Classification models were developed for all of these selections. The authors’ early
work demonstrates certain selection aspects whose classification models were based on
neural networks [48]. As an example, an optimal classifier for tool holder selection using
decision trees was presented. Tooling selection models were built in a similar fashion to
the other classification models. Figure 5 depicts a decision tree, i.e., the optimal classifier
for selecting a tool holder. This selection occurred when the tool was not compatible with
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the machine. The root of the tree shown in Figure 5 was the milling tool attribute, which
provided the highest information gain (the division criterion of examples).

DT and monitoring manufacturing
In the field of monitoring manufacturing, the digital twin comprises a range of clas-

sification and predictive models for monitoring production processes, which take into
consideration maintenance in sustainable manufacturing. This module is constantly being
developed. Models were developed which facilitate the elimination of machining process
disruptions (simulations were conducted of these disruptions and the methods of their
repair), maintaining process stability based on control charts, signaling the need for machin-
ing parameter correction based on workpiece surface roughness assessment, CNC machine
control including compensating for the thermal deformation of ball screws, predicting
blade wear based on various input data, in particular cutting forces, acoustic emission
and mechanical vibrations. The authors’ earlier work was related to constructing models
in the form of neural networks [49–51] and other authors [52]. This paper demonstrates
classification models in the form of decision trees for predicting VBc - tool wear (Figure 6)
based on cutting force. The root of the tree shown in Figure 5 was the time of cutting force
attribute, which provided the highest information gain (the division criterion of examples).
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5. Results

The decision tree models were verified and assessed for the purpose of selecting the
most effective models. The models were developed in the form of classification trees: C&RT,
CHAID, reinforced decision trees and random forests. Model parameters were changed for
every type of tree. The following classification parameters were set for the C&RT model:
the cost of erroneous classification, the goodness of fit and a priori probability. The stop
criterion incorporated the stop rule: cut according to variance and the parameter of a
minimum number of examples per node. For the CHAID model, the cost of erroneous
classification was set. The stop criterion required a minimum number of examples per
node. For the reinforced tree model, the following classification parameters were set: cost
of an erroneous classification and a priori probability. The stop criterion incorporated the
parameter of the minimum number of examples per node. For the random forest model,
the following classification parameters were set: cost of an erroneous classification and a
priori probability. The stop criterion incorporated the parameter of the minimum number
of examples per node.

The cost of erroneous classification relates to the distribution of examples across classes.
Cost minimization is equivalent to minimizing the overall proportion of erroneously
classified cases when a priori probabilities are proportional to class size, and the cost of
erroneous classification is equal for every class [53].

The goodness of fit involves finding the split for every predictor, which offers the
highest increase in the goodness of fit. How does one define the goodness of fit increase?
The goodness of fit can be measured in three ways. The Gini impurity measure reaches
zero when a given node contains only a single class (with a priori probabilities estimated
based on the size of classes and equal cost of erroneous classification, the Gini measure
is calculated as the sum of the products of all class proportion pairs in a given node; and
reaches the maximum when the number of classes in a given node is equal). The Gini index
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was the preferred measure of goodness of fit for the developers of C&RT [53]. A perfect fit
means perfect classification.

A priori probabilities determine the probability that a given case or object fits a given
class without any prior knowledge about the predictive variables in the model. They are
used in cost minimization and may impact case or object classification. Cost minimization
is equivalent to minimizing the general proportion of erroneously classified cases when a
priori probabilities are proportional to class size (and the cost of erroneous classification is
equal for every class), as predicting should be more effective for larger classes and yield a
generally lower rate of erroneous classifications [53].

As for the attributes: attached is a different form of the tree, where you can see what
the root is, how these attributes are distributed. Classification matrices demonstrate the
effectiveness of the classifiers. These were developed and analyzed for every decision tree
to choose the most optimal one. An example classification matrix is presented in Figure 7.
The material added to the main material constitutes the observed and predicted class.
Table 1 presents classes of added materials, which we can connect to main materials.
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Table 1. Classes of added materials.

Class Added Materials

1 SAN, PVC, PMMA, PC, PBT, ASA, ABS
2 PS, PPE, PP, POM, PET, PE, PA
3 PA
4 SAN, PS, PP, POM, PMMA, PET, PE, PBT, ASA, ABS
5 PVC, PPE, PC
6 SAN, PC, PBT, ASA, ABS
7 PS, PPE, PP, POM, PMMA, PET, PE, PA
8 PVC
9 SAN, PMMA, PET, PC, PBT, ASA, ABS
10 PS, PPE, PP, PE
11 PVC, POM, PA
12 PP, PE
13 PA, PVC, PC
14 SAN, PS, PPE, POM, PMMA, PET, PBT, ASA, ABS
15 PET, PC, PBT, ASA, ABS
16 SAN, PA, PVC, PE, PS, PMMA, PPE, POM, PP
17 PC, ABS, PMMA, ASA
18 PA, SAN, PE, PVC, PET, PS, POM, PP, PPE
19 PBT
20 POM
21 ABS, PVC, ASA, SAN, PA, PS, PBT, PE, PET, PPE, PP
22 PMMA, PC
23 PP
24 PVC, PE, PA
25 ABS, SAN, ASA, PS, PBT, PPE, PC, POM, PET, PMMA
26 PS, PPE
27 ABS, ASA, SAN, PA, PP, PBT, POM, PC, PMMA, PET, PE
28 PS
29 ABS, ASA, PA, POM, PBT, PP, PC, PPE, PE, PVC, PET, SAN, PMMA
30 SAN, ABS, PVC, ASA, POM, PMMA
31 PS, PP, PE
32 PET, PPE, PA, PC, PBT

The costs of misclassifications concern the distribution of examples between classes.
The minimization of costs corresponds to minimizing the proportion of misclassified cases
where probabilities are taken a priori proportional to the size of the classes, and the costs
of misclassification equal for each class. In order to assess the models, a cross-match test
based on a test sample was used, as well as 10-fold cross-validation. Table 2 compares the
cost, risk assessment and standard error of the decision trees.

Table 2. Comparison of classifiers of material selection based on the added material.

Classifier Type
Classifier Assessment

Risk Cost/Assessment Standard Error

C&RT 0.035217 0.110509
CHAID 0.201187 0.016060

Reinforced decision trees 0.000001 0.000001
Random forest 0.021846 0.011653

Reinforced decision trees and random forest proved to be the most effective models.
Correct classification rates were 100% and 97.64%, respectively. Decision rules were de-
veloped based on the trees, which were then implemented in the system. Example rules
developed based on the second decision tree are:

1. if added material = “ABS” and main material = “ABS” then compatibility = “good”
2. if added material = “ABS” and main material = “ASA” then compatibility = “good”
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3. if added material = “ABS” and main material = “PA” then compatibility = “limited”
4. if added material = “ABS” and main material = “PE” then compatibility = “limited”

The rules were imported into an existing module for determining material compatibil-
ity: main and added product (Figure 8).
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The result is a system that facilitates a company’s operations in the following areas:
eco-designing, planning manufacturing and monitoring manufacturing while accounting
for maintenance in sustainable manufacturing.

Figure 9 depicts a system architecture that incorporates digital twins in areas of
importance to the company for which it was developed by us. It provides a dynamic
virtual representation of a physical object/process at selected stages of its life cycle. Our DT
system includes physical processes chosen area: eco-designing, manufacturing planning
and monitoring. In databases, we have descriptions of these physical processes. Systems
can both present observations concerning the current state of the system and answer the
questions “what-if”. Many decision trees have been defined for each decision problem in
these three areas and in their specific tasks. Some trees from various areas are shown in
Figures 4–6. Figure 7 shows the evaluation of an exemplary tree. All trees were assessed in
this way, and the best ones were selected. The best decision trees are in the knowledge base.
Decision rules were created from the trees, which are included in computer applications.
The computer programs aid engineers in creating new solutions. Figure 9 shows the
architecture of a DT system in the company.

The DT system architecture combines:

• Physical processes that are performed in the departments of the company;
• Digital mapping of physical processes, which is transferred to the database in the

form of data;
• Based on standardized and coded data, AI models are created, which are then stored

in the knowledge base;
• The system control module supervises all these activities.

When the customer’s order arrives, the control module divides the tasks into individ-
ual departments of the company. The order is being processed. New physical processes
are the basis for expanding the data and knowledge in the system. This is how the system
learns all the time. Data that is relevant to sustainable production and maintenance are
collected during the operation of the system.
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6. Conclusions

The system supports selected areas: eco-designing, planning manufacturing and
monitoring manufacturing, for the purpose of manufacturing goods, and may be of help in
sustainable manufacturing. This is of particular utility in situations where green design and
manufacturing requirements are difficult to formalize, uncertain, incomplete or unavailable.

Machine-learning proved a precious tool for acquiring knowledge in facilitating oper-
ations in companies. It was discovered that designers and technologists frequently make
decisions based on intuition and are unable to formulate with precision the rules behind
their choices. As they acquire knowledge, machine-learning methods can be used to create
classic rules used in smart systems automatically. In the case of sustainable product design,
decision tree induction must be used as the classification method due to the large volumes
of input data presented in symbolic form. Rules generated based on decision trees are more
concise, and the time required to draw conclusions is significantly reduced. Our research
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demonstrates that machine learning can be effectively applied in DT. Thanks to DT, the
system gains improved connectivity and flexibility, in addition to increased intelligence
as a result of introducing knowledge and experience to a computer program. Moreover,
manufacturing efficiency is increased, as well as the quality of the goods produced, re-
ducing costs and increasing profits. In addition to improving manufacturing processes,
DT renders it possible to transition into individualized production. It also offers the pos-
sibility of conducting simulations for the purpose of amending manufacturing process
irregularities and accounting for maintenance in sustainable manufacturing. All data are
saved in a database, and the knowledge and experience in the system knowledge base.
Utilizing data and analyses generated by sensors built into smart products and instruments,
it is possible to streamline operations, reconfigurations and maintenance processes. DT
facilitates decision-making in multidimensional processes, strategic planning and process
prediction with the help of knowledge recycling and experience. DT expands conventional
engineering analyses to include information integration to create digital product lifecycles.
As monitoring and simulating in real time enables predicting tool and machine damage,
all data necessary for this type of prediction are saved in the system database.

Comparing research results with solutions developed by other authors poses difficul-
ties due to the fact that no identical product has been identified on the market, which would
include all set elements from the same industry. In addition, the boundary conditions for
the application of the solution in question could potentially differ to the degree that would
significantly impact the final numerical result, rendering a direct comparison impossible.
This indicates the necessity to develop a comparative research standard pertaining to DT
solutions, including a division into industries according to their specificity and the level of
complexity of the solutions themselves.

Further research will involve integrating the system as a smart module with a system
responsible for managing an entire manufacturing company. This will not only enable
further verification of current assumptions with the use of large sets of real manufacturing
data but also contribute to gaining a more thorough understanding of how to implement
DT in an existing business.

From a scientific point of view, we should also monitor the activity of research groups
and their progress as published and delivered at conferences and through initiatives
integrating the research community into larger umbrella projects. This will allow us to
know how our research results are linked to other research, i.e., how they enrich the research
carried out by other scientists and also how they affect industrial implementation. This
will allow us to better target our own research, including optimizing the effect, speeding
up the development of research-based on the experience of other teams, avoiding their
mistakes, but also avoiding the risks of even a lack of sustainability.
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