
applied  
sciences

Article

Adaptive Control for a Biological Process under Input
Saturation and Unknown Control Gain via Dead Zone
Lyapunov Functions

Alejandro Rincón 1,2 , Fredy E. Hoyos 3,* and John E. Candelo-Becerra 4

����������
�������

Citation: Rincón, A.; Hoyos, F.E.;

Candelo-Becerra, J.E. Adaptive Control

for a Biological Process under Input

Saturation and Unknown Control Gain

via Dead-Zone Lyapunov Functions.

Appl. Sci. 2021, 11, 251. https://doi.

org/10.3390/app11010251

Received: 27 November 2020

Accepted: 23 December 2020

Published: 29 December 2020

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Grupo de Investigación en Desarrollos Tecnológicos y Ambientales—GIDTA, Facultad de Ingenieria y
Arquitectura, Universidad Católica de Manizales, Carrera 23 No. 60-63, Manizales 170002, Colombia;
arincons@ucm.edu.co

2 Grupo de Investigación en Microbiología y Biotecnología Agroindustrial —GIMIBAG, Instituto de
Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales,
Carrera 23 No. 60-63, Manizales 170002, Colombia

3 Facultad de Ciencias, Escuela de Física, Universidad Nacional de Colombia, Sede Medellín,
Carrera 65 No. 59A, 110, Medellín 050034, Colombia

4 Departamento de Energía Eléctrica y Automática, Facultad de Minas, Universidad Nacional de Colombia,
Sede Medellín, Carrera 80 No. 65-223, Robledo, Medellín 050041, Colombia; jecandelob@unal.edu.co

* Correspondence: fehoyosve@unal.edu.co; Tel.: +57-4430-9000 (ext. 46532)

Abstract: In this work, substrate control of a biological process with unknown varying control
gain, input saturation, and uncertain reaction rate is addressed. A novel adaptive controller is
proposed, which tackles the combined effect of input saturation and unknown varying control gain
with unknown upper and lower bounds. The design is based on dead zone radially unbounded
Lyapunov-like functions, with the state backstepping as control framework. The convergence of the
modified tracking error and the boundedness of the updated parameters are ensured by means of the
Barbalat’s lemma. As the first distinctive feature, a new second-order auxiliary system is proposed
that tackles the effect of saturated input and the unknown varying control gain with unknown upper
and lower bounds. As the second distinctive feature, the modified tracking error converges to a
compact set whose width is user-defined, so that it does not depend on bounds of either external
disturbances, model terms, or model coefficients. The convergence region of the current tracking
error is determined for the closed loop system subject to the formulated controller and the proposed
auxiliary system. Finally, numerical simulation illustrates the performance of the proposed controller.

Keywords: input saturation; uncertain nonlinear system; adaptive control; unknown control gain;
backstepping control; dead zone Lyapunov function

1. Introduction

Automatic control of biological processes based on non-adaptive schemes is commonly
affected by model uncertainty: (i) uncertain time varying coefficients of the reaction
rates, (ii) uncertain time varying reaction yields, (iii) uncertain concentrations, and (iv)
varying and uncertain or noisily measured inflow substrate concentration [1–3]. Adaptive
control can achieve output stabilization despite these model uncertainties. Indeed, it can
guarantee asymptotic convergence of the tracking error and boundedness of its updated
parameters [4–7].

In addition to the effects of model uncertainty, control of biological process can be
affected by actuator saturation in the case that integral action is used, for instance, the case
with update laws [8,9]. Indeed, in adaptive control design, updated parameters may change
excessively [10]. One strategy for tackling the effect of input saturation in control design
of nonlinear systems is the augmented error signal (AES). In adaptive controllers with
AES strategy, it is ensured that (i) closed loop signals are bounded and excessive increase
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of updated parameters is avoided and (ii) the modified tracking error asymptotically
converges to a compact set of small size [10–12]. An early incorporation of the AES strategy
to Lyapunov-based adaptive control is presented in [10]. The tracking error signal is
substituted by the modified tracking error, which is the sum of the tracking error and
a filter in terms of the input error ∆u, which is the difference between the constrained
and unconstrained input signals [10–12]. In the case of high order nonlinear systems, the
backstepping strategy is commonly used, and the auxiliary system is defined as a nth order
filter in terms of ∆u [11–13].

In adaptive backstepping control design, the input saturation is usually tackled by
using the AES strategy [12,14]. However, accounting for unknown varying control gain is
not common in these designs. In [12], a general nonlinear time-delay system of nth order is
considered, and an output feedback backstepping is designed. Moreover, the model of a
two-stage chemical reactor with recirculation is considered as a second-order particular
case. However, the controller design assumes the control gain as constant and perfectly
known. In [15], a CSTRconsisting of a second-order SISO model is considered, in which
only the output is known. The used anti-windup compensator amounts to the auxiliary
system of the AES strategy. However, the controller design assumes that the control gain
is perfectly known. In [14], a nth order system with unknown nonlinear control gain is
considered. The unknown nonlinear nature of the control gain is tackled by using the
Nussbaum gain strategy. However, the width of the convergence region of the modified
tracking error depends on unknown model coefficients and terms. In summary, in the
aforementioned AES-based robust adaptive backstepping control designs, the modified
tracking error converges to a compact set whose width depends on the bounds of either
external disturbances, model terms or model parameters [11,12,14]. This implies that such
bounds must be known to achieve a user-defined magnitude of the steady value of the
modified tracking error.

In this study, a modified/new robust adaptive backstepping controller is developed
for a second-order SISO nonlinear system, tackling the effect of input saturation and
unknown varying control gain with unknown upper and lower bounds. The design is
based on dead zone radially unbounded forms, and a new auxiliary system is proposed.
The asymptotic convergence of the modified tracking error is proved by using the Barbalat’s
lemma, accounting for the unknown varying control gain, the saturated input, and the
formulated controller. It is ensured that the regular tracking error converges to a residual
set of user-defined width, for the case that the input saturation eventually ceases. The
main contributions of this study with respect to adaptive backstepping control designs for
systems with input saturation are listed below.

• The proposed auxiliary system is robust against varying and unknown control gain
with unknown upper and lower bounds. This is in contrast to common adaptive
backstepping control designs (see in [12,15]) where the auxiliary system considers the
control gain as constant and unknown.

• The modified tracking error converges to a compact set whose width is user-defined,
so that it does not depend on the bounds of either external disturbances, model
terms, system states, or model parameters. This is in contrast to common adaptive
backstepping control designs (see in [12,15]) and also those that use the Nussbaum
gain strategy (see in [14]) where the width of the convergence region of the modified
tracking error depends on such kind of bounds.

• The convergence region of the tracking error is determined for the closed loop system
under the formulated controller with the proposed auxiliary system.

The work is organized as follows. In Section 2, the model of the biological process,
the reference model, and the statement of the control goal are presented. In Section 3,
the controller is designed and the stability properties of the closed loop states are deter-
mined. In Section 4, a simulation example is presented. In Section 5, the conclusions
are drawn.
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2. Model Description, Reference Model and Control Goal
2.1. Model Description

The second order nonlinear SISO model of an hydroponic culture described in
Appendix A is

dx1

dt
= a1x2 − a2x1 − rx1 (1)

dx2

dt
= a3

1
x3

(x1 − x2) +
a4

x3
x2 + bv (2)

dx3

dt
= Qe −Qi −Qloss + v (3)

where

b =
Pad − x2

x3
, a1 = Qi/Vu, a2 = Qe/Vu, a3 = Qe, a4 = Qloss

x1 = Pe, x2 = Pi, x3 = Vl , v = Qad,

Pe is the nutrient concentration in the upper CSTR, Pi is the nutrient concentration
in the lower CSTR, Vl is the volume of the lower CSTR, Vu is the volume of the upper
CSTR, and Qe is the flow that leaves the upper CSTR and enters the lower CSTR; Qi is the
flow that leaves the lower CSTR and enters the upper CSTR; Qad is the flow of addition of
fresh nutrient solution to the mixing tank; and Pad is the nutrient concentration of the Qad
flow. The state x1 is the output to be controlled, whereas the inlet flowrate Qad is chosen as
control input, it is non-negative and its upper bound is determined by the operational limit
of the pump. Therefore, the relationship between the constrained control signal (denoted
as v) and the unconstrained control signal (denoted as u) is

v =


umax if u > umax
u if u ∈ [umin umax]
umin if u < umin

(4)

The following assumptions are considered:

Assumption 1. The state variables x1 and x2, x3 are bounded for v bounded, and satisfy x1 ∈ R+,
x2 ∈ R+, x3 ∈ R+.

Assumption 2. a1, a2, a3, a4 are constant, a2, a3, a4 are unknown whereas a1 is known.

Assumption 3. The reaction rate rx1 satisfies one of the following: (i) it is unknown, non-negative,
and rx1 ≤ µ̄1r̄x1, where µ̄1 is unknown, positive, constant, whereas r̄x1 is a known continuous
function of x1 with well-defined dr̄x1/dx1; (ii) it is a known continuous function of x1, with
well-defined drx1/dx1; in this case, rx1 = µ̄1r̄x1 with r̄x1 = rx1, µ̄1 = 1 holds true.

Assumption 4. The values of x1, x2 are known, whereas x3 is noisily measured: x3m = x3 + δx3,
where x3m is the noisy measurement and δx3 is the measurement noise.

Assumption 5. There is lack of knowledge on the control gain b according to one of the following
conditions: (i) b = bδbm, where bm is known, and possibly varying, and bounded for x1, x2, x3
bounded, whereas bδ is unknown, varying, and satisfies: µ̄lb ≤ |bδ| ≤ µ̄ub, where µ̄lb, µ̄ub are
constant, positive and unknown; (ii) b is unknown, varying, and satisfies µ̄lb ≤ |b| ≤ µ̄ub, where
µ̄lb, µ̄ub are unknown positive constants; in this case, b can be expressed as b = bδbm, bm = 1,
bδ = b, so that bδ is unknown, varying and satisfies µ̄lb ≤ |bδ| ≤ µ̄ub. In both conditions,
b = bδbm, where bm is known, whereas bδ is unknown, varying and satisfies µ̄lb ≤ |bδ| ≤ µ̄ub; so
that |b| ≤ µ̄ub|bm|.
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2.2. Reference Model

The use of a reference model allows to obtain the expected transient plant response
(rise time, settling time, overshoot). The reference model is defined as [16,17]

yd =
am1/2

(p + am1/2)
am1/2

(p + am1/2)
Wre f (5)

where yd is the desired output; Wre f is the command signal, which is user-defined and
bounded; am is a positive constants defined by the user, which determine the speed of
convergence of the signal yd towards Wre f ; and p = d/dt is the differential operator. Due
to the above characteristics, the signals yd, ẏd, ÿd are bounded and known. The reference
model (5) can be rewritten as

d2yd
dt2 + am1

dyd
dt

+
a2

m1
4

yd =
a2

m1
4

Wre f

or, equivalently,

dyd
dt

= − am1

2
yd +

am1

2
ydo

dydo
dt

= − am1

2
ydo +

am1

2
Wre f

2.3. Control Goal

Consider (i) the plant model (1) to (3), subject to input constraint (4) and
Assumptions 1 to 5; (ii) the tracking error e = x1 − yd, where x1 is the output, and yd
is the desired output, whose characteristics are mentioned in Section 2.2; (iii) the residual
set Ωeo = {e : |e| ≤ Cb}, whose width Cb is positive, constant and user-defined. The
goal of the controller design is to formulate a control law for v such that (Gi) the tracking
error e converges asymptotically to the residual set Ωeo, (Gii) the control law and the
update laws are bounded under closed loop operation, so that excessive parameter increase
is avoided; (Giii) the control law, the update law and the auxiliary system involve no
discontinuous signals.

Remark 1. The condition Giii is stated because the presence of discontinuous signals in the control
law may lead to input chattering, and problems of existence and uniqueness of closed loop trajectories,
and consequently, Filippov theory is needed, as discussed in [18,19].

3. Control Design and Stability Analysis

In this section, the proposed robust adaptive controller is developed for the model
described in Section 2, which involves input constraint, unknown varying control gain,
and unknown model parameters.

3.1. Controller Design

The controller design uses Lyapunov theory, with the adaptive backstepping strat-
egy as framework. New states z1 and z2 are defined as function of x1, x2, and updated
parameters. Furthermore, an overall Lyapunov function V is defined as the sum of Vz1,
the dead zone Lyapunov function for z1; Vz2, the dead zone Lyapunov function for z2;
and a Lyapunov function for each parameter updating error. Differential equations are
defined for the new states, and the time derivatives of the Lyapunov functions are defined.
The mechanisms for the updated parameters and the control input u are chosen such that
dV/dt is negative semi-definite, thus implying the asymptotic convergence of z1. Other
important features of the developed procedure are
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• a new auxiliary system of second order is proposed, whose input includes the control
signal error ∆u, which is the difference between the constrained and the unconstrained
control signals;

• a modified tracking error z1 is defined as the sum of the regular tracking error and the
state of the auxiliary system;

• the definition the zi states is based on the adaptive state backstepping method;
• dead zone radially unbounded quadratic forms are used instead of current

quadratic forms; and
• a new treatment of the b∆u term is proposed, including a new parameterization of the

unknown model parameters, and the formulation of a new auxiliary system.

In a basic adaptive backstepping control design, the z1 state would be defined as the
tracking error, z1 = x1 − yd. In contrast, we define z1 by adding −ψ1 to the tracking error:

z1 = x1 − yd − ψ1 (6)

where the ψ1 state is the output of a stable second order linear filter whose input contains
the input error ∆u, the difference between the non-saturated and the saturated input signals.
The controller design is aimed at driving z1 to Ωz1, Ωz1 = {z1 : |z1| ≤ Cb}. The advantages
of the definition of z1 (6) and the controller design based on z1 instead of the tracking error
e are (i) excessive increase of the updated parameters is avoided and (ii) the convergence
region of the tracking error e = x1 − yd in presence of input saturation can be determined.
The time derivative of Equation (6) is

ż1 = ẋ1 − ẏd − ψ̇1 (7)

Incorporating the ẋ1 expression (1) yields

ż1 = a1x2 − a2x1 − rx1 − ẏd − ψ̇1 (8)

Let

Vz1 =


(1/3)(z1 − Cb)

3 for z1 ≥ Cb
0 for z1 ∈ (−Cb, Cb)
(1/3)(−1)(z1 + Cb)

3 for z1 ≤ −Cb

(9)

This truncated Lyapunov function is inspired on that of [20,21]. Early versions of
dead zone Lyapunov functions are presented in [17,22,23]; versions for backstepping-based
controllers in [21,24], and other versions in [20,25,26]. The use of the dead zone Lyapunov
function (9) allows designing the adaptive controller, tackling the presence of unknown
varying terms or parameters, and avoiding the use of discontinuous signals. The main
properties of Vz1 (9) are

Vz1 = 0 for z1 ∈ [−Cb, Cb]

Vz1 > 0 for z1 /∈ [−Cb, Cb]

Vz1 is continuous with respect to z1, and it is bounded for z1 bounded

The above properties and a stable dynamics of Vz1 imply the convergence of z1 to Ωz1,
Ωz1 = {z1 : |z1| ≤ Cb}, as is shown in the convergence theorem in Section 3.2.

Differentiating (9) with respect to time yields

V̇z1 = fz1ż1 (10)

fz1 =
dVz1

dz1
=


(z1 − Cb)

2 for z1 ≥ Cb
0 for z1 ∈ (−Cb, Cb)
(−1)(z1 + Cb)

2 for z1 ≤ −Cb

(11)
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Incorporating the expression for ż1 (8) into Equation (10) and arranging yields

V̇z1 = −k1b| fz1| − k1 f 2
z1 + fz1a1x2

+ fz1(k1 fz1 − ẏd − ψ̇1 − a2x1 − rx1 + k1bsign( fz1)) (12)

where −k1b| fz1| was incorporated in order to provide robustness and | fz1| was expressed
as | fz1| = fz1sign( fz1), which would imply the presence of the signal sign( fz1) in the
definition of z2 and would hamper the determination of ż2. Thus, notice that from the
definition of fz1 (11) it follows that

| fz1| = fz1satz1 (13)

where

satz1 =

{
z1
Cb

(
2− |z1|

Cb

)
for z1 ∈ (−Cb, Cb)

sgn(z1) otherwise
(14)

dsatz1

dz1
=

{
2

Cb

(
1− |z1|

Cb

)
for z1 ∈ (−Cb, Cb)

0 otherwise
(15)

Using (13) in (12) instead of | fz1| = fz1sign( fz1), yields

V̇z1 = −k1b| fz1| − k1 f 2
z1 + fz1a1x2

+ fz1(k1 fz1 − ẏd − ψ̇1 − a2x1 − rx1 + k1bsatz1) (16)

To obtain the required right hand side of dVz1/dt, the effect of the term fz1a1x2 +
fz1(k1 fz1 − ẏd − ψ̇1 − a2x1 − rx1 + k1bsatz1) should be tackled by adequate definition of the
new state z2. However, a2 is unknown and rx1 is unknown, and its upper bound comprises
and unknown constant µ̄1. Therefore, the term fz1(−a2x1 − rx1) should be expressed in
terms of updated parameters and parameter estimation error. Recall from Assumption 3
that rx1 ≤ µ̄1r̄x1 or rx1 = µ̄1r̄x1, therefore

fz1(−rx1) ≤ µ̄1r̄x1| fz1| (17)

The term fz1(−a2x1 − rx1) can be parameterized accounting for (17) and (13):

fz1(−a2x1 − rx1) ≤ ϕ>1 θ1 fz1 (18)

ϕ1 = [−x1, satz1r̄x1]
>, θ1 = [a2, µ̄1]

> (19)

As the parameter vector θ1 is unknown, we express it in terms of an updated parameter
vector and a parameter updating error as follows. Let θ̃1 = θ̂1 − θ1, where θ̃1, θ̂1 are
the parameter estimation error and the updated parameter, being θ̂1 provided by an
updating mechanism defined later. Thus, θ1 can be expressed as θ1 = θ̂1 − θ̃1. Substituting
into Equation (18) yields fz1(−a2x1 − rx1) ≤ ϕ>1 θ̂1 fz1 − ϕ>1 θ̃1 fz1. Substituting this into
Equation (16) yields

V̇z1 ≤ −k1b| fz1| − k1 f 2
z1 + fz1a1x2

+ fz1

(
ϕ>1 θ̂1 + k1 fz1 − ẏd − ψ̇1 + k1bsatz1

)
− ϕ>1 θ̃1 fz1 (20)

The dynamics of Vz1 is affected by the following terms: (i) the term−k1b| fz1| − k1 f 2
z1 is

negative and it provides stability; (ii) the term −ϕ>1 θ̃1 fz1, which is later tackled by defining
a quadratic form for θ̃1, as can be noticed in the boundedness and convergence theorems
in Section 3.2; and (iii) the term fz1a1x2 + fz1

(
ϕ>1 θ̂1 + k1 fz1 − ẏd − ψ̇1 + k1bsatz1

)
, which is
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later tackled by adequate definition of the new state z2, so that this term equals fz1z2 and
(20) yields

V̇z1 ≤ −k1b| fz1| − k1 f 2
z1 + fz1z2 − ϕ>1 θ̃1 fz1 (21)

where

z2 = a1x2 + (k1 fz1 − ẏd − ψ̇1) + k1bsatz1 + ϕ>1 θ̂1 (22)

The effect of the term fz1z2 can be tackled by adequate dynamics of Vz1 and Vz2, such
that V̇z1 + V̇z2 involves the term −k f 2

z1 − k f 2
z2, being fz2 a saturation function of z2 and Vz2

a quadratic function of fz2. To this end, the required dynamics of z2 is generated next.
Differentiating z2 (22) with respect to time yields

ż2 = a1 ẋ2 + k1
d fz1

dz1
ż1 − ÿd − ψ̈1 + k1b

dsatz1

dz1
ż1 + ϕ̇>1 θ̂1 + ϕ>1

˙̂θ1 (23)

The auxiliary state ψ1 and its time derivatives are provided by the auxiliary system,
whose general structure consists of a second order linear filter whose input Wψ involves
the input error ∆u:

ψ̇1 = −Kψ1ψ1 + ψ2 (24)

ψ̇2 = −Kψ2ψ2 + Wψ (25)

where the term Wψ, which will be defined later, is used to cancel the effect of the ∆u term,
which is the difference between the saturated and non-saturated input signals. From (24),
(25) it follows that ψ̈1 = K2

ψ1ψ1 − (Kψ1 + Kψ2ψ2) + Wψ. Substituting this expression and
the expressions for ż1 (7), ẋ1 (1) and ẋ2 (3) into Equation (23) and arranging yields

ż2 = −k2 fz2 + a1a3
x1 − x2

x3
+ a1a4

x2

x3

+B1d(−a2x1 − rx1) + B1e + a1bv + (−1)Wψ (26)

where

B1d = k1
d fz1

dz1
+ k1b

dsatz1

dz1
+ B1b (27)

B1e = B1da1x2 +

(
k1

d fz1

dz1
+ k1b

dsatz1

dz1

)
(−1)(ẏd + ψ̇1)

+(−1)K2
ψ1ψ1 + (Kψ1 + Kψ2)ψ2 + B10 + ϕ> ˙̂θ1 + k2 fz2 (28)

B1b = (−1)θ̂1,1 + satz1
dr̄x1

dx1
θ̂1,2 + r̄x1

dsatz1

dz1
θ̂1,2

B10 = r̄x1
dsatz1

dz1
(−ẏd − ψ̇1)θ̂1,2

where

d fz1

dz1
=


2(z1 − Cb) for z1 ≥ Cb
0 for z1 ∈ (−Cb, Cb)
(−2)(z1 + Cb) for z1 ≤ −Cb

and dsatz1/dz1 is defined in Equation (15). Let

Vz = Vz1 + Vz2 (29)

Vz2 =


(1/2)(z2 − Cb)

2 for z2 ≥ Cb
0 for z2 ∈ (−Cb, Cb)
(1/2)(z2 + Cb)

2 for z2 ≤ −Cb

(30)
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The main properties of Vz2 are

Vz2 = 0 for z2 ∈ [−Cb, Cb]

Vz2 > 0 for z2 /∈ [−Cb, Cb]

Vz2 is continuous with respect to z2, and it is bounded for z2 bounded

The above properties and a stable dynamics of Vz2 imply the convergence of z2 to Ωz2,
Ωz2 = {z2 : |z2| ≤ Cb}, as shown in the convergence theorem in Section 3.2.

Differentiating Vz2 with respect to time yields

V̇z2 = fz2
dz2

dt
, (31)

fz2 =
dVz2

dz2
=


z2 − Cb for z2 ≥ Cb
0 for z2 ∈ (−Cb, Cb)
z2 + Cb for z2 ≤ −Cb

(32)

Incorporating the expression for ż2 (26) into Equation (31) and arranging yields

V̇z2 = −k2 f 2
z2 + fz2

(
a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−a2x1 − rx1) + B1e

)
+ fz2

(
a1bv + (−1)Wψ

)
(33)

Differentiating Vz in (29) with respect to time yields V̇z = V̇z1 + V̇z2. Substituting the
expressions for V̇z1 (21) and V̇z2 (33) yields

V̇z ≤ −Cb| fz1|+ fz1z2 − k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1

+ fz2

(
a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−a2x1 − rx1) + B1e

)
+ fz2

(
a1bv + (−1)Wψ

)
(34)

To obtain the required right hand side of dVz/dt, the terms

fz1z2 + fz2

(
a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−a2x1 − rx1) + B1e

)
should be rewritten and tackled by means of proper definition of Wψ and the control law.

In the fz1z2 term, the z2 signal must be expressed in terms of fz2, because the controller
design is based on the dead zone functions fz1 and fz2 rather than z1 and z2. From definition
(32), it follows that fz2 = z2 + δ,

δ =


−Cb for z2 ≥ Cb
0 for z2 ∈ (−Cb, Cb)
Cb for z2 ≤ −Cb

therefore, z2 = fz2 − δ and |δ| ≤ Cb. Therefore, fz1z2 = fz1 fz2 − δ fz1. Substituting into
Equation (34) yields

V̇z ≤ −Cb| fz1| − δ fz1 − k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1

+ fz2

(
fz1 + a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−a2x1 − rx1) + B1e

)
+ fz2

(
a1bv + (−1)Wψ

)
(35)
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so that the error term δ leads to the undesired uncertainty term −δ fz1 in Equation (35).
The property |δ| ≤ Cb implies that −δ fz1 ≤ Cb| fz1|, which is canceled by the already
existing term −Cb| fz1|, so that −Cb| fz1| − δ fz1 ≤ 0, and Equation (35) yields

V̇z ≤ −k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1

+ fz2

(
fz1 + a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−a2x1 − rx1) + B1e

)
+ fz2

(
a1bv + (−1)Wψ

)
(36)

Therefore, the term −Cb| fz1| incorporated in Equation (12) is necessary for counteract-
ing the effect of the error term δ resulting from fz2 = z2 + δ.

In order to facilitate the design of the control law for u, the constrained input signal v
is expressed in terms of the unconstrained input signal u and the input error ∆u, and the
effect of ∆u is later canceled by the input of the auxiliary system, Wψ. Let

∆u = v− u (37)

hence

v = u + ∆u (38)

Substituting (38) into (36), yields

V̇z ≤ −k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1

+ fz2

(
fz1 + a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−a2x1 − rx1) + B1e

)
+a1 fz2bu + a1 fz2b∆u + fz2(−1)Wψ (39)

The effect of the term a1 fz2b∆u should be canceled by an adequate choice of Wψ, but
this is hampered by the uncertainty on the control gain b. To this end, b is expressed in
terms of an updated parameter and a parameter updating error. Recall from assumption 5
that |b| ≤ µ̄ub|bm|. Therefore,

a1 fz2b∆u ≤ µuba1| fz2bm∆u| (40)

As the upper bound µ̄ub is unknown, it is expressed in terms of updated parameter
and parameter updating error. Let θ̃ub = θ̂ub − µ̄ub, where θ̃ub, θ̂ub are a parameter esti-
mation error and an updated parameter, and θ̂ub is provided by an updating mechanism
defined later. From the above definition it follows that µ̄ub = θ̂ub − θ̃ub. Substituting into
Equation (40) and arranging, yields

a1 fz2b∆u ≤ θ̂uba1| fz2bm∆u| − a1| fz2bm∆u|θ̃ub (41)

Substituting into Equation (39), yields

V̇z ≤ −k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1

+ fz2

(
fz1 + a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−a2x1 − rx1) + B1e

)
+a1 fz2bu + θ̂uba1| fz2bm∆u| − a1| fz2bm∆u|θ̃ub + fz2(−1)Wψ (42)

Thus, the right hand side of dVz/dt is affected by the following terms: (i) the term
θ̂uba1| fz2bm∆u|, which is later tackled by properly choosing Wψ, and (ii) the term
−a1| fz2bm∆u|θ̃ub, which is later tackled by defining the quadratic form for θ̃ub. To this end,
if | fz2| is expressed as | fz2| = fz2sign( fz2), the resulting expression of Wψ would contain
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the sign( fz2) signal, so that chattering might occur. Therefore, we notice from definition
(32) that

| fz2| = fz2satz2 (43)

where

satz2 =


+1 for z2 ≥ Cb
(1/Cb)z2 for z2 ∈ (−Cb, Cb)
−1 for z2 ≤ −Cb

(44)

Therefore, (41) leads to

a1 fz2b∆u + fz2(−1)Wψ ≤ fz2
(
θ̂ubsatz2a1|bm∆u| −Wψ

)
− a1| fz2bm∆u|θ̃ub (45)

we choose

Wψ = a1θ̂ubsatz2|bm∆u| (46)

substituting into Equation (24), (25) gives the auxiliary system

ψ̇1 = −Kψ1ψ1 + ψ2 (47a)

ψ̇2 = −Kψ2ψ2 + a1θ̂ubsatz2|bm∆u| (47b)

Kψ1 > 1/2, Kψ2 > 1/2 (47c)

where satz2 is defined in (44). Substituting (46) into Equation (45) yields a1 fz2b∆u +
fz2(−1)Wψ ≤ −a1| fz2bm∆u|θ̃ub. Substituting this into (42) gives

V̇z ≤ −k1 f 2
z1 − k2 f 2

z2 − ϕ> θ̃1 fz1

+ fz2

(
a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−rx1 − a2x1) + fz1 + B1e

)
+a1 fz2bδbmu− |a1 fz2bm∆u|θ̃ub (48)

The term

fz2

(
a1a3

x1 − x2

x3
+ a1a4

x2

x3
+ B1d(−rx1 − a2x1) + fz1 + B1e

)
should be canceled by the input signal u appearing in the term a1 fz2bδbmu, but this is
hampered by the lack of knowledge on (i) a3, µlb, a4, a2 and (ii) the control gain term bδ and
its lower bound µ̄lb. Therefore, we need to express these terms as function of bδ, updated
parameters and parameter updating errors. To begin, the term comprising x1 − x2 can be
expressed as

fz2a1a3
x1 − x2

x3
≤ µlba1

| fz2(x1 − x2)|
x3m

θ3, θ3 =
a3

µlb

(
1 +

max(δx3)

min(x3)

)
(49)

Let θ̃3 = θ̂3 − θ3, where θ̃3 and θ̂3 are a parameter updating error and an updated
parameter, respectively, and θ̂3 is provided by an updating mechanism defined later. From
the above definition it follows that θ3 can be expressed as θ3 = θ̂3 − θ̃3. Substituting into
Equation (49) and using property µlb ≤ |bδ| from Assumption 5, yields

fz2a1a3
x1 − x2

x3
≤ a1

|bδ fz2(x1 − x2)|
x3m

θ̂3 − µlba1
| fz2(x1 − x2)|

x3m
θ̃3 (50)
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In a similar way

fz2a1
a4

x3
x2 ≤ a1

|bδx2 fz2|
x3m

θ̂4 − µlba1
|x2 fz2|

x3m
θ̃4 (51)

where θ̃4 = θ̂4 − θ4

fz2B1d(−rx1) ≤ |bδ fz2B1d|r̄x1θ̂rx1 − µlb| fz2B1d|r̄x1θ̃rx1 (52)

where θ̃rx1 = θ̂rx1 − θrx1

fz2B1d(−a2x1) ≤ |bδ fz2B1dx1|θ̂2 − µlb| fz2B1dx1|θ̃2 (53)

where θ̃2 = θ̂2 − θ2

fz2( fz1 + B1e) ≤ |bδ fz2( fz1 + B1e)|θ̂ilb − µlb| fz2( fz1 + B1e)|θ̃ilb (54)

where θ̃ilb = θ̂ilb − 1/µlb

Notice that the expressions (50)–(54) contain | fz2|. If it is expressed as | fz2| =
fz2sign( fz2), the resulting control law would contain the sign( fz2) signal, so that input
chattering might occur. Thus, we use the expression (43), so that

|bδ fz2| = bδ fz2sgn(bδ)satz2 (55)

Substituting (50)–(54) into Equation (48) and using (55), yields

V̇z ≤ −k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1

+bδ fz2

(
sgn(bδ)satz2

(
a1
|x1 − x2|

x3m
θ̂3 + a1

x2

x3m
θ̂4 + |B1d|r̄x1θ̂rx + |B1dx1|θ̂2 + | fz1 + B1e|θ̂ilb

)
+ a1bmu

)
−µlb| fz2|a1

|x1 − x2|
x3m

θ̃3 − µlba1| fz2|
|x2|
x3m

θ̃4 − µlb| fz2B1d|r̄x1θ̃rx1 (56)

−µlb| fz2B1dx1|θ̃2 − µlb| fz2( fz1 + B1e)|θ̃ilb − |a1 fz2bm∆u|θ̃ub

Thus, the right hand side of dVz/dt is affected by the following terms: (i) the term
−k1 f 2

z1 − k2 f 2
z2 which leads to convergence of f 2

z1 and f 2
z2 to zero, as shown in the conver-

gence theorem in Section 3.2; (ii) the terms involving θ̃1, θ̃3, θ̃4, θ̃rx1, θ̃2, θ̃ilb, θ̃ub, which
are later tackled by properly defining their quadratic forms and the update laws, what is
shown later in the analysis of dV/dt; and (iii) the remaining term

bδ fz2

(
sgn(bδ)satz2

(
a1
|x1 − x2|

x3m
θ̂3 + a1

x2

x3m
θ̂4 + |B1d|r̄x1θ̂rx + |B1dx1|θ̂2 + | fz1 + B1e|θ̂ilb

))

which is tackled by properly defining the control law, so that the u signal cancels it:

bδ fz2

(
sgn(bδ)satz2

(
a1
|x1 − x2|

x3m
θ̂3 + a1

x2
x3m

θ̂4 + |B1d|r̄x1 θ̂rx + |B1dx1|θ̂2 + | fz1 + B1e|θ̂ilb

)
+ a1bmu

)
= 0 (57)

Solving (57) for u yields
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u =
−1

bma1
sgn(bδ)satz2

(
a1
|x1 − x2|

x3m
θ̂3 + |B1d|r̄x1θ̂rx1 + |B1dx1|θ̂2 + | fz1 + B1e|θ̂ilb

+a1
|x2|
x3m

θ̂4

)
(58)

with k1b = Cb

Remark 2. From the control law (58), it follows that the value of the control signal u depends on
(i) the nutrient concentration in the upper CSTR, that is, x1 = Pe; (ii) the nutrient concentration
in the lower CSTR, that is, x2 = Pi, (iii) the measurement of the liquid volume in the lower CSTR,
that is, x3m = Vlm; (iv) the reaction rate term r̄x1 and dr̄x1/dx1, which are functions of x1; and (v)
the desired output yd and its time derivative dyd/dt, provided by Equation (5). Therefore, the input
signal v also depends on x1, x2, x3, yd, as it is a saturation function of u according to expression (4).

Remark 3. In practical implementation of the developed controller, the flow valve manipulates the
flow of nutrient solution Qad, using the signal v (4) and the control law (58), so as to drive z1 to
Ωz1, Ωz1 = {z1 : |z1| ≤ Cb} and z2 to Ωz2, Ωz2 = {z2 : |z2| ≤ Cb}. Also, as v depends on x1,
x2, x3 according to Remark 2, the flow valve uses their measurement.

Remark 4. A closed loop is generated by the application of the developed controller, because the
saturated signal v depends on x1, x2, x3 according to remark 2, and x1, x2 and x3 depend on v
according to model (1)–(3).

Substituting u (58) into Equation (57) yields

V̇z ≤ −k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1 − µlb| fz2|a1
|x1 − x2|

x3m
θ̃3 − µlba1| fz2|

|x2|
x3m

θ̃4 − µlb| fz2B1d|r̄x1θ̃rx1

−µlb| fz2B1dx1|θ̃2 − µlb| fz2( fz1 + B1e)|θ̃ilb − |a1 fz2bm∆u|θ̃ub (59)

In order to tackle the effect of the parameter updating errors in V̇z, the overall Lya-
punov function is defined as

V(x̄) = Vz + Vθ , (60)

where Vθ is the sum of the quadratic forms for the parameter updating errors, and it is
defined as

Vθ = (1/2)θ̃>1 Γ−1
1 θ̃1 + (1/2)µlbγ−1

3 θ̃2
3 + (1/2)µlbγ−1

4 θ̃2
4 + (1/2)µlbγ−1

rx1θ̃2
rx1

+(1/2)µlbγ−1
2 θ̃2

2 + (1/2)µlbγ−1
ilb θ̃2

ilb + (1/2)γ−1
ub θ̃2

ub (61)

The vector of closed loop state variables is x̄ =
[
z1, z2, θ̃1, θ̃3, θ̃4, θ̃rx1, θ̃2, θ̃ilb, θ̃ub

]>.
Differentiating (60) with respect to time yields

V̇ = V̇z + V̇θ (62)

Differentiating Vθ (61) with respect to time yields

V̇θ = θ̃>1 Γ−1 ˙̂θ1 + µlbγ−1
3 θ̃3

˙̂θ3 + µlbγ−1
4 θ̃4

˙̂θ4 + µlbγ−1
rx1θ̃rx1

˙̂θrx1 + µlbγ−1
2 θ̃2

˙̂θ2

+µlbγ−1
ilb θ̃ilb

˙̂θilb + γ−1
ub θ̃ub

˙̂θub (63)

Substituting (63) and (59) into Equation (62) yields
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V̇ ≤ −k1 f 2
z1 − k2 f 2

z2 − ϕ>1 θ̃1 fz1 − µlb| fz2|a1
|x1 − x2|

x3m
θ̃3 − µlba1| fz2|

|x2|
x3m

θ̃4 − µlb| fz2B1d|r̄x1θ̃rx1

−µlb| fz2B1dx1|θ̃2 − µlb| fz2( fz1 + B1e)|θ̃ilb − |a1 fz2bm∆u|θ̃ub

+θ̃>1 Γ−1 ˙̂θ1 + µlbγ−1
3 θ̃3

˙̂θ3 + µlbγ−1
4 θ̃4

˙̂θ4 + µlbγ−1
rx1θ̃rx1

˙̂θrx1 + µlbγ−1
2 θ̃2

˙̂θ2

+µlbγ−1
ilb θ̃ilb

˙̂θilb + γ−1
ub θ̃ub

˙̂θub (64)

In order to cancel the effect of the term

−ϕ>1 θ̃1 fz1 − µlb| fz2|a1
|x1 − x2|

x3m
θ̃3 − µlba1| fz2|

|x2|
x3m

θ̃4 − µlb| fz2B1d|r̄x1θ̃rx1

−µlb| fz2B1dx1|θ̃2 − µlb| fz2( fz1 + B1e)|θ̃ilb − |a1 fz2bm∆u|θ̃ub

the update laws are chosen as

˙̂θ1 = Γ1 ϕ1 fz1 (65)
˙̂θrx1 = γrx1|B1d|r̄x1| fz2| (66)

˙̂θ3 = γ3a1
|x1 − x2|

x3m
| fz2| (67)

˙̂θilb = γilb| fz1 + B1e|| fz2| (68)
˙̂θub = γuba1|bm∆u|| fz2| (69)

˙̂θ4 = γ4a1
|x2|
x3m
| fz2| (70)

˙̂θ2 = γ2|B1d||x1 fz2| (71)

where Γ1 is 2× 2 diagonal matrix whose diagonal entries are user-defined, positive, and
constant, whereas γrx1, γ3, γilb, γub, γ4, and γ2 are user-defined positive constants.

Substituting the update laws (65) to (71) into Equation (64) and arranging yields

V̇ ≤ −k1 f 2
z1 − k2 f 2

z2 (72)

Remark 5. The formulated controller comprises (i) the control law (58); (ii) the update laws (65)
to (71); and (iii) the auxiliary system (47a), (47b). The signals involved therein are (i) z1 (6), fz1
(11), satz1 (14), z2 (22), fz2 (32), satz2 (44), ϕ1 (19), B1d (27), B1e (28); (ii) the desired output yd,
provided by model (5), according to subsection 2.2; (iii) the input error ∆u (37), which involves
u (58) and v (4), (iv) the constants k1, k2, Kψ1 > 1/2, Kψ2 > 1/2, which are user-defined and
positive; (v) the user-defined positive constant Cb, which is the width of the residual set Ωeo defined
in Section 2.3; and (vi) the constant k1b = Cb.

Remark 6. In the controller development, a new treatment of the b∆u term is proposed, and the
main tasks of this treatment are (i) the term b∆u fz2 is expressed in terms of its upper bound (40); (ii)
as such upper bound is unknown, it is expressed in terms of parameter updating error and update
parameter (41); and (iii) the update law (69) is defined so as to obtain adequate time derivative of
the overall Lyapunov-like function.

Remark 7. The resulting auxiliary system (47a), (47b) is quite different with respect to the current
ones (see [11–13]): it involves a saturation-like function of the z2 signal; it involves the updated
parameter θ̂ub, which is function of fz2 and ∆u; the ∆u signal is in absolute value.
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Remark 8. The modified tracking error z1 asymptotically converges to the compact set Ωz1,
whose width Cb is user-defined, so that it does not depend on the bonds of external disturbances,
model coefficients, or model terms. Consequently, the convergence of z1 is achieved without
requiring knowledge on these bounds. This is in contrast to common robust adaptive backstepping
designs (see [11,12,14]), where the convergence region depends on such kind of bounds, so that the
convergence of the modified error to a compact set of user-defined size requires the knowledge on
such bounds.

Remark 9. Some remarkable features of the formulated controller are (i) the control law, the update
laws and the auxiliary system are function of modified error z1 instead of the regular tracking error
e = x1 − yd, and (ii) saturation functions of the tracking error are used instead of discontinuous
functions, in order to avoid undesired chattering.

3.2. Boundedness and Convergence Analysis

Theorem 1 (Boundedness of the closed loop signals). Consider the model (1) to (3), subject to
input constraint (4) and Assumptions 1 to 5. If the control law (58), update laws (65) to (71) and
auxiliary system (47a), (47b) are applied, then (Ti) the signals z1, z2, θ̂1, θ̂3, θ̂4, θ̂rx1, θ̂2, θ̂ilb, θ̂ub
are bounded; (Tii) the signals bmu, bm∆u are bounded.

Proof. Arranging and integrating Equation (72), yields

V + k1

∫ t

to
fz1dt + k2

∫ t

to
fz2dt ≤ V(x̄to) (73)

Therefore, V(x̄) ≤ V(x̄to), so that V ∈ L∞. In view of (60), one further obtains
Vz ∈ L∞, Vθ ∈ L∞. Further, considering definitions of Vz (29), Vz1 (9), Vz2 (30) one obtains
z1 ∈ L∞, z2 ∈ L∞. Further, considering Vθ ∈ L∞ and definition (61), it follows that θ̂1, θ̂3,
θ̂4, θ̂rx1, θ̂2, θ̂ilb, θ̂ub are bounded. This completes the proof of Ti.

Considering Equation (58), and the boundedness of all the closed loop signals involved
therein, one obtains that bmv is bounded. Further, considering definition (37), the bounded
nature of v and bm stated in assumption 2.5, it follows that bm∆u is bounded. This completes
the proof of Tii.

Theorem 2 (Convergence of signals z1, z2 and e). Consider the model (1) to (3), subject to input
constraint (4) and Assumptions 1–5. If the control law (58), update laws (65) to (71) and auxiliary
system (47a), (47b) are applied, then (Ti) the signal z1 converges asymptotically to Ωz1, Ωz1 =
{z1 : |z1| ≤ Cb}; (Tii) the signal z2 converges asymptotically to Ωz2, Ωz2 = {z2 : |z2| ≤ Cb};
(Tiii) if ∆u vanishes, then e = x1 − yd converges asymptotically to Ωeo, Ωeo = {e : |e| ≤ Cb};
(Tiv) e = x1 − yd converges asymptotically to Ωe,

Ωe =

e : |e| ≤ Cb +
1√

2koβ2(Kψ2 − 1/2)

√
sup

0≤s≤t
(W2

ψ)

 (74)

Wψ = θ̂ubbm∆u

ko = 2 min{Kψ1 − 1/2, β1(Kψ2 − 1/2)} (75)

where β1, β2 are constants that satisfy 1 = β1 + β2, β1 ∈ (0, 1), β2 ∈ (0, 1).

Proof. From Equation (73) it follows that

k1

∫ t

to
fz1dt ≤ V(x̄to), k2

∫ t

to
fz2dt ≤ V(x̄to) (76)

so that fz1 ∈ L1. Applying the Barbalat’s lemma [27], yields limt→+∞ f 2
z1 = 0. Furthermore,

considering the definition of fz1 (11), it follows that z1 converges asymptotically to Ωz1.
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This completes the proof of Ti. From Equation (76) if follows that fz2 ∈ L1. Applying the
Barbalat’s lemma [27], yields limt→+∞ f 2

z2 = 0. Furthermore, considering the definition of
fz2 (32), it follows that z2 converges asymptotically to Ωz2. This completes the proof of Tii.

From the definition of z1 (6), it follows that e = x1 − yd can be expressed as

e = z1 + ψ1 (77)

From Equations (47a) and (47b), it follows that if ∆u vanishes, then ψ1 and ψ2 converge
to zero. From (77), accounting for the convergence of z1 to Ωz1, it follows that e converges
asymptotically to Ωeo. This completes the proof of Tiii.

We choose the quadratic form

Vψ = (1/2)ψ2
1 + (1/2)ψ2

2 (78)

Differentiating with respect to time, yields V̇ψ = ψ1ψ̇1 + ψ2ψ̇2. Substituting the
auxiliary system (47a), (47b) and arranging, yields V̇ψ = −Kψ1ψ2

1 + ψ1ψ2 − Kψ2ψ2
2 + ψ2Wψ.

Factorizing, yields

V̇ψ ≤ −(Kψ1 − 1/2)ψ2
1 − β1(Kψ2 − 1/2)ψ2

2 +
1

4β2(Kψ2 − 1/2)
W2

ψ

Arranging yields

V̇ψ ≤ −koVψ +
1

4β2(Kψ2 − 1/2)
sup

0≤s≤t
(W2

ψ)

where ko is a positive constant (75). Therefore,

Vψ ≤ Vψoe−kot +
1

4koβ2(Kψ2 − 1/2)
sup

0≤s≤t
(W2

ψ)

Using the definition of Vψ (78), we get

|ψ1| ≤
√

2Vψoe−kot +
1

2koβ2(Kψ2 − 1/2)
sup

0≤s≤t
(W2

ψ)

From this it follows that ψ1 converges asymptotically to Ωψ1,

Ωψ1 =

ψ1 : |ψ1| ≤
1√

2koβ2(Kψ2 − 1/2)

√
sup

0≤s≤t
(W2

ψ)


From Equation (77), the above result and result Ti, it follows that e = x1− yd converges

asymptotically to the compact set Ωe (74). This completes the proof of Tiv.

Remark 10. The parameter updating errors are bounded despite input saturation, so that excessive
increase of updated parameters is avoided.

Remark 11. From result Tiv of Theorem 2, it can be observed that the bound of the steady tracking
error can be made small by choosing large values of Kψ1, Kψ2.
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4. Simulation Example

Consider the aeroponic system described in Appendix A whose model is given by
Equations (1)–(3), with input constraint (4), Assumptions 1 to 5, and control goal and
desired output yd stated in Sections 2.2 and 2.3. The control law, the update laws, the
auxiliary system, and their parameters and signals are stated in Remark 5. At what follows,
the values of x1, x2 and x3 are generated through the model (1) to (3) with specific parameter
values. These values of x1, x2 and x3 are used by the controller, but the model parameters
and upper or lower bounds are not.

The input saturation values are umin = 0 and

umax =

{
350 L/day for t ≤ 7 days
10.944 L/day otherwise

. (79)

The input value Qad = 0 is used until x1 reaches the value 70 mg/L, so that the
controller is started at t = 4 days. The parameters of the reference model (5) are chosen as
am1 = 40 and

Wre f =

{
75 mg/L for t ≤ 7 days
80 mg/L otherwise

, (80)

whereas the desired width of the convergence region is chosen to be Cb = 0.4. The user-
defined parameters of the control law, update laws and auxiliary system are chosen as

k1 =

{
8 for t ≤ 7 days
2 otherwise

, (81)

k2 = 0.005, kψ1 = 20 > 1/2, kψ2 = 20 > 1/2, γ1,1 = 8 × 10−4, γ1,2 = 0.008,
γrx1 = 4× 10−7, γ3 = 0.004, γilb = 4× 10−7, γub = 4× 10−9, γ4 = 4× 10−4.

We consider the measurement noise for x3 in the control gain b, such that b satisfies
the first condition of assumption 2.5, with

bm =
Pad − x2

x3m
, bδ =

x3m

x3

Due to the controller starting at t = 4 days and the change of Wre f at t = 7 days,
the system behavior is separated in the time intervals [4 7) and [7 ∞) days. For t ∈
[4 7) days:

• all the closed loop signals are bounded (see Figures 1, 2 and 3).
• the signal z1 is near Ωz1 at initial time (z1to ≈ −0.7), it enters Ωz1 at 6.72 days and it

remains inside until t = 7 days (Figure 1d).
• the updated parameters remain bounded, and its change is not excessive; θ̂1,1, θ̂1,2

change when z1 /∈ Ωz1, and remain constant otherwise (Figure 3).
• input signal v: for t ∈ [4 5.09] ∪ [6.52 6.6] days it exhibits reiterated saturation at

its lower bound, with only one moment of saturation at its upper bound (at t = 4.89
days approx); during other moments it exhibits changing behavior (Figure 2c,d).
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For t ≥ 7 days:

• all the closed loop signals are bounded (see Figures 1, 2 and 3).
• the signal z1 is inside Ωz1 at t = 7 days (z1to ≈ −0.39), it leaves, it enters Ωz1 at 7.55

days approx. and it remains inside afterwards (Figure 1d).
• the updated parameters remain bounded, θ̂1,1, θ̂1,2 are constant when z1 ∈ Ωz1, and

the other updated parameters are constant when z2 ∈ Ωz2 (Figure 3).
• input signal v: for t ∈ [7.0 7.57] days, it remains saturated at its upper bound; for

t ∈ (7.57 8.44] days, it exhibits saturation at its lower bound with some few saturation
at its upper bounds; for t > 8.44 days, it exhibits reiterated saturation at both its upper
and lower bounds (Figure 2c,d).
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Figure 1. Simulation results for the system signals under the formulated controller. (a) Time course
of the states Pe, Pi, desired output yd, and auxiliary signal ψ1. (b) Detail of the time course of Pe, Pi,
and yd. (c) Time course of the modified tracking error z1, signal z2 and tracking error e. (d) Detail of
the signals z1, z2, and e; the horizontal dotted lines represent Cb and −Cb.
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Figure 2. Simulation results for the system signals under the formulated controller. (a) Time course
of the non-saturated input u and the saturated input v. (b) Detail of the time course of signals u and
v. (c) Time course of the saturated input v. (d) Detail of the signal v.
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Figure 3. Simulation results for the system signals under the formulated controller. (a) Time course
of the updated parameters θ̂1,1, θ̂1,2, θ̂rx. (b) Time course of the updated parameters θ̂3, θ̂4, θ̂ilb, θ̂ub.

5. Conclusions

In this paper, an adaptive backstepping controller was developed for a second order
plant model subject to unknown model parameters, unknown reaction rate, unknown
varying control gain, and input saturation. The controller provides important contributions
to adaptive control design for second-order models with input saturation:
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• It tackles the combined effect of constrained control input and unknown varying
control gain with unknown bounds. To this end, a new auxiliary system is proposed.

• The modified tracking error asymptotically converges to a compact set whose width is
user-defined and it does not depend on bounds of either external disturbances, model
terms or parameters. Recall that in common robust backstepping designs, the tracking
error converges to a compact set whose width depends on such kind of bounds, so
that these bounds are required in order to obtain the expected width.

Other important features of the controller and closed loop system are

• the model coefficients, and upper and lower bounds of model terms are not required
to be known, except a1;

• the exact value of the reaction rate term rx1 is not required to be known;
• the control gain b is varying and unknown, although it can be expressed as b = bδbx,

where bx is known and bδ is unknown;
• discontinuous functions are not used in the control law, update laws and auxiliary

system; instead, saturation type functions are used; and
• the boundedness of the updated parameters is ensured in the presence of input

saturation, so that excessive parameter increase is avoided.

Significant improvements were made to the control design in order to tackle the
unknown varying nature of the control gain b and the input saturation. Dead zone radially
unbounded functions were used. As the gain b appears in the b∆ term, the design of the
auxiliary system must be modified.

The developed controller design can be applied to other second order nonlinear
systems as the mathematical manipulations are provided.
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Appendix A. Hydroponic System and Formulation of the Mass Balance Model

The hydroponic system of the work in [28] comprises three vertical cultivation beds
with grown tomatoes, a nutrient solution tank (mixing tank), a closed nutrient solution
circulation system, and a lighting system. An electric pump drives a fraction of the nutrient
solution from the mixing tank to the cultivation beds, and the drainage solution is conveyed
back to the mixing tank. The mixing tank is eventually replenished with new nutrient
solution in order to maintain a high EC, near 1.5 mS/cm. The nutrient solution in the
mixing tank exhibits decrease of electrical conductivity (EC) and concentration of major
ions during time periods with no addition of fresh nutrient solution, whereas there is an
increase of EC during addition of nutrient solution [28].

We consider the control of concentration of some major ion in the cultivation bed, by
manipulation of the flow of fresh nutrient solution to the mixing tank (Qad), considering
constant flows Qi and Qe. To this end, the mass balance model is developed for the
concentration of some general nutrient ion, but in the simulation example the NO3 − N
ion is considered, because its behavior is quite similar to that of the electrical conductivity
(EC). We consider the mixing tank, the cultivation beds with plants, the flow of addition of
fresh nutrient solution to the mixing tank, and the flows of nutrient solution between the
mixing tank and the cultivation beds. We assume that the system can be represented by
two linked continuous stirred tank reactors (CSTR), see Figure A1:
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• The upper CSTR corresponds to the nutrient solution in the cultivation beds. The nu-
trient concentration is denoted as Pe, the water volume is denoted as Vu, the rate of
nutrient removal is denoted as rx1, and the evapotranspiration rate is denoted as QET .
Nutrient removal occurs via sorption and plant uptake. We assume that the water
volume Vu is constant.

• The lower CSTR corresponds to the nutrient solution in the mixing tank. The nutrient
concentration is denoted as Pi and the water volume is denoted as Vl . The nutrient
solution mixes with the incoming flow, which is in turn the flow leaving the upper
CSTR. We assume that Vl is varying because of water evaporation losses and varying
nature of flow Qad.

Figure A1. Schematic diagram of the CSTR-based model for the hydroponic system.

In addition, Qi is the flowrate that leaves the lower CSTR and enters the upper CSTR,
and Qe is the flowrate that leaves the upper CSTR and enters the lower CSTR. The outflow
(Qe) is lower than the inflow (Qi), due to evapotranspiration and constant nature of
volume Vu. We assume that flows Qi and Qe are constant. The development of the mass
balance model gives as result the model (1) to (3).
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This model with the reaction rate expression

rx1 = µmx
Pe

K + Pe
+ µo (A1)

was fitted to the experimental data of NO3 − N shown in [28], time interval 20–33 days,
which corresponds to stage II (adaptation). This was performed by minimization of the
squares of the errors between experimental and simulated values of NO3 − N (Pi) [29].
The obtained model parameters are a1 = 3.55 days−1, a2 = 3.485 days−1, a3 = 3.254 L/day,
a4 = 0.1066 L/day, Pad = 110 mg/L, µmx = 1051.6 mg/(Ld), K = 1509.8 mg/L, and
µo = 6.903 mg/(Ld).
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