
applied  
sciences

Article

Network Attack Path Selection and Evaluation Based on
Q-Learning

Runze Wu, Jinxin Gong * , Weiyue Tong and Bing Fan

����������
�������

Citation: Wu, R.; Gong, J.; Tong, W.;

Fan, B. Network Attack Path

Selection and Evaluation Based on

Q-Learning. Appl. Sci. 2021, 11, 285.

https://doi.org/10.3390/app11010285

Received: 23 October 2020

Accepted: 26 December 2020

Published: 30 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric
Power University, Beijing 102206, China; wurz@ncepu.edu.cn (R.W.); twymistwy@163.com (W.T.);
fanbing@ncepu.edu.cn (B.F.)
* Correspondence: gjxncepu@163.com; Tel.: +86-199-7500-3890

Abstract: As the coupling relationship between information systems and physical power grids is getting
closer, various types of cyber attacks have increased the operational risks of a power cyber-physical
System (CPS). In order to effectively evaluate this risk, this paper proposed a method of cross-domain
propagation analysis of a power CPS risk based on reinforcement learning. First, the Fuzzy Petri Net
(FPN) was used to establish an attack model, and Q-Learning was improved through FPN. The attack
gain was defined from the attacker’s point of view to obtain the best attack path. On this basis, a
quantitative indicator of information-physical cross-domain spreading risk was put forward to analyze
the impact of cyber attacks on the real-time operation of the power grid. Finally, the simulation based
on Institute of Electrical and Electronics Engineers (IEEE) 14 power distribution system verifies the
effectiveness of the proposed risk assessment method.

Keywords: power CPS; data tampering attack; risk assessment; Q-Learning algorithm; Fuzzy Petri Net

1. Introduction

Smart grid is a typical cyber-physical system (CPS), which uses intelligent terminals
such as massive sensors and advanced metering equipment to realize remote monitoring,
control, and protection of the grid [1,2]. Advanced Persistent Threat (APT) attacks use the
openness and easy accessibility of smart terminals to invade, carry out multi-step attacks
through network security vulnerabilities, and, finally, enter the main station and destroy
power production on a large scale [3]. For example, Ukraine suffered a “Black Energy”
attack in 2015 [4] and there was also Israel’s power outage in 2009 [5]. Therefore, predicting
the path of a multi-step attack and analyzing the cross-layer risk of the power CPS under
the attack will help ensure the safe and stable operation of the power CPS [6].

When attacking, the attacker tends to choose the path with low attack cost and high
attack profit to carry out the invasion, as this is the best attack path. The purpose of the best
attack path discovery is to analyze the attacking behavior by alert correlation technology,
reveal the hidden logic, construct attack scenarios, and then infer the subsequent attack
steps of attackers, providing important evidence for active defense of network security [7].
It has been an important method of dealing with the multi-step attacks [8]. Current research
is usually static analysis based on experience. Literature used a forward search strategy to
find hidden attack paths. Reference [9] adopted heuristic search algorithms to generate
attack graphs. Reference [10] proposed pruning attack graph branches to exploit Greedy
search strategy finds the attack path. Reference [11] made use of an attack tree and a
genetic algorithm to solve the optimal attack path problem, and found the solution through
a genetic algorithm. However, the above-mentioned research has high computational
complexity and is difficult to apply to large-scale networks. At the same time, it cannot
reflect the influence of the different attackers on the path selection.

In order to solve the above problems, the Q-Learning algorithm is introduced to
discover the best attack path. Q-Learning belongs to a category of semi-supervised learning
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algorithms [12]. Because of its simplicity and convergence advantages [13,14], it has been
widely used in various fields of robot path finding and planning [15]. In recent years, it has
also begun to be applied in finding attack paths. Reference [16] put forward a Q-Learning
method to identify key attack sequences in consideration of physical system behavior, with
good results. However, the research mainly focused on network topology attacks, without
considering the security vulnerabilities of the network itself. Reference [17] proposed a
method of using Q-Learning to analyze the attack path based on the attack graph. However,
when quantifying the threat of a network attack, only the benefit of the attack is considered
and the attack cost is not considered. There is also a problem of computational efficiency.

Based on the above problems, this paper establishes an FPN-Q learning algorithm to
find the best attack path. Fuzzy Petri Net (FPN) [18] combines the ability of Petri Net to
describe asynchronous concurrency and graphical representation with the fuzzy reasoning
ability of fuzzy systems. Therefore, this algorithm uses FPN to model the network attack
process with uncertain characteristics, and use the fuzzy inference parameters of FPN to
improve the Q-Learning algorithm, which improves the learning efficiency of the algorithm.
In addition, considering the attack cost and the attack reward, the attack gain is proposed
to quantify the threat of the attack path to the system. In order to evaluate the impact of the
discovered best attack path on the real-time operation of the power grid, an information-
physical system coupling model is established based on the function of load control, and
the risk indicator is proposed. Finally, the efficiency of the FPN-Q Learning algorithm
under multiple attack modes and the impacts on CPS operation are simulated based on
the Institute of Electrical and Electronics Engineers (IEEE) 14-nodes power distribution
system. The results show that the method of attack path discovery has high efficiency and
accuracy. It provides a feasible analysis scheme for judging the operation of the system
under multi-step attacks, and provides a reliable basis for ensuring the stable operation of
power CPS.

2. FPN-Q Learning Algorithm to Determine the Best Attack Path
2.1. Attack Model

Cyber attacks have complex and random characteristics. FPN has the capability of
describing concurrent events and graphical representation of Petri nets. Moreover, FPN can
express this transition process concisely and clearly, avoiding the problem of state space
explosion. In addition, FPN also has the fuzzy inference ability of fuzzy systems. Its place
credibility and transition credibility can well represent the process of network attacks and
the ambiguity of the attacks. Since the above characteristics of FNP meet the modeling
needs, this study uses FPN to establish a network attack model.

This paper is based on the network attack model established by FPN, which is a
four-tuple:

M = {H, T, α, µ}

(1) H = {h1, h2, h3, . . . , hn} is a finite set of places h, which represents the host of the
information system in the model;

(2) T = {t1, t2, t3, . . . , tm} is a finite set of transitions t, which represents the exploitable
vulnerabilities of the system host in the model;

(3) α represents the risk value caused by the system host represented by the place after
being invaded, that is, the threat index; and

(4) µ: T × H→ (1,10) represents the confidence of the transition rule, that is, the proba-
bility that a certain transition is triggered. In the network attack model, it represents
the complexity of the attack process. The higher the attack complexity, the lower the
possibility of being attacked. Attack complexity is affected by many factors such as
attack tools and attacker experience. Its value is given according to the Common
Vulnerability Scoring System (CVSS) [19].

This method uses the FPN place to represent the information system host, and uses
transitions to represent the exploitable vulnerabilities of the system. This method makes the
complex network attack processes more concise and intuitive while reasonably considering
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the actual network attack. In addition, the concept of the FPN place’s credibility and
transition confidence is also used, which can well represent the ambiguity and uncertainty
of the network attack process and its impact. Moreover, it can make subsequent analysis
more reasonable and effective.

2.2. FPN-Q Learning Algorithm to Determine the Best Attack Path

This algorithm introduces the Q-Learning algorithm to analyze the network attack
model established in 1.1, and uses the parameters of FPN to improve: (1) Transition
confidence µ of FPN is used to define the attack cost of a single-step attack; The place
credibility α of FPN is used to define the attack revenue, that is, the threat of each attack
to the system. The algorithm in this paper starts from the attacker’s point of view, and
comprehensively considers the attack cost and attack benefit, which are used to define the
attack gain indicator. Attackers tend to choose attack paths with low attack costs but high
threats to the system, that is, the path with the highest attack gain is the best attack path.
(2) As described in 1.1, µ can well represent the randomness of the attacker’s selection of
vulnerabilities. The algorithm uses µ to optimize the exploration process of the Q-Learning
algorithm, and accelerates the convergence speed of the Q function without changing the
final result. The algorithm is divided into two phases: the learning phase and the attack
phase.

2.3. Learning Stage

In the traditional Q-Learning algorithm, the agent selects an action to act on the
unknown environment during each iteration. After the environment receives the action,
it generates an enhanced signal (reward or punishment) to feed back to the node. The
node chooses the next action based on the enhanced signal and the new state of the
environment. The principle of action selection is to increase the probability of receiving
a positive reward. After continuous learning and trial and error, the node finds the
optimal action control strategy and obtains cumulative returns. It is worth noting that the
traditional Q-Learning algorithm randomly selects actions with equal probability in the
exploration phase. However, in a network attack, the attacker has mastered all or part
of the information about the security vulnerabilities of the information system before the
attack. Therefore, the attack path will be selected based on experience rather than randomly
selected with equal probability. The probability of each vulnerability being selected is
related to the attack complexity: the higher the attack complexity, the smaller the chance
of being selected. Therefore, this paper introduces the transition confidence of the FPN
model µ to optimize the exploration process of Q-Learning. In the exploration phase, the
probability that the vulnerability j of host i is exploited pij is:

pij =

1
µij

n
∑

j=1

1
µij

(1)

where, n represents the number of exploitable vulnerabilities of host i, µij is the attack
complexity of exploitable vulnerability j of host i, and its value range is (1,10).

In the attack model, the attack cost is related to the attack complexity of the security
vulnerability. Generally, the more complex the attack, the higher the attack cost. Therefore,
this paper defines the attack complexity of security vulnerabilities as the attack cost. The
attack proceeds are the threats to information systems caused by network attacks, which
are related to the nature of the vulnerability itself. According to the FPN attack model
established in Section 2.1, the following definitions are given:

Definition 1. Initial single-step attack gain.



Appl. Sci. 2021, 11, 285 4 of 13

The initial single-step attack gain is the threat to the system caused by the attacker
invading host j through host i before the start of the learning process, expressed by the
reward function gij:

gij = rij/µij (2)

rij = αi · αj (3)

where, rij is the single-step attack reward, αi is the threat value caused by the intrusion
system host i to the network, and αj is the threat value caused by the intrusion system host
j to the network.

Definition 2. Single-step cumulative attack gain.

The cumulative single-step attack gain is the attack gain obtained by the attacker from
host i invading host j after multiple intrusion learning, denoted by Q(hi, tij, hj).

Q(hi, tij, hj)← (1− α)Q(hi, tij, hj) + α[gij + γmax
tjk∈Tj

Q(hj, tjk, hk)] (4)

where, β represents the learning factor, γ represents the discount factor between delayed
return and immediate return, Tj represents the optional vulnerability of the next attack
after the intrusion of host j, and max

tjk∈Tj
Q(hj, tjk, hk) represents the maximum gain that the

attacker can obtain in the next attack after the host invades host j.
Based on the above definition, the attacker is regarded as the agent of the Q-Learning

algorithm, and the information system is regarded as the environment where the attacker’s
attack behavior is given feedback. The basic idea of the learning process is: the agent first
starts from the initial intrusion node according to the scanning of the network environment,
and then selects one from the current intrusive system vulnerabilities to invade according
to Formula (1), and finally updates the single-step cumulative attack gain of this attack
according to Formula (4) The attacker takes the attack path to the target host as a scenario-
based learning until the Q value of each optional intrusion step reaches the maximum and
converges. The specific learning process is shown in the Algorithm 1 environment:

Algorithm 1 environment: FPN-Q Learning algorithm: learning stage

Initialization: Initialize the Q-table
Determine the attack access host h0 and the target host ht.

for current number of episodes ≤maximal episodes
do

Reset: Current host: hc = h0;
Target host = ht;

while hc ~= ht do
Obtain all vulnerabilities t from the attackable hosts h;
Obtain the probability pei of each vulnerability being selected according to (1)
Choose a vulnerability tei according to pei;
Obtain evaluative feedback: Generate the reward rt+1 according to (2);
Update the current host: hc = he;
Update the value of Q(he, vi) according to (4).
end while

end for

2.4. Attack Stage

The basic idea of the attack stage is: after learning, the attacker will select the host
vulnerability with the highest cumulative gain in a single step for each step of the attack,
until it invades the target host. Therefore, the optimal attack path and its attack gain G for
multi-step attack are obtained, and the algorithm is shown in the Algorithm 2 environment.
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Algorithm 2 environment: FPN-Q Learning algorithm: learning stage

Initialization: Initialize the G
Determine the attack access host h0 and the target host ht.
Set: Current host: hc = h0;

Target host = ht;
while hc ~= ht do

Obtain all attackable hosts h;
Obtain Q(hi,tij,hj) of each attackable host;
Find the max Q(hi,tij,he) from attackable hosts;
Update G: G← G + gie
Update the current host: hc = he;

end while

3. Information-Physical Cross-Layer Risk Spread Model

In order to evaluate the impact of the best attack path found on the power CPS, the
following information-physical cross-layer risk propagation model is established. Power
CPS is a multi-dimensional heterogeneous system which fully integrates the physical
network and information network of the power system [20]. Through the coordination of
computing equipment, sensor equipment, and communication equipment. The overall
operating performance of the power system is optimized by physical equipment, etc. The
CPS structure under the power Internet of Things is shown in Figure 1 which can be
divided into three levels from bottom to top: user load, terminal sensing, and control and
decision. The physical system and information system realize the interaction between
information flow and energy flow through intelligent terminals. On the one hand, the
terminal equipment collects the electricity consumption data and equipment status data of
different power users, which are used by the control center to analyze the operation status
of the power system and formulate appropriate control plans [21]. On the other hand, they
receive commands from the control center to regulate electrical primary equipment, such
as increasing or decreasing generator output, adjusting transformer taps, etc. [22].
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Different from traditional physical grid cascading failures, information-physical
dual-network cascading failures caused by cyber-attacks will cause more serious con-
sequences [23,24]. In terms of security risks in the information space, smart terminal
equipment is the only way to spread to the power space. Therefore, attackers usually
choose widely distributed smart terminals as access points to attack at present. After
obtaining permission, scanning software is used to obtain the security vulnerabilities that
can be used by each host of the system. Eventually attackers initiate a multi-level invasion,
modify the configuration file or business data in the server after entering the control center.
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It will cause the control center to incorrectly perceive the current state of the physical power
grid [25], and affect the operation of the physical power grid by issuing wrong control
commands. This paper mainly researches the attacks of tampering with system data in this
situation.

4. Security Risk Assessment of Electric Power CPS under Cyber Attack

This paper selects the function of load control for risk assessment, and its propagation
process is as follows:

(1) The attacker uses a certain strategy to launch an attack through the smart terminal to
enter the control center, and then randomly or deliberately tamper with the business
data according to the knowledge of the physical power grid, so that the load of some
physical nodes exceeds the predetermined quota.

(2) The control center considers that the load on the node exceeds the capacity, and
judges that the node is faulty. Therefore, the control center performs load reduction
according to Formulas (5)–(10) with the goal of minimizing load loss, and issues a
control command to cut off part of the load of the node and its neighboring nodes to
ensure the safe and stable operation of the system.

minI =
N

∑
i=1

Lsi (5)

where, I is the total load loss of the physical system, N is the number of load shedding
nodes in the physical system, and Lsi is the load loss of node i.

At the same time, considering the power flow constraints of the distribution network
and the observable and controllable nodes, the following constraints are obtained:

Pi = GiiU2
i + ∑

j∈s(i)
UiUj(Gijcosθij + Bijsinθij)

Qi = −BiiU2
i − ∑

j∈s(i)
UiUj(Bijcosθij − Gijsinθij)

(6)

{
Umin ≤ Ui ≤ Umax
Imin ≤ Iij ≤ Imax

(7)

where, Pi and Qi are the active power and reactive power of node i, respectively, s(i) is the
set of nodes connected to node i, Gii and Bii are the self-conductance and self-susceptance
of node I, respectively; Gij and Bii are the conductance and susceptance between nodes i
and j, respectively; Ui and Uj are nodes, respectively The voltages of i and j; θij is the phase
angle difference between nodes i and j; Umin and Umax are the lower and upper limits
of the voltage of node i, respectively; Imin and Imax are the lower and upper limits of the
line current.

∑
i∈NG

PGi −∑
i

PDi + ∑
i

Lsi = 0 (8)

PGi
min ≤ PGi ≤ PGi

max (9)

0 ≤ Lsi ≤ PDi (10)

where, PGi is the power generation of the controllable power generation equipment con-
nected to node i, PGi

min, and PGi
max are the lower limit and upper limit of the generator’s

power generation capacity, and PDi is the load of node i.

(1) The intelligent terminal adjusts the load of the physical system according to the wrong
instruction issued by the control system;

(2) Each node of the physical power grid adjusts the load according to the control com-
mand, and some nodes will lose the load of normal operation. Therefore, the physical
power grid trend will change, and new business data will be transmitted to the control
center.
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CPS security risks under data attacks are related to the threat value of the attack path
to the information system and the consequences of cascading failures caused. Section 2.4
discusses the attack benefit G of the best attack path, that is, the threat to the information
system caused by the attack through this path. Based on the above, the risk of CPS under
data attack is defined as:

R = G ·
n

∑
i=1

Lsi (11)

lsi =
n

∑
j=1

lsij (12)

lsij =
Lsij

Loadj
(13)

where, Ri represents the risk of power CPS when the load data of node i is tampered with.
G represents the threat to the information system that an attacker launches an attack on the
network through a predetermined path. pi represents the probability that the data of node
i is modified, which is related to the attacker’s familiarity with the operation of the system.
Lsij indicates that the load change of node i causes the load loss of node j. Loadj represents
the original load of node j. lsij represents the load loss rate of node j caused by the load
change of node i. lsi Indicates the load loss rate of the entire system caused by tampering
of the load data of node i, which is the sum of load loss rates of all nodes.

5. Simulation Evaluation
5.1. Establishment of Simulation Environment

In order to verify the feasibility and effectiveness of the proposed algorithm, the Su-
pervisory Control And Data Acquisition (SCADA) power distribution system was selected
to establish a network attack model based on FPN, as shown in Figure 2. The model mainly
includes Demilitarized Zone (DMZ) domains, work stations, and control centers. The
network area is divided by installing firewalls, and communication rules between domains
are formulated to ensure that external access cannot reach the intranet area. The specific
access rules are introduced as follows: (1) The data collected by the terminal can only be
accessed to the master station through the DMZ domain; (2) The workstation can realize
two-way communication with the DMZ domain and the control center; and (3) The DMZ
domain and control center can only communicate with workstations. Before quantitative
modeling, one makes the following assumptions about the attacker’s capabilities: (1) The
attacker understands Direct-Attached Storage (DAS) and has the latest DAS vulnerabil-
ity information and (2) Attackers can deliberately and effectively use social engineering
to attack.
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Depending on the ability of the attacker, the attacker can launch attacks on different
system hosts. There are two most common modes:

(1) The attacker uses the power distribution terminal equipment as the access point to
further invade the DMZ area. By invading the DMZ area, The system’s security
vulnerabilities are continuously used to increase the authority until entering the
control center application server because of the invasion. Deliberate tampering of
business data will cause greater losses to the system. At this time, the attacker’s target
is H8.

(2) The attacker uses the power distribution terminal equipment as the access point to
invade the DMZ area and continuously use the system security vulnerabilities to
increase the authority until entering the operator’s Human Machine Interface (HMI).
The business data is randomly tampered on the HMI side, because the attacker does
not have detailed physical power grid parameters and data. At this time the attacker’s
target is H4.

At the same time, in order to analyze the risks caused by network attacks to the power
CPS, the IEEE14-node system shown in Figure 3 is selected as the experimental model.
Nodes 1, 2, 5, and 7 of the system are distributed power sources, and nodes 4, 8, and 13
are important load nodes. The total power generation capacity of the distributed power
generation is 3.7 MW, and the sum of the power requirements of each load is 3.19 MW.
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5.2. Analysis of Experimental Results
5.2.1. Experimental Results—Security Analysis of the Information Layer

The attack gain index in this paper is based on the attack reward and attack cost. As
a result, the relationship of the three should be studied first. There are 30 attack paths
in attack mode 1, and five attack paths in attack mode 2. Figure 4 (its abscissa variables
are the attack path number) shows the attack gain, attack reward and attack cost of each
attack path in the two attack modes. It can be seen that the value trend of the attack gain
is roughly the same as the attack reward, but the attack cost reduces the attack gain to a
greater extent. When the attack reward is small, the attack gain may even appear to be
smaller than the attack cost (path 5 of attack mode 2), which is not good for the attacker.
In order to further illustrate the relationship of the three, a scatter plot between the three
under two attack modes is drawn in Figures 5 and 6. Figures 5a and 6a show that the attack
gain is closely related to the attack reward, and a high attack reward will bring a high
attack gain. Figure 5b,c and Figure 6b,c show that high attack rewards and attack gains
often require high attack costs. However, the path with the highest attack cost will not
get the highest attack reward and highest attack gain. This is due to the different nature
of each security vulnerability. The attack complexity of the security vulnerability that
poses the greatest threat to the system may not be high (such as Common Vulnerabilities
and Exposures (CVE)-2004-0893, it is a user privilege escalation vulnerability. According
to the CVSS, its threat index reaches 7.2 (the highest is 10), but the attack complexity is
only moderate.). Therefore, there is an optimal attack path, which reduces the cost of the
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attack and obtains a higher attack return. At this time, the attacker obtains the maximum
attack gain.
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Figure 6. The relationship between attack gain, attack reward, and attack cost in mode 2: (a) The relationship of attack
gain and attack reward; (b) The relationship of attack cost and attack reward; and (c) The relationship of attack cost and
attack gain.

In the two attack modes, the attacker uses the FPN-Q Learning algorithm to perform
attack learning as shown by the solid line in Figure 7. It can be seen that the attack gain



Appl. Sci. 2021, 11, 285 10 of 13

obtained by the attacker invading the control center is much greater than that obtained
by invading the control center. This is because once the information host in the control
center is destroyed, the security threat to the system is greater. Therefore, it is necessary to
strengthen the monitoring and protection of the control center host.
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5.2.2. Experimental Results—Algorithm Comparison

(1) Compare the algorithm proposed in this paper with random attacks and selective
attacks. Taking attack mode 1 as an example, the attack gains obtained after 100 attacks
are shown in Figure 7a (its abscissa variables are the experiment times). It can be
seen from the figure that compared with random attacks, selective attacks have a
greater redirection through the best attack path to get the greatest attack gain, but the
algorithm proposed in this paper shows obvious advantages. After learning 15 times,
you can find the best attack path and get the maximum attack gain.

(2) Compare the algorithm proposed in this article with the traditional Q-Learning
algorithm. Use the traditional Q-Learning algorithm to perform path learning and
attack gain calculation for attack mode 1 and attack mode 2. The comparison of the
result with two methods is shown in Figure 7b. It can be seen from the figure that
the attack gain obtained by the improved algorithm is consistent with the traditional
algorithm, indicating that the algorithm in this paper has high accuracy. However, in
terms of learning speed, the algorithm proposed in this paper can find the best attack
path faster. Especially for the more complex attack mode (mode 1), the traditional
algorithm needs 30 times of learning to get the best gain and reach convergence, while
the algorithm in this paper only needs 15 times. The learning efficiency has nearly
doubled, showing obvious advantages.

5.2.3. Experimental Results—Cross-Layer Risk Communication Analysis

Assuming that the attacker only modifies the load of a single node each time, and the
offset is 1 MW, the lsi of each node is obtained as shown in the Figure 8. It can be seen
from the figure that when the load shedding amount is the same, the load loss rate caused
by changing the data of No. 6 and No. 9 nodes is higher. Therefore, these two nodes are
defined as high-risk nodes.
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In the mode 1, the attacker enters the control master station and masters the operation
of the power grid. At this time, the possibility pi of tampering with data of nodes with high
load loss rate is higher. In the mode 2, the attacker does not enter the control center and
does not understand the operation of the power grid. At this time, only business data can
be modified randomly, so the probability of any physical node data being modified is the
same. The risks faced by each node in the two attack modes are shown in Table 1:

Table 1. Node risk under different attack modes.

Node
Risk

Node
Risk

Attack Mode 1 Attack Mode 2 Attack Mode 1 Attack Mode 2

1 0.05571 0.16091 8 0.28763 0.36563

2 0.0402 0.13669 9 1.96169 0.95486

3 0.08665 0.20068 10 0.27507 0.35756

4 0.17548 0.28559 11 0.30509 0.37656

5 0.13683 0.25218 12 0.29032 0.36734

6 9.77915 2.13194 13 0.20045 0.30523

7 0.15986 0.27258 14 0.24754 0.33920

It can be seen from the above table that high-risk nodes (No. 6 and No. 9) face
significantly higher risks in attack mode 1 than in attack mode 2. This is because in mode
1, the attacker enters the control master station and masters the operation of the power
grid. At this time, the possibility pi of high-risk node data to be tampered is greater, and
the possibility of ordinary node data being tampered is less. However, the opposite is
true in mode 2. The attacker does not enter the control center in mode 2, so he does not
know the operation of the system and will randomly tamper node data. In this case, the
probability pi of each node’s data being tampered is the same. Therefore, the possibility of
data tampering of ordinary nodes in mode 2 is greater than that in mode 1, and the risks
faced are also increased. However, on the whole, mode 1 poses a greater risk to the system
than mode 2, because the attacker in mode 1 has more power grid operating data and can
change the operating data in a targeted manner. From the above analysis, we can see that
the risks faced by the power CPS system are closely related to the attacker’s attack mode.
Therefore, for information systems, the protection of confidential data and control centers
needs to be strengthened. For physical nodes, high-risk nodes are protected, and the power
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load needs to be allocated reasonably to minimize the risk of the power CPS system when
the information system is invaded.

As can be seen from the above table, the risk to the system caused by the attack mode
1 is greater than the attack mode 2. This is because the attacker under the attack mode
can change the operation data in a targeted manner with more power grid operation data,
causing greater risks to the system. At the same time, it can be seen from the table that
ordinary nodes (such as No. 6 and No. 9) have greater operational risks under the same
load shedding amount. The reason for this is these nodes have less output and are not
located in important positions of the system, and the attacker is less difficult to attack.
Therefore, it is necessary to strengthen the protection of ordinary nodes to avoid major
losses to the power CPS.

6. Conclusions

This research uses the fuzzy reasoning ability of FPN to improve the Q-Learning
algorithm, and uses Q-Learning to solve the shortcomings of FPN’s inability to self-learn
at the same time, thereby finding the most vulnerable path in the network system (the
attacker can obtain the highest gain route for). Compared with traditional methods, this
algorithm saves computing resources and can better reflect the impact of the difference
between the attackers and the attack targets on the network. The experimental results show
that this method has high accuracy, which can better help the study of defense measures
against network attacks. In addition, this paper establishes an information-physical risk
propagation model to evaluate the risks brought by different attack modes to the operation
of the power grid. This allows the research in this paper applicable to the identification and
protection of key nodes of the CPS system, cascading failure analysis, and the transmission
of confidential data in management and other fields.

Author Contributions: Conceptualization, R.W. and J.G.; methodology, R.W. and J.G.; software,
J.G.; validation, J.G.; formal analysis, J.G. and W.T.; investigation, J.G. and B.F.; resources, R.W.;
data curation, J.G.; writing original draft preparation, J.G.; writing—review and editing, R.W. and
J.G.; visualization, J.G. and W.T.; All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 51677065).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xin, S.; Guo, Q.; Sun, H.; Zhang, B.; Wang, J.; Chen, C. Cyber-Physical Modeling and Cyber-Contingency Assessment of

Hierarchical Control Systems. IEEE Trans. Smart Grid 2017, 6, 2375–2385. [CrossRef]
2. Sridhar, S.; Hahn, A.; Govindarasu, M. Cyber–Physical System Security for the Electric Power Grid. Proc. IEEE Inst. Electr.

Electron. Eng. 2011, 100, 210–224. [CrossRef]
3. Alshamrani, A.; Myneni, S.; Chowdhary, A.; Huang, D. A survey on advanced persistent threats: Techniques, solutions, challenges,

and research opportunities. IEEE Commun. Surv. Tutor. 2019, 21, 1851–1877. [CrossRef]
4. Liang, G.; Weller, S.R.; Zhao, J.; Luo, F.; Dong, Z.Y. The 2015 ukraine blackout: Implications for false data injection attacks. IEEE

Trans. Power Syst. 2016, 32, 3317–3318. [CrossRef]
5. Staff, T. Steinitz: Israel’s Electric Authority Hit by ‘Severe’ Cyber-Attack. The Times of Israel. 2016. Available online: https://www.

timesofisrael.com/steinitz-israels-electric-authority-hit-by-severe-cyber-attack/ (accessed on 26 January 2016).
6. Liu, S.; Chen, B.; Zourntos, T.; Kundur, D.; Butler-Purry, K. A Coordinated Multi-Switch Attack for Cascading Failures in Smart

Grid. IEEE Trans. Smart Grid 2014, 5, 1183–1195. [CrossRef]
7. Zhou, Y.; Chen, N. The LAP under facility disruptions during early post-earthquake rescue using PSO-GA hybrid algorithm.

Fresen. Environ. Bull. 2019, 28, 9906–9914.
8. Liu, X. A network attack path prediction method using attack graph. J. Ambient Intell. Humaniz. Comput. 2020, 1–8. [CrossRef]

http://doi.org/10.1109/TSG.2014.2387381
http://doi.org/10.1109/JPROC.2011.2165269
http://doi.org/10.1109/COMST.2019.2891891
http://doi.org/10.1109/TPWRS.2016.2631891
https://www.timesofisrael.com/steinitz-israels-electric-authority-hit-by-severe-cyber-attack/
https://www.timesofisrael.com/steinitz-israels-electric-authority-hit-by-severe-cyber-attack/
http://doi.org/10.1109/TSG.2014.2302476
http://doi.org/10.1007/s12652-020-02206-5


Appl. Sci. 2021, 11, 285 13 of 13

9. Swiler, L.P.; Phillips, C.; Ellis, D.; Chakerian, S. Computer-attack graph generation tool. In Proceedings of the DARPA Information
Survivability Conference and Exposition II, DISCEX’01, Anaheim, CA, USA, 12–14 June 2001; Volume 2, pp. 307–321.

10. Zhang, B.; Lu, K.; Pan, X.; Wu, Z. Reverse search based network attack graph generation. In Proceedings of the International
Conference on Computational Intelligence and Software Engineering, Wuhan, China, 11–13 December 2009; pp. 1–4.

11. Singhal, A.; Ou, X. Security risk analysis of enterprise networks using probabilistic attack graphs. In Network Security Metrics;
Springer: Cham, Switzerland, 2017; pp. 53–73.

12. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: London, UK, 1998.
13. Watkins, C.J.; Dayan, P. Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
14. Jaradat, M.A.K.; Al-Rousan, M.; Quadan, L. Reinforcement based mobile robot navigation in dynamic environment. Robot.

Comput. Integr. Manuf. 2011, 27, 135–149. [CrossRef]
15. Maoudj, A.; Hentout, A. Optimal path planning approach based on Q-learning algorithm for mobile robots. Appl. Soft Comput.

2020, 97, 106796. [CrossRef]
16. Yan, J.; He, H.; Zhong, X.; Tang, Y. Q-Learning-Based Vulnerability Analysis of Smart Grid against Sequential Topology Attacks.

IEEE Trans. Inf. Forensics Secur. 2016, 12, 200–210. [CrossRef]
17. Yousefi, M.; Mtetwa, N.; Zhang, Y.; Tianfield, H. A Reinforcement Learning Approach for Attack Graph Analysis. In Proceedings

of the 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018;
pp. 212–217.

18. Chen, S.M. Fuzzy backward reasoning using fuzzy Petri nets. IEEE Trans. Syst. Man Cybern. Syst. Part B (Cybern.) 2000, 30,
846–856. [CrossRef] [PubMed]

19. Mell, P.; Scarfone, K.; Romanosky, S. Common vulnerability scoring system. IEEE Secur. Priv. 2006, 4, 85–89. [CrossRef]
20. Xu, L.; Guo, Q.; Yang, T.; Sun, H. Robust Routing Optimization for Smart Grids Considering Cyber-Physical Interdependence.

IEEE Trans. Smart Grid 2018, 10, 5620–5629. [CrossRef]
21. Li, X.; Zhou, C.; Tian, Y.C.; Xiong, N.; Qin, Y. Asset-based dynamic impact assessment of cyberattacks for risk analysis in industrial

control systems. IEEE Trans. Ind. Inform. 2017, 14, 608–618. [CrossRef]
22. Ye, X.; Zhao, J.; Zhang, Y.; Wen, F. Quantitative vulnerability assessment of cyber security for distribution automation systems.

Energies 2015, 8, 5266–5286. [CrossRef]
23. Zhou, X.; Yang, Z.; Ni, M.; Lin, H.; Li, M.; Tang, Y. Analysis of the Impact of Combined Information-Physical-Failure on

Distribution Network CPS. IEEE Access 2020, 8, 44140–44152. [CrossRef]
24. Stellios, I.; Kotzanikolaou, P.; Psarakis, M.; Alcaraz, C.; Lopez, J. A survey of iot-enabled cyberattacks: Assessing attack paths to

critical infrastructures and services. IEEE Commun. Surv. Tutor. 2018, 20, 3453–3495. [CrossRef]
25. Teixeira, A.; Shames, I.; Sandberg, H.; Johansson, K.H. A secure control framework for resource-limited adversaries. Automatica

2015, 51, 135–148. [CrossRef]

http://doi.org/10.1007/BF00992698
http://doi.org/10.1016/j.rcim.2010.06.019
http://doi.org/10.1016/j.asoc.2020.106796
http://doi.org/10.1109/TIFS.2016.2607701
http://doi.org/10.1109/3477.891146
http://www.ncbi.nlm.nih.gov/pubmed/18252415
http://doi.org/10.1109/MSP.2006.145
http://doi.org/10.1109/TSG.2018.2888629
http://doi.org/10.1109/TII.2017.2740571
http://doi.org/10.3390/en8065266
http://doi.org/10.1109/ACCESS.2020.2978113
http://doi.org/10.1109/COMST.2018.2855563
http://doi.org/10.1016/j.automatica.2014.10.067

	Introduction 
	FPN-Q Learning Algorithm to Determine the Best Attack Path 
	Attack Model 
	FPN-Q Learning Algorithm to Determine the Best Attack Path 
	Learning Stage 
	Attack Stage 

	Information-Physical Cross-Layer Risk Spread Model 
	Security Risk Assessment of Electric Power CPS under Cyber Attack 
	Simulation Evaluation 
	Establishment of Simulation Environment 
	Analysis of Experimental Results 
	Experimental Results—Security Analysis of the Information Layer 
	Experimental Results—Algorithm Comparison 
	Experimental Results—Cross-Layer Risk Communication Analysis 


	Conclusions 
	References

