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Abstract: An assessment of the stability and performance of current controllers with harmonic com-
pensators is presented for an inductive-capacitive-inductive (LCL)-filtered grid-connected inverter
under distorted weak grid conditions. By using two typical current control schemes which are the
direct current controller with the capacitor current-based active damping and integral-resonant state
feedback current controller, the closed-loop system stability and current control performance are
investigated in the presence of both uncertain grid impedance and distorted grid. Even though the
controller stability has been investigated under weak grid in several studies, the stability assessment
of the entire current control scheme, including the harmonic resonant controllers, still needs a further
comprehensive investigation. The system stability is analyzed by obtaining the movement of the
closed-loop poles in the discrete-time domain when the grid impedance varies. To fully study the
impact of distorted weak grid condition on the LCL filters, three LCL filter parameter sets giving
the resonance frequency in different frequency bands are chosen for the purpose of evaluating the
system robustness and grid-injected current quality. In order to support the presented theoretical
analyses, comprehensive simulation and experimental results based on 32-bit DSP TMS320F28335
to control 2 kVA grid-connected inverter are presented in terms of grid current quality and control
stability in the environment of both uncertain grid impedance and distorted grid.

Keywords: distorted weak grid; grid-connected inverter; grid impedance variation; harmonic
compensator; LCL filter; stability assessment

1. Introduction

Due to the fast-growing energy demand and environmental problems related with the
conventional fossil fuel, the renewable energy sources from wind turbine or photovoltaic
system are considered as promising alternatives for power generation in the global energy
market. The progress of distributed power generation systems based on renewable energy
sources is mainly facilitated by the development of power electronics technology. In
general, in order to connect different kinds of renewable energy sources to the point of
common coupling (PCC), power electronics converters should be employed as the interface
between the renewable sources and main grid [1,2].

Commonly, the pulse width modulation (PWM) grid-connected inverters with a high
switching frequency are widely used to deliver the power from the renewable energy
resources to the grid. To achieve high-quality grid-injected currents which meet the strin-
gent harmonic standard, harmonics around the switching frequency should be effectively
filtered out. For this purpose, an inductive (L) filter with high inductance value can be
used at the inverter output, providing the easiness in control design [3]. On the other
hand, compared with an L filter, inductive-capacitive-inductive (LCL)-type filters are more
attractive due to smaller physical size and better harmonic attenuation capability of high-
order harmonics [4,5]. Nevertheless, the LCL filter introduces a resonant peak into the
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system, which may cause an output resonance problem [6–9]. To ensure a stable and
reliable operation of the inverter system, a proper damping method should be considered
either by the passive or active method. The study in [8] focuses on the stability problem
of the LCL-filtered grid-connected inverters for a large set of grid impedance value, in
which the inverter-side current is controlled by means of a proportional resonant (PR)
control scheme. As discussed in this paper, the conventional active damping, which highly
depends on the knowledge of hardware system, is ineffective under the grid inductor
variation in weak grid condition. In addition to the resonance problem, other issues such as
the grid harmonic distortion and grid impedance at PCC should be addressed to produce
high-quality grid-injected inverter currents [10].

A passive method to damp the resonance peak caused by the LCL filter is to insert
a resistor in series with the filter capacitor. This solution is simple and highly reliable,
regardless of the change in the resonance frequency. However, the power dissipation in
resistor is unavoidable and the high-frequency attenuation is affected [11].

To overcome this limitation, various active damping methods have been presented
to ensure the system stability, which include the indirect current control, the partial-state
feedback (e.g., capacitor current and capacitor voltage) control, and the full-state feed-
back control [12–18]. Generally, the current controllers are constructed by two typical
approaches: the classical control approach (i.e., by transfer function) [12–14] and mod-
ern control approach (i.e., by state-space model) [15–17]. In the work of [12], the active
damping based on the indirect current control method is achieved by the inverter-side
current feedback with notch filter. In this study, the effectiveness of the notch filter-based
active damping is investigated in detail by considering the control delay, filter parameters’
variation, and grid impedance. However, in indirect current control method, the dynamic
tracking performance is degraded due to the filter delay and small phase margin [19].

In the studies of [13,14], the virtual resistance is realized by partially feeding back
the capacitor current and voltage, respectively. Then, the digital filters are brought in to
enhance the system stability. However, the high-pass filter with the approximate derivative
characteristic in [13] may amplify high-frequency noise, and the notch filter proposed
in [14] is quite sensitive to the resonance frequency variation. In addition, both the control
algorithms are more complicated than that of the proportional feedback.

As another approach, a full-state feedback scheme is presented in [15–17]. In these
methods, the feedback control of the capacitor voltage and inverter-side current is used to
actively damp the resonance phenomenon. The advantages of these control methods are
that the design procedure is standard and straightforward, thereby getting rid of any trial
and error. However, there are still some drawbacks such as the computational burden and
limited harmonic compensation [18]. The multiloop control and full-state feedback control
structures are known to have large flexibility and easiness in implementation [18,19].

The local nonlinear loads, AC machine drive, and saturated transformer often generate
harmonic currents. The harmonic currents flow through the line impedance, causing
distortion of the grid voltages at the PCC [20]. To ensure high-quality grid-injected currents
even under distorted grid, several harmonic attenuation methods have been also presented
with the above active damping methods, since the conventional proportional integral (PI)
control method in the synchronous reference frame rotating with the fundamental grid
frequency cannot effectively suppress the grid harmonic distortion. In order to eliminate the
low-order disturbance caused by grid voltage harmonics, multiple harmonic compensation
scheme is employed in [13,14]. Even though this scheme works well in the stiff grid,
there exists a smaller control margin when the grid impedance increases. To achieve the
attenuation of current harmonics as well as the robustness against the grid impedance
uncertainty, an active damping method by using the sliding mode control for the reduced
model of a grid-connected inverter is presented [21]. Another approach uses a model
predictive control [22], the plug-in combination of the PR control and the repetitive control
(RC) [23], or multiresonant control [24] to mitigate the harmonic currents caused by grid
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voltage distortion. A full-state feedback controller which augments the resonant harmonic
controllers of the grid-side currents is also proposed in [15–17].

The dynamic interaction of the inverter system with the grid impedance may degrade
the power quality. Cable overload, saturation, long radial distribution feeders, and tem-
perature effects are all reasons for possible variation in the interfacing impedance seen by
the inverter [9,20]. Therefore, the grid impedance should be considered in designing the
controller parameters especially when the inverter system operates under the weak grid
condition. Under weak grid condition, in which the grid impedance varies significantly, the
performance of active damping as well as harmonic compensation is deteriorated severely,
causing serious grid current harmonics or even system instability [5,25]. The analysis
on the system stability is given for the grid-connected inverter connected to weak grid
in [26]. The research on the instability problem of multi-inverter system operation in [27]
demonstrates that the weak grid condition yields output current resonance. Other research
work in [28] concentrates to the effect of weak grid in the voltage feedforward control
scheme. Based on the impedance analysis method, the instability mechanism and unstable
area caused by voltage feedforward control are clearly derived. The authors in [29] present
a different approach to implement the resonant compensators by means of the disturbance
rejection concept. A comprehensive assessment of the controller under weak grid is also
presented; however, the presented scheme is experimentally evaluated only with the grid
impedance of two times grid-side inductor.

This paper presents an assessment of the current controller stability and performance
with harmonic compensators for an LCL-filtered inverter connected to distorted weak grid
under the grid impedance variation. For this purpose, the effects of the grid impedance
uncertainty on the locations of closed-loop poles are investigated under distorted grid by
using two different control approaches. Since the controller stability has been investigated
under uncertain grid impedance without considering the inherent contaminated harmonics
in grid in several studies [27,28], the stability assessment of the entire current control
structure including the harmonic resonant controllers needs a further comprehensive
investigation for a stable inverter operation under distorted weak grid.

Two typical current controllers implementing both the active damping and grid
harmonic compensation are selected to investigate their closed-loop system stabilities
and current control performances under distorted weak grid conditions. The system
stability analysis is accomplished by investigating the closed-loop poles in the discrete-time
domain when the grid impedance varies. Furthermore, to support the stability analysis
under weak grid condition, as well as to assess the current control performance, the PSIM
(9.1, Powersim, Rockville, MD, USA) software-based simulation and experimental results
are presented by using prototype three-phase grid-connected inverter under adverse grid
conditions. The analytical assessment shows that a full-state feedback controller augmented
with the internal resonant controllers for current harmonic compensation is preferable in
view of large control margin. Moreover, this control can effectively deal with the issue of
current harmonic attenuation and resonance damping, even in the presence of a significant
grid impedance variation. Additionally, theoretical analysis and experiments verify that
the low region LCL resonance frequency is more vulnerable to system stability than that of
high region under weak grid. The main contributions of this paper are as follows:

(1) The two typical current controllers with harmonic compensators for the LCL-filtered
grid-connected inverter are implemented to analytically investigate their perfor-
mances under distorted weak grid by means of the stability assessment tools and
comprehensive evaluation results.

(2) By the movement of closed-loop poles and disturbance rejection responses, the sta-
bility margin of each controller is well investigated. It is clearly addressed that
the stability is weakened under the grid impedance variation by the addition of
harmonic resonant controllers. The theoretical results are validated by simulation
and experiments.
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(3) The full-state feedback current control method with augmented harmonic resonant
compensators has well proved its robustness for a wide range of grid impedance
variations (up to 14 times of grid-side inductors in the high region) by theoretical
analysis and evaluation results.

(4) In order to validate the presented theoretical analyses, comprehensive simulation and
experimental results based on 2 kVA grid-connected inverter are presented under the
grid environment including both uncertain grid impedance and distorted harmonics.

This paper is organized as follows: Section 2 explains the system description and
current controller designs. Section 3 presents the frequency response and closed-loop
system stability under the grid impedance change and harmonic distortion. The simulation
and experimental results are provided in Section 4 to validate the stability analysis. Finally,
Section 5 concludes the paper.

2. System Description and Current Controller
2.1. System Model of Grid-Connected Inverter

Figure 1 shows a configuration of an LCL-filtered grid-connected inverter connected
to the weak grid, in which VDC denotes the DC-link voltage; R1, R2, L1, and L2 are the filter
resistances and filter inductances, respectively; Cf is the filter capacitance, and Lg is the
grid inductance due to weak grid. When the grid impedance does not exist in Figure 1,
inverter system can be expressed mathematically in the synchronous reference frame (SRF)
as [15,16]:

.
x(t) = Ax(t) + Bu(t) + De(t) (1)

y(t) = Cx(t) (2)

where x = [iq
2 id

2 iq
1 id

1 vq
c vd

c ]
T

is the system state vector, u = [vq
i vd

i ]
T

is the input vector, and

e = [eq ed]
T

is the grid voltage vector. In this equation, the superscript “q” and “d” denote
the q-axis and d-axis variables, respectively, i1 is the inverter-side current, i2 is the grid-side
current, vc is the capacitor voltage, vi is the inverter output voltage, and ω is the grid
angular frequency. The system matrices A, B, C, and D are expressed as:
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, D =
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C =

 1

0

0

1

0

0

0

0

0

0

0

0

. (3)

The grid impedance is defined as jωLg. To follow the term in the conventional works,
the term “the grid impedance” is used in this study. On the other hand, to simply represent
the quantity, the grid impedance variation is denoted by Lg variation.

A discretized model of the continuous-time inverter system in Equations (1) and (2) is
obtained by using the zero-order hold (ZOH) method with the sampling time Ts of 10 kHz
as follows:

x(k + 1) = Adx(k) + Bdu(k) + Dde(k) (4)

y(k) = Cdx(k) (5)

where Ad = eATs , Bd = (
∫ Ts

0 eATs dt)B, Cd = C, Dd = (
∫ Ts

0 eATs dt)D.
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Figure 1. Configuration of a grid-connected inverter and a current control scheme.

In case that a lower sampling frequency is selected, higher-order discretization meth-
ods can be implemented as presented in [30]. Furthermore, the controllability and observ-
ability of system in Equations (4) and (5) are studied in the continuous- and discrete-time
domain in [31,32], respectively.

For the stability assessment and performance comparison of two typical current
controllers in an LCL-filtered grid-connected inverter connected to distorted weak grid,
the direct grid current control with the capacitance current active damping [13], and
integral-resonant state feedback control are employed in the following subsections [15].

2.2. Direct Current Control Based on Capacitor Current Damping

Figure 2 shows the direct current control based on the capacitor current damping for
a three-phase inverter connected with the grid inductance Lg. In this scheme, the active
damping is realized through the virtual resistance based on capacitance current to achieve
stable grid current control loop. In Figure 2, the function of the proportional gain Kc is
the same as the virtual resistance in capacitor branch for the purpose of restraining the
resonance of the LCL filter.

To track the grid current reference and compensate the grid disturbance in the orders
of 3rd, 5th, and 7th harmonic components, this scheme implements the harmonic compen-
sators at respective harmonics in the stationary frame [13]. In this study, this scheme is
modified to include the resonant controllers for harmonic suppression in the orders of 5th,
7th, 11th, and 13th harmonic components, in which the PR controllers for the fundamental
and harmonic components are expressed as:

G1(s) = Kp1 +

(
Kr1

s2 +ω2

)
(6)

Gh(s) = ∑
h=5,7,11,13

(
Krh

s2 + hω2

)
(7)
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In addition, to improve the stability margin, zero compensation is introduced as [13]:

GHP(s) = 1 +
s

ωre f
(8)

The closed-loop transfer function of the entire system is presented as:

Gcl(s) =
Gop(s)

1 + Gop(s)
(9)

where: Gop(z) =
iα2 (s)
εα(s) = GHP(s)

(
(G1(s) + Gh(s)) 1

s(L1L2Cs2+KC L2C f s+(L1+L2)

)
.

εαβ = [ εα εβ ]
T
= [ iα∗2 − iα2 iβ∗2 − iβ2 ]

T
, i2 = [ iα2 iβ2 ]

T

and the superscript α and β denote the stationary variables, respectively. To ensure the
system stability as well as good dynamic performance, the selected gains are obtained via
an iterative process according to the design guideline in [13], and the closed-loop poles
derived from (9) should be maintained in the stable region.

2.3. Integral-Resonant State Feedback Control

Figure 3 represents the integral-resonant state feedback current control based on
the linear quadratic regulator (LQR) for three-phase inverter connected with the grid
inductance Lg. To ensure asymptotic reference tracking as well as disturbance rejection for
the harmonics in the orders of 6th and 12th in the SRF, the integral and resonant control
terms are augmented in the state feedback control. In the discrete-time state-space, the
integral and resonant terms are expressed as [16,31]:[

xq
i (k + 1)

xd
i (k + 1)

]
= Aci

[
xq

i (k)
xd

i (k)

]
+ Bciε(k) (10)


ζ

q
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ζ
q
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 = Ach


ζ

q
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ζ
q
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ζd
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ζd
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+ Bchε(k) for h = 6, 12 (11)

where ε = [Eq Ed]
T
= r − Cdx is the current error vector, r = [iq∗

2 id∗
2 ]

T
is the reference

current vector, and system matrices Aci, Bci, Ach, and Bch are expressed as:

Aci =

[
1 0
0 1

]
, Bci =

[
Ts 0
0 Ts

]
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Ach =
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2 cos(hωTs) 1

−1 0
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, Bch =
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The state equations in (10) and (11) are augmented as:

xc(k + 1) = Aauxc(k) + Bauε(k) (12)

where xc = [x0 x6 x12]
T is the entire state vector for the integral and resonant terms with

x0 = [xq
i xd

i ]
T

, xh = [ζ
q
1h ζ

q
2h ζd

1h ζd
2h]

T
for h = 6, 12,

Aau =

 Aci
Ac6

Ac12

, Bau =

 Bci
Bc6
Bc12

.

By using Equations (4), (5) and (10)–(12), the entire system model is combined as follows:[
x(k + 1)
xc(k + 1)

]
=

[
Ad 06×10

−BauCd Aau

][
x(k)
xc(k)

]
+

[
Bd

010×2

]
u(k) +

[
Dd

010×2

]
e(k) +

[
06×2
Bau

]
r(k) (13)

ys(k) =
[

Cd 02×10
][ x(k)

xc(k)

]
(14)

where 0m×n is the zero matrix with appropriate dimension.
Considering the augmented system, the state feedback control is designed as:

u(k) =
[

Kx KC
][ x(k)

xc(k)

]
(15)
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where
[

Kx KC
]

is a set of state feedback gains with KC =
[

Ki KH
]
. The detailed

block diagram of the state feedback current controller augmented with the integral and
resonant control terms is depicted in Figure 3, in which the closed-loop eigenvalues are
obtained from:

det[zI − Ae + BeK] = 0

where Ae =

[
Ad 06×10

−BauCd Aau

]
, Be =

[
Bd

010×2

]
, and K =

[
Kx KC

]
.

The full-state feedback control gain is systematically determined through the LQR
approach by minimizing the discrete quadratic cost function as follows [15]:

J =
1
2

∞

∑
k=0

xT
e (k)Qxe(k) + uT(k)Ru(k) (16)

where xe(k) =
[

x(k) xc(k)
]T , Q = diag

[
Qi Qr6 Qr12

]
is a positive semi-definite

matrix, and R is a positive definite matrix.
To determine a gain matrix which minimizes the quadratic cost function, the symmet-

ric weighting matrices are chosen with the relative importance of the state variables and
expenditure of energy by control input signals. Since the augmentation of the control terms
into the inverter systems causes the increase of the number of feedback gains, the LQR
approach produces a systematical method to find the optimal gains of the current controller
and to avoid laborious process for proper gain selections [33,34]. The numerical calculation
to determine the gain matrix is accomplished offline with MATLAB. In this study, the
weighting matrices Q and R are selected by an iterative selection process and verified
by both the simulation and experimental results. Furthermore, to implement full-state
feedback current controller, a full-state observer is employed in the stationary frame to
estimate the system states without installing an extra sensing device [16].

3. Stability Analysis under Weak Grid

In this section, the influence of the grid impedance variation on the stability of three-
phase LCL-filtered inverter controlled by two presented current controllers (the direct
grid current control method and the LQR-based integral-resonant state feedback control
method) is investigated. Furthermore, the comprehensive assessments are conducted
considering all possible filter parameter designs which are commonly classified according
to the relative value of the resonance frequency (fR =ωR/2π) and critical frequency defined
as 1/6 of the switching frequency. Particularly, three LCL filter designs can be considered:
the LCL filter has the resonance frequency higher than the critical frequency, around the
critical frequency, and lower than the critical frequency. The system stability is analyzed
by investigating the closed-loop eigenvalues of the inverter system with two presented
controllers under the grid impedance variation in distorted weak grid. Finally, the design
guidelines for the presented current controllers are given to achieve both system dynamic
performance and strong robustness under weak grid conditions. It is worth noting that
other negative effects of weak grid such as unbalanced grid voltages or grid frequency
variation are beyond the scope of this paper.

3.1. Frequency Response of LCL Filter under Grid Impedance Change

In this subsection, the influence of the grid impedance variation on the resonant
frequency is presented. Considering that the series configuration of L2 and Lg is combined
as L2g = L2 + Lg, the transfer function from the inverter voltage to the grid-side current is
obtained from Figure 2 as [5,30]:

GLCL(s) =
1

s3L1L2gC f + s(L1 + L2g)
. (17)
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The LCL filter produces a resonance peak in frequency response which leads to an
instability. The resonance frequency of the LCL filter is determined as:

ωR =

√
L1 + L2g

L1L2gC f
. (18)

Whereas the resonance frequency in Equation (18) is given as a fixed parameter in stiff
grid, it is represented as a function of the grid inductance Lg under weak grid condition. In
fact, as the grid inductance is increased, the resonance peak is shifted toward low frequency
region. Thus, since the variation of Lg is often uncertain and unpredictable, the damping
method designed at a fixed frequency is not effective under weak grid condition.

To comprehensively analyze the performance of inverter system under the grid
impedance variation, three LCL filter prototypes are designed to locate the resonance
frequencies at three regions as given in Table 1, which are lower than the critical frequency
(low region), around the critical frequency (critical region), and higher than critical fre-
quency (high region). According to the criterion on selecting the resonance frequency of
the LCL filter [3], the resonance frequencies in high region, critical region, and low region
are selected as 2991 Hz, 2006 Hz, and 1158 Hz, respectively, with the critical frequency of
1667 Hz. Thus, it is obvious that the selected cases cover all possible LCL filter parameter
designs. The grid impedance gradually increases in range of stiff grid (Lg = 0 mH) to very
weak grid (Lg = 21 mH).

Table 1. LCL (inductive-capacitive-inductive) filter parameters with grid impedance under weak grid.

Cases LCL Filter Parameters fR

Case 1 L1 = 1.7 mH, L2 = 1.0 mH, Cf = 4.5 µF 2991 Hz

Case 2 L1 = 1.7 mH, L2 = 1.0 mH, Cf = 10 µF 2006 Hz

Case 3 L1 = 1.7 mH, L2 = 1.0 mH, Cf = 30 µF 1158 Hz

Figure 4 shows the frequency responses of three LCL filter parameters without the
grid impedance variation. Three different resonance frequencies are clearly shown with
respect to the critical frequency.
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Figure 4. Frequency responses of LCL filter parameters without grid impedance for Cases 1, 2, and 3.
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Figure 5 shows the frequency responses when the grid inductance Lg is varied in the
LCL filter parameter of Case 1. As the grid inductance is increased, the resonance frequency
of the LCL filter is reduced and shifted toward the critical frequency. It is worthwhile to
note that the LCL filter in Case 1 has the resonance frequency quite far from the critical
frequency (high region). Even under severe weak grid condition, this resonance frequency
is not shifted to the low region. On the contrary, the LCL filter in Case 2 represents that
fR possibly moves from the high region to the low region depending on the value of Lg.
Finally, the LCL filter parameter set in Case 3 is also employed to validate the controllers
under the low region.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 31 
 

 
Figure 4. Frequency responses of LCL filter parameters without grid impedance for Cases 1, 2,  
and 3. 

Figure 5 shows the frequency responses when the grid inductance Lg is varied in the 
LCL filter parameter of Case 1. As the grid inductance is increased, the resonance fre-
quency of the LCL filter is reduced and shifted toward the critical frequency. It is worth-
while to note that the LCL filter in Case 1 has the resonance frequency quite far from the 
critical frequency (high region). Even under severe weak grid condition, this resonance 
frequency is not shifted to the low region. On the contrary, the LCL filter in Case 2 repre-
sents that fR possibly moves from the high region to the low region depending on the value 
of Lg. Finally, the LCL filter parameter set in Case 3 is also employed to validate the con-
trollers under the low region. 

 
Figure 5. Frequency responses of LCL filter with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF under 
grid impedance variation (Lg = 0 to 21 mH). 

150

100

50

0

−50

−100
−90

−135

−180

−225

−270

Case 1

M
ag

ni
tu

de
 [d

B]
Ph

as
e [

de
g]

Case 2
Case 3

500                             1500                           2500                            3500 

Frequency[Hz]

3
1 2 1 2

1( )
( ) ( ( ))LCL

g f g

G s
s L L L C s L L L

=
+ + + +

Cf=30µF Cf=10µF Cf=4.5µF 

Critical frequency(1667 Hz)

1500                     2000                      2500                        3000 

Frequency[Hz]

−90

−135

−180

−225

−270

150

100

50

0

−50

−100

M
ag

ni
tu

de
 [d

B]
Ph

as
e [

de
g]

Critical frequency(1667 Hz)

Lg=0mH
(2991 Hz)  

3
1 2 1 2

1( )
( ) ( ( ))LCL

g f g

G s
s L L L C s L L L

=
+ + + +

Lg=21mH
(1889 Hz) 

Lg=14mH
(1921 Hz) 

Lg=7mH
(2004 Hz) 

Figure 5. Frequency responses of LCL filter with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF under
grid impedance variation (Lg = 0 to 21 mH).

3.2. Closed-Loop Stability of Direct Grid Current Control with Active Damping under Grid
Impedance Change

In this subsection, the impact of the grid impedance variation on the stability of direct
grid current controller with capacitor current feedback active damping is discussed. The
stability analysis of the closed-loop LCL-filtered inverter system is achieved by investi-
gating the location of the closed-loop poles in the discrete-time domain. As shown in
Equations (6) and (7), six gains are needed to be tuned in the direct grid current controller:
the proportional gain at the fundamental frequency Kp1, and five resonant gains at the
fundamental and selected harmonic frequencies Kr1, Kr5, Kr7, Kr11, and Kr13. The con-
troller gains are selected in the stiff grid condition. Under weak grid, the closed-loop pole
locations designed in the stiff grid move from the designed locations as Lg is increased.

Figure 6 shows the locations of the closed-loop poles for the direct grid current
controller [13] under distorted grid and grid impedance variation as Lg is increased from
stiff grid to weak grid. The chosen LCL filter parameters produce the resonance frequencies
higher than the critical frequency. To suppress the current harmonic distortion caused by
distorted grid, the PR controllers are incorporated in the orders of 5th, 7th, 11th, and 13th in
the stationary frame. In spite of large variation of Lg, most of the closed-loop system poles
remain in the stable region as is shown in Figure 6. On the other hand, the poles of the PR
controllers in 11th and 13th orders move toward the stability boundary of the unit circle as
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Lg is increased. Eventually, when Lg is increased larger than 7 mH, the system operation
becomes unstable. This fact indicates that this control method is very poor to mitigate the
current harmonics in the presence of distorted grid and grid impedance variation.
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Figure 6. Location of the closed-loop poles for direct grid current controller with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF
under distorted grid and Lg variation.

To investigate the stability of this control scheme under different LCL filter selections,
Figures 7 and 8 show the location of the closed-loop poles with different Cf values of
10 µF, and 30 µF, respectively, which produce the resonance frequencies around the critical
frequency, and lower than the critical frequency. Similar to Figure 6, the resonant controllers
are incorporated in the orders of 5th, 7th, 11th, and 13th in the stationary frame, and Lg is
varied from 0 to 10 mH. As the resonance frequency is selected in low frequency region,
the system is more vulnerable to the uncertainty in Lg as shown in these two figures. In
Figure 7, one of the resonant controller poles in 11th and 13th leaves the stability boundary
before Lg reaches 2 mH. In low resonance frequency region of the LCL filter in Figure 8, the
resonant controller poles in 11th and 13th always remain outside of the stability region,
which indicates that this control scheme fails to stabilize the system in the presence of the
uncertainty of grid impedance under distorted grid.

3.3. Closed-Loop Stability of Integral-Resonant State Feedback LQR Control under Grid Impedance
Change

In this section, the stability of the integral-resonant state feedback current controller
is presented under distorted grid and the grid impedance variation for three-phase LCL-
filtered inverter. The locations of the closed-loop poles in the discrete-time domain which
are obtained from Equations (13) and (15) are used for the stability analysis. To attenuate
the current harmonic distortion caused by distorted grid, the resonant controls in the orders
of 6th and 12th in the SRF are augmented in the state model as in Equation (12). Figure 9
shows the locations of the closed-loop poles by this control when Lg is gradually increased
from stiff grid to weak grid. While most of the closed-loop system poles remain in the
stable region in spite of large variation of Lg, the poles of the 6th resonant controller move
toward the stability boundary of the unit circle as Lg is increased. However, as compared
with Figure 6 which shows unstable poles at 10 mH of Lg, Figure 9 shows that the system
is only unstable when Lg is increased beyond 14 mH.
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Figure 8. Location of the closed-loop poles for direct grid current controller with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 30 µF
under distorted grid and Lg variation.

Figures 10 and 11 show the locations of the closed-loop poles with different Cf values
of 10 µF and 30 µF, respectively, when Lg is varied from stiff grid to weak grid. These
filter capacitors produce the resonance frequencies around the critical frequency, and lower
than the critical frequency. Similarly, as the grid impedance increases, the poles of the
6th resonant controller move outside the unit circle. However, in the integral-resonant
state feedback control, the stability limit is much extended since the instability occurs with
larger value of Lg than the direct grid current controller. As a result, the integral-resonant
state feedback control can be regarded as more robust to uncertainty in the grid impedance
change. In addition, it is confirmed that the current control is more likely to be unstable for
small variation of Lg as the resonance frequency of the LCL filter gets smaller.
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To investigate the stability under different grid frequency, Figure 12 represents the
location of the closed-loop poles for augmented integral-resonant state feedback LQR
controller with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF without the grid impedance
under three different grid frequencies of 60, 55, and 50 Hz. As shown in this figure, the
closed-loop poles are almost overlapped in each frequency value, and are maintained in
the stable region regardless of the frequency change.
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Figure 12. Location of the closed-loop poles for integral-resonant state feedback controller with
L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF under different grid frequencies of 60, 55, and 50 Hz.
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The disturbance rejection response for the augmented integral-resonant state feedback
LQR controller with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF from stiff grid to very weak
grid is shown in Figure 13a. The disturbance rejection response also exposes the reason
of the system instability when the grid impedance increases. As seen from Figure 13a,
the bandwidth of the harmonic compensators is significantly reduced when the grid is
weaker. Moreover, the high peak exceeds 0 dB when Lg reaches 21 mH, which causes the
instability in system. The interpretation from the frequency response shows the maximum
stability margin of Lg is 14 mH. Similar conclusions are inferred from Figure 13b,c, in
which the maximum stability margins in the critical and low regions are 7 mH and 4 mH,
respectively. The theoretical analysis will be validated by the simulation and experiment in
the next section.
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To summarize the stability analysis based on the closed-loop poles’ location in the
discrete-time domain, Figure 14 represents the stability comparison of two controllers
under grid impedance variation for different LCL parameter sets. It is inferred from these
results that as the resonance frequency is reduced, the stable boundary according to the grid
impedance variation is also reduced. In the direct grid current controller in Figure 14a, the
stability region is gradually reduced as the designed LCL resonance frequency is decreased
from high to low region. The inverter system is stable in the region of Lg < 4 mH in Case 1,
and in the region of Lg < 2 mH in Case 2. In Case 3, the direct grid current controller cannot
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stabilize the inverter system. On the other hand, the integral-resonant state feedback
current controller in Figure 14b greatly extends the stability limit for three LCL filter
cases. The inverter system is stable in the region of Lg < 14 mH in Case 1, in the region
of Lg < 7 mH in Case 2, and in the region of Lg < 4 mH in Case 3. As a result, a relative
stability is enhanced in the LCL filter design having high resonance frequency. Moreover,
integral-resonant state feedback control has an improved relative stability than direct grid
current control in view of the harmonic compensation and effective resonance damping.
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4. Performance Assessment under Distorted Weak Grid Condition
4.1. System Configuration

In order to verify the theoretical analysis, the PSIM software-based simulations and
experiments are carried out by using three-phase grid-connected inverter system. The
system parameters are given in Table 2. Figure 15 shows the experimental configuration
of the system. The overall system is composed of three-phase inverter connected to the
grid through an LCL filter, a magnetic contactor for grid-connecting operations, and an AC
power source to emulate three-phase grid voltages in the ideal as well as distorted grid
conditions. The entire control algorithm is implemented on a 32-bit floating-point DSP
TM320F28335 [35]. Additional inductances are employed to implement the grid impedance
change. The sampling and inverter switching frequencies are chosen as 10 kHz. Figure 16
depicts the photograph of the experimental test setup.

Table 2. System parameters of a grid-connected inverter.

Parameters Symbol Value Units

DC-link voltage VDC 400 V
Filter resistance R1, R2 0.5 Ω

Nominal filter capacitance Cf 4.5 µF
10.0 µF
30.0 µF

Filter capacitor resistance Rcf 16 mΩ
Nominal inverter-side filter inductance L1 1.7 mH

Nominal grid-side filter inductance L2 1.0 mH
Grid voltage (line-to-line rms) e 220 V

Nominal grid frequency fg 60 Hz
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4.2. Simulation Results

To evaluate the current control performance of the direct current control and the
integral-resonant full-state feedback current control under distorted weak grid condition,
the simulation results are presented by using the control structure in Figures 2 and 3, and
LCL filter parameters given in Table 1, in which different values of capacitor are used to
produce different resonance frequencies of the LCL filter.

Figure 17 shows the current control performance of the direct grid current controller
with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF under distorted grid voltages without
grid impedance in Case 1. Figure 17a shows three-phase distorted grid voltages which
contain the 5th, 7th, 11th, and 13th harmonics with the magnitude of 5% of the fundamental
component. Figure 17b,c show grid-side three-phase current waveforms and the fast fourier
transform (FFT) result for a-phase current with the harmonic limits specified by the grid
interconnection regulation IEEE Std. 1547 [36]. As is clearly shown, the current harmonic
distortion caused by distorted grid is well suppressed and the total harmonic distortion
(THD) value of current is 3.59%, which represents that this controller effectively deals with
the resonance of the LCL filter and low-order harmonic disturbance in grid voltages.
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Figure 17. Simulation results for direct grid current controller with L1 = 1.7 mH, L2 = 1.0 mH,
and Cf = 4.5 µF under distorted grid voltages without grid impedance in Case 1: (a) Distorted grid
voltages; (b) Grid-side three-phase currents; (c) FFT result for a-phase grid-side current.

To demonstrate the influence of the grid impedance change in the direct grid current
control scheme, Figure 18 shows the simulation result when Lg is suddenly increased to
7 mH in Case 1 at 0.5 s under the same distorted grid condition. With this value of Lg, the
poles of the PR controllers in 11th and 13th orders for harmonic suppression are located
outside of the unit circle. As a result, grid phase-currents are gradually oscillating, and
eventually, the entire system becomes unstable.

Figure 19 shows the simulation result for the direct grid current controller with
L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 10 µF under distorted grid voltages without the
grid impedance in Case 2. Decrease of the resonance frequency improves the harmonic
suppression of the LCL filter. Thus, the grid current quality in Figure 19 is much improved
as compared with Figure 17, producing only the THD of 2.54%. However, reducing the
resonance frequency makes the inverter resonant controller to be more vulnerable to
uncertain grid impedance.
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Figure 20 shows the simulation result of grid-side three-phase currents when Lg has 
a step change from 0 to 2 mH in Case 2 at 0.5 s with the same conditions and control 
parameters as Figure 19. Currents become unstable as soon as uncertain grid impedance 
is applied. Figures 19 and 20 show a strong agreement with the stability analysis in Figure 
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Figure 20 shows the simulation result of grid-side three-phase currents when Lg has 
a step change from 0 to 2 mH in Case 2 at 0.5 s with the same conditions and control 
parameters as Figure 19. Currents become unstable as soon as uncertain grid impedance 
is applied. Figures 19 and 20 show a strong agreement with the stability analysis in Figure 

Figure 19. Simulation result for direct grid current controller with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 10 µF under distorted
grid voltages without grid impedance in Case 2.

Figure 20 shows the simulation result of grid-side three-phase currents when Lg has a
step change from 0 to 2 mH in Case 2 at 0.5 s with the same conditions and control parame-
ters as Figure 19. Currents become unstable as soon as uncertain grid impedance is applied.
Figures 19 and 20 show a strong agreement with the stability analysis in Figure 7. Obvi-
ously, with the LCL filter designed at lower frequency band, the direct current controller
including the PR compensators is more vulnerable to uncertain grid impedance.
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Figure 21. Simulation result for direct grid current controller with L1 = 1.7 mH, L2 = 1.0 mH, and Cf 
= 30 µF under ideal grid voltages without grid impedance in Case 3. 

In order to validate the stability analyses of the integral-resonant state feedback con-
troller shown in Figure 9 to Figure 13, the simulation results are presented. Figure 22 
shows the simulation results for the integral-resonant state feedback controller with L1 = 
1.7 mH, L2 = 1.0 mH, and Cf = 4.5 µF without the grid impedance in Case 1. Test grid 
voltages are the same as Figure 17a. As can be clearly observed in Figure 22, the grid cur-
rents are quite sinusoidal without negative impact from the distorted grid voltages, re-
sulting in the THD value of 3.96%. 

Figure 20. Simulation result for direct grid current controller with L1 = 1.7 mH, L2 = 1.0 mH, and
Cf = 10 µF under distorted grid voltages and Lg = 2 mH in Case 2.
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To test the current control performance of the direct grid current controller with the
LCL filter designed at the resonance frequency below the critical frequency, Figure 21 uses
the test condition of L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 30 µF under ideal grid voltages
without the grid impedance in Case 3. Under the ideal grid voltages, this scheme provides
reasonable current waveforms without the harmonic resonant controllers incorporated
in the orders of 5th, 7th, 11th, and 13th. However, as shown in Figure 21, as soon as the
resonant controllers start at 0.5 s, the system instantly becomes unstable, which accords
closely with the stability analysis given in Figure 8.
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Figure 21. Simulation result for direct grid current controller with L1 = 1.7 mH, L2 = 1.0 mH, and
Cf = 30 µF under ideal grid voltages without grid impedance in Case 3.

In order to validate the stability analyses of the integral-resonant state feedback
controller shown in Figures 9–13, the simulation results are presented. Figure 22 shows
the simulation results for the integral-resonant state feedback controller with L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 4.5 µF without the grid impedance in Case 1. Test grid voltages are
the same as Figure 17a. As can be clearly observed in Figure 22, the grid currents are quite
sinusoidal without negative impact from the distorted grid voltages, resulting in the THD
value of 3.96%.

The simulation results for the integral-resonant state feedback controller under the
grid impedance change and distorted grid are shown in Figures 23 and 24 for the weak
grid condition, in which all the conditions including the grid distortion are the same as
Figure 17. The parameters of the current controller are properly designed under distorted
grid condition and Lg = 0. It is worth noting that the measured grid voltages in Figure 23a
are different from Figure 17a since Lg produces additional inductive voltage drop by
the grid current as is shown in Figure 15. Clearly, the instability of the direct current
controller is observed in Figure 18 with the same level of weak grid. On the contrary, the
output currents of the full-state feedback controller in Figure 23a shows stable sinusoidal
waveforms with the THD value reduced to 2.16%. The full-state feedback control is tested
further under more severe weak grid conditions with Lg increased to 14 mH in Figure 24.
Though the voltages at the PCC contain more distorted harmonics due to the weak grid,
the current controller can still produce stable high-quality injected currents with the THD
of 2.09%. These results well match up the stability analysis given in Figure 9. In terms of
current quality, the THD value of current is smaller as Lg is increased. This complies well
with the frequency responses in Figure 5, in which the resonance frequency of the LCL
filter is smaller as Lg is increased.
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Figure 22. Simulation results for integral-resonant state feedback controller with L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 4.5 µF under distorted grid voltages without grid impedance in Case 1: (a)
Grid-side three-phase currents; (b) FFT result for a-phase grid-side current.
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Figure 24. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH, L2 = 
1.0 mH, and Cf = 4.5 µF under distorted grid voltages and Lg = 14 mH in Case 1. 

To investigate the stability and current control performance for larger variation of 
the grid impedance, Figure 25 shows the simulation result when Lg is increased to 21 mH 
in Case 1 under distorted grid. In this Case, the system loses the stability. From the simu-
lation tests in Figures 18 and 25, it is confirmed that the use of the state feedback controller 
provides a more flexible option to design a current control of an LCL-filtered inverter 
system in the environment of uncertain grid impedance under distorted weak grid condi-
tion because the stability region is extended.  

Figure 23. Simulation results for integral-resonant state feedback controller with L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 4.5 µF under distorted grid voltages and Lg = 7 mH in Case 1: (a) Distorted
grid voltages; (b) Grid-side three-phase currents.
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1.0 mH, and Cf = 4.5 µF under distorted grid voltages and Lg = 14 mH in Case 1. 
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the grid impedance, Figure 25 shows the simulation result when Lg is increased to 21 mH 
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Figure 24. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 4.5 µF under distorted grid voltages and Lg = 14 mH in Case 1.

To investigate the stability and current control performance for larger variation of
the grid impedance, Figure 25 shows the simulation result when Lg is increased to 21 mH
in Case 1 under distorted grid. In this Case, the system loses the stability. From the
simulation tests in Figures 18 and 25, it is confirmed that the use of the state feedback
controller provides a more flexible option to design a current control of an LCL-filtered
inverter system in the environment of uncertain grid impedance under distorted weak grid
condition because the stability region is extended.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 31 
 

0 .5                  0 .6                    0 .7                   0 .8                  0 .9

Time [s]   

1 0

5

0

െ5

െ1 0

Cu
rre

nt
 [A

]

2ai 2bi 2ci

Instant of grid impedance change from 0 to 21 mH

2ai 2bi 2ci

 
Figure 25. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH, L2 = 
1.0 mH, and Cf = 4.5 µF under distorted grid voltages and Lg = 21 mH in Case 1. 

The same integral-resonant state feedback control method is applied for the different 
set of the LCL parameters given in Case 2 with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 10 µF. 
Figure 26 shows the simulation results under distorted grid voltages without the effect of 
the grid impedance in Case 2. The grid current waveforms are satisfactory with the THD 
of 3.86%. 

0 .3                 0 .3 2              0 .3 4              0 .3 6               0 .3 8                0 .4

Time [s]   

1 0

5

0

െ5

െ1 0

Cu
rre

nt
 [A

]

2ai 2bi 2ci THD = 3.86%

 
Figure 26. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH, L2 = 
1.0 mH, and Cf = 10 µF under distorted grid voltages without grid impedance in Case 2. 

Figure 27 shows the simulation results with an extra Lg of 7 mH in Case 2 under the 
same voltage conditions of Figure 17a. As shown in Figure 10, the poles of the closed-loop 
current control still remain inside the stable region when Lg varies from 0 to 7 mH. As a 
result, high-quality sinusoidal grid-injected currents can be obtained, which well demon-
strates the validity of the stability analysis. The THD value is much smaller than that of 
Figure 26 due to additional inductance. 

The grid impedance is further increased under more severe weak grid level. Figure 
28 shows the simulation results when Lg increases to 14 mH in Case 2. According to the 
analysis in Figure 10, the integral-resonant state feedback controller designed for the LCL 
parameter set of Case 2 shows unstable currents for this value of the grid impedance. 

Figure 25. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 4.5 µF under distorted grid voltages and Lg = 21 mH in Case 1.

The same integral-resonant state feedback control method is applied for the different
set of the LCL parameters given in Case 2 with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 10 µF.
Figure 26 shows the simulation results under distorted grid voltages without the effect of
the grid impedance in Case 2. The grid current waveforms are satisfactory with the THD
of 3.86%.

Figure 27 shows the simulation results with an extra Lg of 7 mH in Case 2 under the
same voltage conditions of Figure 17a. As shown in Figure 10, the poles of the closed-
loop current control still remain inside the stable region when Lg varies from 0 to 7 mH.
As a result, high-quality sinusoidal grid-injected currents can be obtained, which well
demonstrates the validity of the stability analysis. The THD value is much smaller than
that of Figure 26 due to additional inductance.
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Figure 29. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH, L2 = 
1.0 mH, and Cf = 30 µF under distorted grid voltages without grid impedance in Case 3. 

Figure 27. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 10 µF under distorted grid voltages and Lg = 7 mH in Case 2.

The grid impedance is further increased under more severe weak grid level. Figure 28
shows the simulation results when Lg increases to 14 mH in Case 2. According to the
analysis in Figure 10, the integral-resonant state feedback controller designed for the LCL
parameter set of Case 2 shows unstable currents for this value of the grid impedance.

As the final LCL parameter set, low region resonance frequency of Case 3 in Table 1
is considered, where L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 30 µF are given. The state
feedback current controller is designed for the given LCL filter set to produce a good
grid-side current at the stiff grid condition as shown in Figure 29. However, as presented
in Figure 11, low region resonance frequency of the LCL filter is extremely sensitive to
uncertainty caused by the weak grid condition, causing the instability by only small grid
impedance change.

Figure 30 demonstrates this situation, in which Lg is suddenly increased from 3 mH to
7 mH in Case 3 at 0.5 s. While stable currents are observed with 3 mH of Lg, the change to
7 mH of Lg produces unstable grid currents.

From the performance assessment of two types of current controls with harmonic
compensator, it is clearly confirmed that the state feedback controller is more flexible for an
LCL-filtered inverter system in the environment of uncertain grid impedance and distorted
grid. Furthermore, when the grid is subject to large impedance variation, high resonance
frequency of the LCL filter is preferable since it extends much the stability margin under
unexpected weak grid condition.
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Figure 29. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH, L2 = 
1.0 mH, and Cf = 30 µF under distorted grid voltages without grid impedance in Case 3. 

Figure 28. Simulation result of grid-side three-phase currents for integral-resonant state feedback
controller with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 10 µF under distorted grid voltages and Lg = 14 mH
in Case 2.
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Figure 29. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH, L2 = 
1.0 mH, and Cf = 30 µF under distorted grid voltages without grid impedance in Case 3. 
Figure 29. Simulation result for integral-resonant state feedback controller with L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 30 µF under distorted grid voltages without grid impedance in Case 3.
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4.3. Experimental Results

In this section, the experimental results are presented to evaluate the current control
performance of the integral-resonant state feedback controller under the grid impedance
change by using the experimental system in Figures 15 and 16. A programmable AC source
is used to implement distorted grid voltages.
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Figure 31 shows the experimental results of the integral-resonant state feedback
controller for Case 1 under distorted grid voltages in Figure 31a. Similar in the simulation,
three-phase distorted grid voltages include the 5th, 7th, 11th, and 13th harmonics with
the magnitude of 5% of the fundamental component. Figure 31b shows three-phase grid
current waveforms and FFT result for a-phase grid-side current with the current reference
of 4 A without the grid impedance. As expected, the disturbance caused by distorted grid
is well suppressed, providing high-quality grid currents.
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Figure 31. Experimental results for integral-resonant state feedback controller with L1 = 1.7 mH, L2 = 1.0 mH, and
Cf = 4.5 µF under distorted grid voltages without grid impedance in Case 1: (a) Distorted grid voltages; (b) Grid-side
three-phase currents.

Figures 32 and 33 show the experimental results of the integral-resonant state feedback
controller when Lg = 7 mH and Lg = 14 mH are applied with the same conditions of
Figure 31a. An external inductor is used to emulate the grid impedance as in Figure 15.
Similar to the simulation in Figure 23, it is observed that the measured grid voltages are
altered due to the inductive voltage drop by the grid current and Lg. In addition, the
harmonic rejection of the inverter is greatly enhanced with additional grid impedance.

However, the injected grid currents oscillate seriously when Lg reaches 21 mH as
shown in Figure 34. This also accords closely with the stability analysis in Figure 9 and
the simulation in Figure 25. Figures 35–37 represent the experimental results of grid-side
three-phase currents by the integral-resonant state feedback controller under the weak grid
condition (Lg = 0 to 14 mH) with L1 = 1.7 mH, L2 = 1.0 mH, and Cf = 10 µF as the LCL
parameters. The current controller is also designed by using the given LCL filter set at stiff
grid condition with distorted grid voltage of the 5th, 7th, 11th, and 13th harmonics. Until
Lg increases to 14 mH, the inverter system maintains the stability, giving desirable grid
currents. However, as Lg becomes larger than 14 mH, the grid currents become unstable,
which is well matched to the simulation results.

Figures 38 and 39 represents the experimental results for Case 3 using L1 = 1.7 mH,
L2 = 1.0 mH, and Cf = 30 µF as the LCL parameters. This LCL filter has the resonance
frequency smaller than the critical frequency. It is shown that only 7 mH of Lg makes the
inverter system unstable.

To evaluate the injected current quality by two control schemes in the simulation and
experimental results, Table 3 represents the THD values in the simulation results and the
current harmonic magnitudes in the experimental results for three cases of the LCL filter
parameters with Lg.
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Table 3. Injected current quality in the simulation and experimental results.

LCL Filter Grid Inductance

THD in Simulation Harmonic Magnitude in Experiment
Integral-Resonant State Feedback Control

Integral-Resonant State
Feedback Control

Direct Grid
Current Control 2 h 5 h 7 h 11 h

Case 1

Lg = 0 mH 3.96% 3.59% <0.8% <0.4% <0.2% <0.1%
Lg = 7 mH 2.16% - <1.5% <0.2% <0.1% <0.1%
Lg = 14 mH 2.09% - <0.8% <0.6% <0.9% <0.1%
Lg = 21 mH - - - - - -

Case 2
Lg = 0 mH 3.86% 2.54% <0.7% <0.1% <0.2% <0.1%
Lg = 7 mH 1.12% - <2.2% <0.1% <0.2% <0.1%
Lg = 14 mH - -

Case 3
Lg = 0 mH 3.04% - <0.7% <0.2% <0.2% <0.1%
Lg = 7 mH - -

5. Conclusions

This paper has presented an assessment of the stability and performance of current
controllers with harmonic compensators for an LCL-filtered grid-connected inverter under
distorted weak grid conditions. Two typical current controllers with both the active
damping and grid harmonic compensation are selected to investigate the closed-loop
system stability and current control performance under uncertainty of the grid impedance
in weak grid conditions. The system stability is analyzed by investigating the discrete-time
closed-loop poles when the grid impedance varies. The assessment of the stability and
current control performance is carried out for three sets of LCL filter parameters in view of
current harmonic attenuation and resonance damping in the presence of uncertain grid
impedance and distorted grid. It is clearly demonstrated that the LCL parameter selection
mainly affects the control robustness. The lower the resonance frequency of the LCL filter
is, the tighter the control bandwidth and stability margin yield with respect to the grid
uncertainties. Furthermore, since the grid is commonly distorted and the controller is
equipped with harmonic resonant controllers, the control stability investigation in this
condition is very important for a stable inverter operation.

In order to support the stability analysis of the current control schemes, the whole
control algorithm is implemented on 32-bit DSP TMS320F28335 to control 2 kVA grid-
connected inverter. Comprehensive simulation and experimental results are presented
under distorted weak grid conditions to demonstrate theoretical analysis. Based on the
presented results, it is confirmed that the state feedback controller is more flexible in the
control of an LCL-filtered inverter in the environment of distorted grid and uncertain grid
impedance. Furthermore, when the grid is subject to large grid impedance variation, the
choice of high resonance frequency of the LCL filter is preferable since it extends much the
stability margin of inverter system under unexpected weak grid condition.
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