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Featured Application: This work proposes a CNN-based hyperspectral and multispectral image
fusion method, which aims at improving the spatial resolution of hyperspectral image, thereby
contributing to the accurate identification and classification of land-covers.

Abstract: In this paper, a detail-injection method based on a coupled convolutional neural network
(CNN) is proposed for hyperspectral (HS) and multispectral (MS) image fusion with the goal of
enhancing the spatial resolution of HS images. Owing to the excellent performance in spectral fidelity
of the detail-injection model and the image spatial–spectral feature exploration ability of CNN, the
proposed method utilizes a couple of CNN networks as the feature extraction method and learns
details from the HS and MS images individually. By appending an additional convolutional layer,
both the extracted features of two images are concatenated to predict the missing details of the
anticipated HS image. Experiments on simulated and real HS and MS data show that compared with
some state-of-the-art HS and MS image fusion methods, our proposed method achieves better fusion
results, provides excellent spectrum preservation ability, and is easy to implement.

Keywords: convolutional neural network; hyper-sharpening; hyperspectral; image fusion; multispectral

1. Introduction

Hyperspectral (HS) imagery presents plentiful spectral details and allows for accurate
analyses of terrestrial features due to its high spectral resolution. However, owing to the
constraint of sensors, HS images usually have low spatial resolution, which limits its applica-
tions in some circumstances. During recent decades, the increased application requirement
has encouraged the demand for improved potential spatial resolution of HS images. By
employing image fusion techniques, HS and high-resolution multispectral (MS) images
thus have a possibility to produce enhanced HS data that would contribute to the accurate
identification and classification of land-covers observed at a finer ground resolution.

For this purpose, hyper-sharpening [1], i.e., fusion of HS and MS images, has attracted
considerable concern over the past decade. In the early years, MS image pan-sharpening
techniques were used to cope with some simple hyper-sharpening tasks. To tackle the
problem of high spectral fidelity demand, the generalization of pan-sharpening algorithms
has shown substantial successes in the HS image area [2–4]. In [5], the maximum a poste-
riori (MAP) estimation is presented for fusing HS data with an auxiliary high-resolution
image, which can be an MS or panchromatic (PAN) image. To achieve better noise toler-
ance and fast implementation time, Refs. [6,7] propose to incorporate wavelet transform
and principal component analysis with the MAP estimation method. In addition, a fast
fusion algorithm for multi-band images is clarified in [8], applying a Sylvester equation.
Similarly, Ref. [9] adopts a fast-multi-band image fusion algorithm with robustness. In [10],
by formulating data fusion as a convex optimization problem, a “HySure” algorithm is
proposed to use a form of vector total variation-based regularization method to cope with
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HS sharpening and super-resolution problems. Sparse representation [11,12] is also used
to redefine the fusion problem for HS and MS images and shows excellent enhancement,
especially in spatial aspects.

The matrix factorization-based hyper-sharpening techniques draw worldwide interest,
due to the report of the coupled nonnegative matrix factorization (CNMF) algorithm [13],
which alternately unmixes HS and MS images into endmember and abundance matri-
ces based on a linear spectral mixture model. Inspired by CNMF, the dictionary-pair
learning method (DPLM) [14] and many other matrix factorization methods are pro-
posed successively. For instance, two approaches are proposed in [15], i.e., gradient-based
joint-criterion nonnegative matrix factorization (JNMF) and multiplicative JNMF method.
Ref. [16] proposes the spectral modulation hyper-sharpening methods, aiming at mini-
mizing the spectral distortion of real MS and HS images acquired by different sensors
or platforms. Considering the spectral variability of remote sensing scenes acquired at
different times, [17] combines the unmixing-based formulation with an explicit parametric
model to implement HS and MS image fusion. Compared with those conventional meth-
ods, matrix factorization-based methods show excellent spectral fidelity and capability
of anti-noise. In addition, tensor-based approaches have also been explored to further
improve the performance over matrix-based techniques, since they generally regard HS im-
age as a 3D tensor rather than multiple 2D matrices and jointly exploit the spatial-spectral
structure information. Refs. [18–22] have made comprehensive analyses and comparisons
about those classical hyper-sharpening algorithms.

In recent years, with the development and increased application of deep learning
techniques, convolutional neural networks (CNNs) [23] were widely applied to those
image-related tasks owing to their outstanding adaptability and practicability in exploring
and extracting local spatial structure characteristics. Accordingly, several CNN mod-
els have been proposed to deal with tasks related to image fusion or super-resolution:
Refs. [24–27] implement the fusion work by utilizing a 3-D convolution neural network,
with the dimension of HS image reduced beforehand. In [28], a deep HS sharpening
method, abbreviated to DHSIS, is presented to learn the image priors via deep CNN-based
residual learning. Ref. [29] proposes a two-branches CNN fusion method (abbreviated
to TCNNF for convenience in this paper), which explores the features from the spectrum
of each pixel in low-resolution HS images and its corresponding spatial neighborhood
in MS images by 1-D and 2-D CNN branches, respectively. The extracted features are
subsequently concatenated and fed to fully connected (FC) layers. In this way, the spatial
and spectral information of HS and MS images could be fully fused. In [30], a pyramid
fully convolutional network made up of an encoder sub-network and a pyramid fusion
sub-network are proposed to refine the spatial information of the multispectral image in
a global-to-local manner. Ref. [31] proposes an HS and MS image fusion method (called
as CNN-Fus), which is based on subspace representation and CNN denoiser. Ref. [32]
proposes a novel variational probabilistic autoencoder framework implemented by CNN in
order to fuse the spatial and spectral information contained in the low-resolution (LR) HS
and high-resolution (HR) MS images. This method is called FusionNet. To encode spatial
and spectral distortion, Ref. [33] proposes a complex multi-scale fusion neural network,
termed HAM-MFN, which designs two branches to extract features of low-resolution HS
and MS images, respectively, and then fuse them at different scales. In [34], a quadratic
optimization network with matrix decomposition is constructed, and the fusion problem
is substituted by the optimization problem for spectrum and space with a customized
loss function. Finally, in [35], authors propose a new framework, called recurrent atten-
tion fusion network (abbreviated to RAFnet) to obtain high-resolution HS images in an
unsupervised manner.

In pan-sharpening area, the detail-injection-based methods usually show high color
preservation ability and also have considerable potential in hyper-sharpening tasks [36]
naturally. Meanwhile, deep learning, especially the convolutional neural network, offers
impressive performance of non-linear and local-structure feature extraction in the computer



Appl. Sci. 2021, 11, 288 3 of 13

vision field. Therefore, inspired by the detail-injection pan-sharpening methods proposed
in [37], in this paper, we propose a coupled CNN-based detail injection method (abbreviated
to CpCNN) for HS and MS image fusion. The proposed method employs a couple of
convolutional neural networks for high-frequency detail feature extraction and prediction
of HS and MS images, respectively. Compared with conventional detail injection methods,
a CNN-based model learns the spatial structure information from the pending images in
an automatic and supervised fashion, thereby circumventing the intermediate process of
separately estimating the details and injection gains and reducing the model uncertainty.
The main contributions of this paper are as follows: (1) it is the first effort that incorporates
a CNN network with a detail-injection model for the hyper-sharpening task, which would
contribute to a substantial improvement in spectral fidelity; (2) in contrast with pan-
sharpening works, we use a couple of fully 2-D CNNs to separately exploit the collaborative
spatial and spectral characteristics of HS and MS images and jointly predict the missing
details of high-resolution HS image; (3) by adopting different sizes of image patches and
numbers of convolutional layers, the structure features of HS and MS images within
different scales can be automatically explored. Similar to the TCNNF method, the output
of our network involves the details of each individual pixel, which avoids the potential
errors that might be caused by overlaps of multiple patches.

The remainder of this paper is organized as follows. Section 2 introduces the study
datasets and elaborates the presented CNN-based detail injection method. Section 3
describes the experiments and results. Finally, the conclusion is drawn in Section 4.

2. Materials and Methods
2.1. Detail Injection Sharpening Framework

Given the observable low-spatial-resolution HS image X∈Rm × n × Λ and the high-spatial-
resolution MS image Y∈RM × N × λ, where m, n, M, and N are the rows and columns of images
respectively, and Λ and λ are the number of bands, (generally, M > m, N > n, and Λ > λ),
s = M/m represents the spatial resolution ratio, and the goal of HS and MS image fusion
is to estimate the unobservable HS image Z∈RM × N × Λ with high spatial and spectral
resolutions. Generally, the LR HS image can be spatially upscaled to the size of M × N × Λ
by bilinear interpolation method [2,38], which can be denoted as Xup∈RM × N × Λ. Therefore,
the difference between the LR and HR HS images is the lack of HR spatial details, which
makes the LR HS image have blurred edges and textures. The detail injection model aims
to estimate the missing details of the HS image, and to inject into the LR HS image directly
to obtain a new HS image that would be observed at the same resolution with the HR MS
image. Technically, a detail-injection model can be described as follows:

Z̃k = Xup
k + Dk, k = 1, 2, . . . , Λ (1)

where Z̃ is the spatially enhanced HS image, D denotes the residual image, i.e., the missing
detail component, which can be generally computed from the corresponding MS image
bands, e.g.,

Dk =
λ

∑
i=1

αik ·
(

Yi − Ylow
i

)
, k = 1, 2, . . . , Λ (2)

where Ylow is the spatially degraded MS image that can be simulated by several ap-
proaches [39]. αik is the injection gain associated with the corresponding i-th MS band.
Thus, we have

Z̃k = Xup
k +

λ

∑
i=1

αik ·
(

Yi − Ylow
i

)
, k = 1, 2, . . . , Λ (3)

Conventional detail injection methods usually employ a multi-resolution analysis
(MRA) model to obtain the high-frequency detail component in a band-by-band manner,
which highly depends on the selection and performance of the MRA model [14]. In particu-
lar, for hyper-sharpening tasks, due to the large difference in spectral resolution between
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the HS and MS images, it is difficult to accurately predict the missing details by manually
selecting the MRA model and computing the injection gains under various circumstances.
By contrast, a convolutional neural network has the ability of learning and predicting the
spatial structure features from the pending images in an automatic and supervised fashion.
The details are driven from the context, which effectively reduces the model uncertainty
and achieves higher image quality and adaptability. Hence, in this paper, we propose to
utilize CNN to automatically learn the spatial details from HS and MS images themselves
to promote the performance of image fusion.

2.2. Proposed Coupled CNN Fusion Approach

The proposed CNN-based fusion method can be summarized in Figure 1, in which
two CNN networks with different numbers of convolutional layers are applied to HS and
MS image patches, respectively. In practice, the HS image will be first upscaled to the size of
the MS image by bilinear interpolation as mentioned above. Afterwards, both HS and MS
image patches are selected by partitioning the two images through a pixel-by-pixel fashion
with a stride 1 × 1 and fed into the two sub-networks, respectively. As a matter of fact,
MS image has such a higher spatial resolution than HS images that they are substantially
subject to different spatial scales. Therefore, the input of our network is composed of
different spatial and spectral sizes of HS and MS image patches, which can be denoted by
pH × pH × Λ and pM × pM × λ, pH < pM and Λ > λ in general in order to fully exploit the
structure information of HR image and spectral information of HS images.

Figure 1. The main framework of the proposed method.

For the HS and MS sub-networks, different numbers of convolutional layers are applied
on the image patches, respectively, which can be generally determined as [(pH-1)/2] and
[(pM-1)/2], respectively, where [·] denotes the largest integer that is less than or equal to
the given number. Each convolutional layer is followed by a batch normalization (BN)
layer and an active function with a rectified linear unit (ReLU), individually. Therefore, the
response of the l-th layer can be denoted as

Al = max
(

BN
(

Wl ∗Al−1 + bl
)

, 0
)

(4)

where W l and bl are the weight and bias matrices of l-th layer; Al denotes the output of
l-th layer; ∗ denotes the convolution operation; BN(·) denotes the batch normalization
operation, which is used to overcome the issue of internal covariate shift and accelerate the
training of network. Consequently, both sub-networks yield a 1 × 1 size of output feature
maps. Typically, in this paper, the patch sizes of HS and MS images are 5 × 5 × Λ and
9 × 9 × λ, respectively, thus the numbers of convolutional layers are 2 and 4, respectively.
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For both sub-networks, the convolutional filter sizes are all set to 3 × 3, which is commonly
used by related works, and the convolutional filter numbers are set to 32.

Subsequently, the output feature maps of both HS and MS sub-networks are concate-
nated to form 64 feature maps and fed into an additional convolutional layer with Λ filters
and 1 × 1 filter size to predict the residuals, resulting in 1 × 1 × Λ values for each pixel.
The residuals, namely the predicted details, which are denoted by Dk, k = 1, 2, . . . , Λ, are
finally added to the primary HS image to reconstruct the expected HR HS image.

It should be noted that the input patches of HS and MS sub-networks include the
neighbor block of a pixel, and the output of the network is the residuals of the current pixel.
In this way, the network will automatically utilize the collaborative spatial and spectral
information of HS and MS images, respectively, and infer the details of the current pixel
accurately.

In order to effectively train the network, both HS and MS images are decimated by the
factor s (s = M/m). Suppose the decimated HS image is denoted by Xlow∈R(m/s)× (n/s) × Λ.
As mentioned above, Xlow will first be upscaled to the size of the decimated MS image by
bilinear interpolation. For conciseness, it is also denoted by Xlow, namely Xlow∈Rm× n × Λ. For
each pixel, the details consist of 1 × 1 × Λ values, corresponding to the Λ spectral bands
of the HS image. Thus, the expected total details of the HS image at lower scale consist of
m × n × Λ values and can be denoted by Dlow∈Rm× n × Λ. Then, the injection model at
lower scale can be transformed into

Dlow
k = Xk −Xlow

k , k = 1, 2, . . . , Λ (5)

Therefore, the network is used to predict the expected spatial details of HS image at
the lower scale; consequently, the loss function of the network can be formulated by,

J = E
(
‖Dlow − D̃

low‖
2

F

)
=

1
mn

mn

∑
i=1

(
Λ

∑
k=1

(
dlow

ik − d̃low
ik

)2
)

(6)

where the subscript i denotes the i-th patches (i.e., the i-th pixel); D̃
low

denotes the output
details of the last layer of the network at the lower scale. The network can be trained
by stochastic gradient descent with the backpropagation method. Once the network is
trained, the primary HS image will be upscaled to the size of the primary MS image as
aforementioned (i.e., Xup), and thus, the network will be used to infer the high-level details
to reconstruct the anticipated HR HS image according to (1).

3. Experimental Results and Discussion

In order to validate the effectiveness of our presented method, in this section, we
report the experiments and results tested on four datasets.

3.1. Experimental Setup

The experimental datasets include three well-known individual HS images and a
group of spatially co-registered real HS and MS images. For detailed information on these
images, we recommend readers to refer to the following literature: [13,15,39].

The selected subsets of the first three HS images with 320 × 320, 400 × 400, and
400 × 240 pixels, respectively. To simulate the LR HS images, the HS images were spatially
blurred by Gaussian low-pass filters with 3× 3, 7× 7, and 11× 11 sizes, followed by down-
sampling operations with stride 2 × 2, 4 × 4, and 6 × 6, respectively, whereas the HR MS
images were simulated by averaging the original HS bands with the wavelength covered
by the corresponding MS bands of Landsat 5 TM sensor. In addition, Gaussian noise
with peak-signal-to-noise of 40 dB was added to the MS image to simulate the different
imaging conditions of HS and MS images. The last HS image includes 200 × 200 pixels
and 159 bands after removing the noisy bands. The corresponding MS image acquired by
the ASTER imager consisted of three bands and was blurred by applying a Gaussian filter
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with a 3 × 3 size and down-sampled to the original resolution of the HS image. The LR HS
image is then simulated by similar operations with the first three datasets.

In our experiments, several state-of-the-art hyper-sharpening methods, including
CNMF [13], JNMF [15], DPLM [14], and the CNN-based algorithm TCNNF [29], were used
to compare with our CpCNN method. We also adapted the detail-injection-based CNN
pan-sharpening method [38] for our hyper-sharpening task (abbreviated to DiCNN) to
further validate the superiority of our method. According to the related references [13,15],
40 end-members were extracted by vertex component analysis for CNMF and JNMF.
The dictionary dimensionality of DPLM is also 40, and the optimal sparseness degrees
were set to 0.7 for the second dataset and 0.6 for others. For TCNNF and DiCNN, the
parameters were set mostly in accordance with the authors’ suggestion, including the
number of convolutional layers and filters, learning rate, momentum, etc. For fairness, in
our CpCNN method, apart from the filter and patch sizes, parameters were determined
basically according to the TCNNF and DiCNN methods, e.g., the learning rate was fixed as
0.0001, the momentum was set to 0.9, the batch size was 128, and the number of training
epochs was 200. The filter number and size of each convolutional layer were set to 32 and
3 × 3, respectively, which are illustrated in Section 2. In particular, the last convolutional
layer including Λ filters had a 1 × 1 size, corresponding to the details of Λ bands for a
single pixel. All the weights of convolutional filters were initialized by Gaussian random
distributions with a zero-mean and standard deviation of 0.01.

To achieve the best performance, the MS image patches of TCNNF and the HS/MS
image patches of DiCNN were composed of 21 × 21 pixels, which was determined empiri-
cally according to our experiments. For our CpCNN method, the patch sizes of HS and MS
images were set to 5 × 5 and 9 × 9, respectively, in the following sub-section. Specifically,
for these CNN-based methods, including our CpCNN method, the samples (namely image
patches) were generated by selecting each pixel with its neighbors of the HS and MS images,
respectively. As mentioned above, the degraded HS image is first interpolated to the size of
the MS image. Therefore, for a given degraded HS or MS image with n pixels, a total of n
training samples, namely n pixels, are used to train the network. The testing set, thus, has N
samples, corresponding to N pixels of the HR HS and MS images.

The experiments were conducted on Windows 10 operating system based on Ana-
conda toolkit with Python 3.7. An NVIDIA GeForce RTX 2060 GPU card was used to train
the CNN networks. Several widely used indices, including the spectral angle mapper
(SAM), relative dimensionless global error in synthesis (ERGAS), and universal image
quality index (UIQI), were adopted to evaluate the fusion performance in order to give a
comprehensive assessment. For the sake of avoiding stochastic errors caused by random
initialization of network weights, 5 independent runs were conducted for CNN network
training and testing, and the average values were calculated and displayed in the following
sub-sections.

3.2. Results and Analyses

In this sub-section, we report the experimental results conducted on the four datasets.
The experiments were conducted under different resolution ratios, i.e., the HS image was
down-sampled by the facts of 2, 4, and 6 (i.e., s = 2, 4, and 6), respectively, as Section 3.1
mentioned. The numerical results are listed in Tables 1–3, respectively, where the best
values are highlighted in bold. For CNN-based approaches, the training and testing times
are listed separately in Tables 1–3. By observing the SAM, ERGAS, and UIQI values,
we can see that among the conventional matrix factorization-based methods, JNMF and
CNMF provide similar performance for these datasets on the whole, whereas DPLM has
an impressive ability to alleviate the spectral distortion that might be caused by different
imaging conditions, since it had outstanding performance on the San Francisco dataset. The
CNN-based algorithms, namely the last three methods, obviously surpass the conventional
methods in totally minimizing the fusion errors, as in most cases, they achieved far more
desirable results. For example, the SAM and ERGAS values of San Francisco dataset under
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a resolution ratio of 2 are much lower than the former three methods, whereas the UIQI
values are much higher. The presented CpCNN approach exhibits the best spectral fidelity
performance, since in most cases, it achieves lower fusion errors in both angle (spectrum
shape) and amplitude aspects and higher image quality.

By comparing Tables 1–3, it can be clearly seen that with the decrement of HS image
resolution (i.e., s varies from 2 to 6), the qualities of fused images undoubtedly degenerate.
Nevertheless, the CNN-based approaches remain remarkable in performance, especially
for the detail-injection methods. It should also be recognized that, in fact, the resolution
decrement also results in a decrement of training samples, since the HS and MS images in
the degraded scales contain substantially fewer pixels, which certainly affects the training
of networks. In summary, these tables indicate that the proposed CpCNN is significantly
preferable to the other approaches in spectral characteristic preservation aspect. Addition-
ally, the running times in the tables suggest that JNMF seems to be the most time-saving
method in our experiments. The CNN-based approaches are generally composed of train-
ing and testing stages. We can see that the training stage of the network always takes a
considerably long time, which highly depends on the architecture of the network and the
number of samples. Once the network is trained, we will not spend much time inferring
the high-resolution maps. In addition, thanks to the small patch and filter sizes, the training
time of our network is far less than TCNNF and DiCNN, although it is still time-consuming
compared with the conventional methods.

Table 1. Numerical evaluation of hyper-sharpening results under resolution ratio of 2 (s = 2).

Method Dataset SAM ERGAS UIQI Time (s) Dataset SAM ERGAS UIQI Time (s)

CNMF

University
of Pavia

4.12 5.70 0.9807 39.3

Pavia City
center

10.11 7.51 0.9860 63.9
JNMF 4.59 5.65 0.9774 14.2 9.10 7.49 0.9858 21.3
DPLM 4.00 5.31 0.9826 49.9 10.72 8.64 0.9815 153.4

TCNNF 2.76 3.90 0.9911 3079.0/26.5 5.80 5.47 0.9925 4797.9/40.8
DiCNN 3.06 4.25 0.9902 10,553.1/105.8 5.60 5.67 0.9917 16,545.7/169.2
CpCNN 2.62 3.47 0.9927 1449.3/8.5 5.32 4.69 0.9943 2273.7/13.1
CNMF

Washington
DC Mall

2.59 4.74 0.9777 43.4

San
Francisco

8.89 16.31 0.8157 15.6
JNMF 3.21 6.16 0.9724 15.2 8.96 17.71 0.8155 5.2
DPLM 2.83 7.74 0.9703 56.9 4.33 10.78 0.9305 23.7

TCNNF 1.44 4.94 0.9904 3953.1/35.3 2.87 6.53 0.9747 1434.4/13.5
DiCNN 1.33 2.90 0.9958 13,573.1/149.7 2.45 5.56 0.9806 5140.8/53.2
CpCNN 1.14 2.81 0.9958 1596.3/11.5 2.23 5.52 0.9819 603.7/4.6

Table 2. Numerical evaluation of hyper-sharpening results under resolution ratio of 4 (s = 4).

Method Dataset SAM ERGAS UIQI Time (s) Dataset SAM ERGAS UIQI Time (s)

CNMF

University
of Pavia

4.31 3.55 0.9709 38.3

Pavia City
center

9.89 4.49 0.9797 61.1
JNMF 4.73 2.93 0.9756 16.6 9.13 3.82 0.9848 26.7
DPLM 4.23 2.94 0.9782 46.0 11.81 4.75 0.9780 164.8

TCNNF 3.75 2.73 0.9823 711.5/24.3 6.75 3.66 0.9865 1103.5/38.9
DiCNN 3.41 2.75 0.9843 2572.0/107.6 8.22 3.34 0.9891 4237.1/170.6
CpCNN 3.34 2.26 0.9889 382.2/8.7 6.81 2.92 0.9915 593.3/13.3
CNMF

Washington
DC Mall

2.80 2.66 0.9708 41.0

San
Francisco

8.88 8.19 0.8046 15.9
JNMF 3.57 3.30 0.9681 17.2 8.90 9.00 0.8030 6.5
DPLM 3.27 4.04 0.9666 52.8 4.81 5.74 0.9184 30.2

TCNNF 2.14 2.93 0.9862 917.1/33.8 4.29 5.28 0.9245 341.6/12.7
DiCNN 1.72 2.00 0.9922 3399.6/145.6 4.17 5.48 0.9415 1220.2/49.8
CpCNN 1.62 1.97 0.9931 444.6/11.3 3.84 4.56 0.9485 161.2/4.6

Figures 2–5 show the false-color images of fusion results under a resolution ratio of
4 (i.e., s = 4). For the first dataset, the numerical evaluation suggests that all of the fused
images have high similarity with the reference, e.g., the largest SAM and ERGAS among
different approaches are 4.73 and 3.55, respectively, whereas the worst UIQI is 0.9709; thus,
we can see that the colors of these images in Figure 2 are close to the reference image
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in [38]. Some minor differences can be observed on the red roof in the lower right corner,
where CNMF has slight color distortion compared with the others. The more apparent
discrepancies can be observed on the lake of Figure 3, where we can see that the last three
images have similar colors with the reference image, corresponding to the higher UIQIs
(0.9865, 0.9891, and 0.9915, respectively) and lower SAMs (6.75, 8.22, and 6.81) as well as
the ERGASs (3.66, 3.34, and 2.92) values than the conventional methods.

Likewise, in Figures 4 and 5, CNN-based images usually present approximate spectral
characteristics. Similarly, the SAMs achieve 2.14, 1.72, and 1.62, and the UIQIs are higher
than 0.98, for the Washington DC Mall dataset, which performs much better than the former
ones. Since the last dataset contains HS and MS images acquired by different platforms,
the fused images exhibit large color distortions. Nonetheless, the numerical results still
suggest that the proposed method has the best image quality, i.e., the SAM, ERGAS, and
UIQI are 3.84, 4.56, and 0.9485, respectively, which are obviously superior to the others.

In order to give an intuitive comparison of spatial detail aspects, Figures 6 and 7 show
some local enlargements of the fused images. Of course, compared with the simulated
LR HS image in Figures 6d and 7d, the fused images present abundant spatial details and
clearer texture characteristics. From Figure 6, it can be seen that the conventional methods
always suffer from apparent noise, which is caused by the simulated noisy MS image. This
can also be inferred from Table 2; e.g., the SAMs and ERGASs of CNMF and DPLM are
9.89, 11.81, 4.49, and 4.75, respectively. By contrast, the CNN-based methods can effectively
overcome this issue. From Figure 7, we can see that the detail-injection CNN methods have
relatively better overall appearances, corresponding to the lower SAMs (4.17 and 3.84) and
higher UIQIs (0.9415 and 0.9485), whereas the TCNNF method presents obscure edges and
textures compared with the other methods.

In sum, the CNN-based hyper-sharpening methods are much preferable to the con-
ventional matrix factorization-based methods, and our proposed method indeed surpasses
the other CNN-based methods in both quantity and visual aspects.

Table 3. Numerical evaluation of hyper-sharpening results under resolution ratio of 6 (s = 6).

Method Dataset SAM ERGAS UIQI Time (s) Dataset SAM ERGAS UIQI Time (s)

CNMF

University
of Pavia

4.40 2.98 0.9554 25.10

Pavia City
center

10.06 3.74 0.9680 39.53
JNMF 4.73 1.97 0.9751 11.05 9.62 2.95 0.9799 17.21
DPLM 5.19 4.40 0.9039 46.33 12.19 3.48 0.9735 180.01

TCNNF 4.62 3.09 0.9544 358.6/27.1 8.69 3.04 0.9798 556.5/40.6
DiCNN 4.37 2.01 0.9800 1205.3/106.0 9.45 2.56 0.9856 2110.6/168.0
CpCNN 4.55 2.46 0.9732 164.4/8.5 7.50 2.45 0.9876 255.9/12.9
CNMF

Washington
DC Mall

4.87 2.51 0.9503 24.49

San
Francisco

8.44 5.67 0.7811 9.93
JNMF 3.61 2.17 0.9708 10.75 8.85 5.89 0.8010 4.34
DPLM 3.49 2.81 0.9603 56.37 5.43 4.27 0.8959 22.75

TCNNF 2.43 2.79 0.9717 443.9/35.5 5.53 4.60 0.8823 179.6/13.9
DiCNN 3.14 2.46 0.9786 1538.4/148.4 8.01 5.06 0.8928 612.7/54.2
CpCNN 1.91 1.71 0.9889 181.9/11.5 4.43 3.88 0.9171 72.9/4.5

Figure 2. Fused images of University of Pavia. (a) coupled nonnegative matrix factorization (CNMF); (b) JNMF;
(c) dictionary-pair learning method (DPLM); (d) two-branches CNN fusion method; (e) detail-injection-based CNN fusion
method (DiCNN); (f) coupled CNN-based fusion method (CpCNN).
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Figure 3. Fused images of Pavia City Center. (a) CNMF; (b) JNMF; (c) DPLM; (d) TCNNF; (e) DiCNN; (f) CpNN.

Figure 4. Fused images of Washington DC Mall. (a) CNMF; (b) JNMF; (c) DPLM; (d) TCNNF; (e) DiCNN; (f) CpCNN.

Figure 5. Fused images of San Francisco. (a) CNMF; (b) JNMF; (c) DPLM; (d) TCNNF; (e) DiCNN; (f) CpCNN.

Figure 6. Local enlargements of fusion result of Pavia City center. (a) CNMF; (b) JNMF; (c) DPLM; (d) LR HS image;
(e) TCNNF; (f) DiCNN; (g) CpCNN; (h) Reference high-resolution, hyperspectral (HR HS) image.
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Figure 7. Local enlargements of fusion result of San Francisco. (a) CNMF; (b) JNMF; (c) DPLM; (d) LR HS image; (e) TCNNF;
(f) DiCNN; (g) CpCNN; (h) Reference HR HS image.

3.3. Parameter Discussion

Finally, we would like to give a brief analysis of the parameters that may have certain
effects on the fusion results in our presented method. Most parameters of our method were
determined empirically according to the massive references, e.g., learning rate, batch size,
number of epochs, and filter numbers. The 3 × 3 filter size is also suggested by numerous
related works. Since the numbers of convolutional layers highly depend on the patch
sizes in this network, we will focus on discussing two peculiar parameters, namely the
patch sizes of HS and MS images. Figures 8 and 9 show the ERGAS and UIQI values of
our method with respect to the patch sizes of HS and MS images, respectively. Due to
the limitation of page length, only the results under a resolution ratio of 4 (i.e., s = 4) are
plotted. However, similar results and conclusions can also be observed under different
resolution ratios.

Figure 8. The relative dimensionless global error in synthesis (ERGAS) and universal image quality index (UIQI) values with
respect to the patch size of HS image. (a) University of Pavia; (b) Pavia City center; (c) Washington DC Mall; (d) San Francisco.

As a matter of fact, pixels that are far from the center pixel scarcely affect the spectral
and spatial details of the current pixel. Thus, a large local area is not necessary for pre-
dicting the features of this pixel. On the contrary, a larger patch size usually means that a
more complicated architecture of network should be constructed to properly extract the
structure information, which generally requires more training samples to obtain a stable
network. Therefore, a proper size of patch deserves to be estimated. Meanwhile, it should
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also be noted that the coupled network aims at exploiting the collaborative spectral and
spatial features for HS and MS images, respectively. Nevertheless, the HS sub-network
substantially focuses on approximating a spectrum for an unknown pixel according to
its nearest neighbors, whereas the MS sub-network focuses on predicting the details by
exploring the spatial correlations within a larger local area. As it is well-recognized that
HS and MS image have different spatial resolutions, which means they substantially locate
on different spatial scales from the viewpoint of multi-scale model, it is natural that using
different sizes of patches will benefit the training of network.

Figure 9. The ERGAS and UIQI values with respect to the patch size of MS image. (a) University of Pavia; (b) Pavia City
center; (c) Washington DC Mall; (d) San Francisco.

From Figure 8, we can see that, generally, the patch size of 5 × 5 or 7 × 7 is a relatively
proper choice for the HS sub-network. A larger patch size does not help improve the
performance. Sizes larger than 11 × 11 are not recommended in our method. On the other
hand, Figure 9 suggests that for the patch size of MS sub-network, the optimal results occur
around 9 × 9 and 11 × 11. Since the MS image has higher spatial resolution than HS image,
the patch size is commonly larger than that of the HS image in order to fully explore the
spatial relations of neighboring pixels. Therefore, sizes smaller than 7 × 7 or larger than
13 × 13 are not recommended in our network. This is basically in accordance with the
above theoretical analyses.

Consequently, in the experiments of Section 3.2., the patch sizes of HS and MS images
are set to 5 × 5 and 9 × 9, respectively, without exception. As mentioned in Section 2.2.,
the two sub-networks, thus, contain 2 and 4 convolutional layers, respectively, without
exception either.

4. Conclusions

Hyper-sharpening has attracted numerous research in the past two decades. Apart
from the classical matrix factorization-based algorithms, convolutional neural networks
show considerable potential in HS and MS image processing areas due to its adaptability
and robustness of image feature extraction. To minimize the spectral distortion, in this
paper, we propose to integrate the convolutional neural network with a detailed injection
model for HS and MS image fusion. The proposed approach employs a couple of convo-
lutional networks for feature extraction of HS and MS images individually and predicts
the missing high-level spatial details. The network is concise and efficient and is able to
achieve satisfactory performance in spectral fidelity aspect. Our future work will focus on
the automatic selection of network parameters in order to further promote the flexibility
and adaptability of the proposed method.
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