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Abstract: Recently, catechol-containing polymers have been extensively developed as promising
materials for surgical tissue adhesives, wound dressing, drug delivery depots, and tissue engineering
scaffolds. Catechol conjugation to the polymer backbone provides adhesive properties to the tissue
and does not significantly affect the intrinsic properties of the polymers. An example of a catecholic
polymer is catechol-conjugated hyaluronic acid. In general, hyaluronic acid shows excellent biocom-
patibility and biodegradability; thus, it is used in various medical applications. However, hyaluronic
acid alone has poor mechanical and tissue adhesion properties. Catechol modification considerably
increases the mechanical and underwater adhesive properties of hyaluronic acid, while maintaining
its biocompatibility and biodegradability and enabling its use in several biomedical applications.
In this review, we briefly describe the synthesis and characteristics of catechol-modified hyaluronic
acid, with a specific focus on catechol-involving reactions. Finally, we discuss the basic concepts and
therapeutic effects of catechol-conjugated hyaluronic acid for biomedical applications.
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1. Introduction

Hyaluronic acid (HA) is a naturally occurring polysaccharide composed of D-glucuro-
nic acid and N-acetyl-D-glucosamine, which is used in various biomedical applications,
such as wound healing, viscosupplementation for wrinkle fillers, post-surgical antiadhesive
barriers, drug delivery carriers, and tissue engineering scaffolds [1–13]. HA is abundantly
found in connective tissues and fluids, particularly in articular cartilage and synovial
fluids [1–5]. The roles of HA in biological functions are diverse, including the hydration of
the extracellular matrix, the regulation of tissue homeostasis, receptor-mediated regulation
of cell proliferation, migration, and differentiation, and the lubrication of cartilage and of
the eyes [14,15]. For instance, HA in synovial fluids is responsible for the lubrication of
cartilage in the synovium owing to its viscoelasticity and biocompatibility with synovial
fluids [16]. In addition, HA is fully degraded by hyaluronidase in the body [17]. As a result,
HA is widely used for drug delivery depots and tissue engineering scaffolds. However,
there are difficulties in using unmodified HA in various medical settings due to its poor
mechanical properties. Therefore, chemical modifications of the amine, thiol, and catechol
functional groups on the HA backbone can address this drawback.

Marine mussels strongly adhere to various organic and inorganic surfaces (e.g., metal,
metal oxides, ceramics, and polymer surfaces) by the secretion of mussel adhesive proteins
via catechol-based reactions in wet environments (i.e., seawater) [18–22]. These involve the
catechol side chains of 3,4-dihydroxy-L-phenylalanine (DOPA), an uncommon amino acid
abundantly found in mussel adhesive proteins [18–22]. The catechol groups are oxidized
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at basic pH and are transformed into catechol quinones, which can react with various func-
tional groups, including thiols, amines, and other catechols [23–25]. In addition to forming
covalent bonds, the catechol groups interact with various substrates via electrostatic in-
teractions, hydrogen bonds, π–π stacking, and π–cation interactions [25,26]. Inspired by
the mussel adhesion behavior, catechol-conjugated polymers have been synthesized to
improve adhesion of fluids [27–31]. For instance, catechol-conjugated chitosan has excellent
solubility at neutral pH, excellent adhesive properties in tissues, and superior hemostatic
capability compared to unmodified chitosan [32–36]. Therefore, the introduction of catechol
groups into the HA backbone can increase HA mechanical properties and adhesiveness in
wet environments.

In this review, we briefly describe the methodologies used for the preparation and
characterization of HA–catechol. In addition, we focus on the biomedical uses of HA–
catechol, which are categorized into the following four subsections: antifouling, wound
healing, drug/gene delivery carriers, and tissue engineering scaffolds. Furthermore,
we discuss the current challenges and opportunities for technologies using HA–catechol,
which require further fundamental research, and its use in translational medicine.

2. Methodologies for the Synthesis and Characterization of Hyaluronic Acid–Catechol

Carbodiimide chemistry is commonly used to prepare HA–catechol [37–81]. It in-
volves the formation of an amide bond between the carboxylic group of HA and the primary
amine of dopamine (Figure 1a). The important reaction conditions for HA–catechol syn-
thesis include maintaining the pH between 4 and 6 to prevent oxidation of the catechol
groups [37]. The reaction solution turns black at a pH above 6, indicating the oxidation of
the catechol groups. The degree of catechol substitution (DS) in HA is 10–35%, identified
using standard carbodiimide chemistry. Similar approaches have been used to prepare
catechol-conjugated negatively charged polymers (i.e., alginate–catechol [82,83], heparin–
catechol [84], and polyacrylic acid–catechol [85]). In a previous study, a Schiff’s base reac-
tion between aldehyde-modified HA and dopamine was used to prepare HA–catechol [86].
HA was first oxidized using sodium periodate to prepare dialdehyde-functionalized HA.
The formation of the Schiff base was achieved by the reaction between dialdehyde groups
in oxidized HA and the primary amine groups in dopamine. The DS (25–45%) obtained us-
ing the Schiff base reaction was higher than that obtained using the carbodiimide coupling
reaction (~10%), probably due to the dialdehyde groups of the oxidized HA [86].

Synthesized HA–catechols can be characterized using 1H-NMR and UV–Vis spec-
troscopy. Figure 1b shows the 1H-NMR spectrum of HA–catechol. HA peaks have been
previously assigned as follows: the N-acetyl peak at 2.0 ppm, and multiplets of disaccha-
ride units and anomeric protons at 2.8–3.7 ppm [38–43]. In addition, the catechol protons
were assigned to the peaks at 6.5–7.0 ppm [38–43]. The degree of catechol substitution was
calculated by comparing the integrated area of the catechol protons (3H, 6.5–7.0 ppm, D2O)
and acetyl groups (3H, –COCH3, 2.0 ppm, D2O). In UV–Vis spectroscopic studies, catechol
groups show maximum absorption at a wavelength of 280 nm (Figure 1c). Catechol content
can be quantified using standard curves of catechol concentrations constructed using a
standard solution of dopamine [37,38,44,45]. Fourier transform infrared spectroscopy is
also used to confirm the catechol conjugation of HA–catechol [38]. The peaks at 1720, 1630,
and 1410 cm−1 are assigned to C=O, amine bonds, and C–O stretching in HA–catechol,
respectively. In addition, C–H vibration (2850 cm−1) and C=C ring stretching (1520 cm−1)
indicate catechol conjugation on the HA backbone.
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Figure 1. (a) Synthesis and chemical structures of hyaluronic acid (HA)–catechol. (b) 1H NMR and (c) UV–Vis spectra of HA–catechol.  
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Figure 1. (a) Synthesis and chemical structures of hyaluronic acid (HA)–catechol. (b) 1H NMR and (c) UV–Vis spectra of
HA–catechol.

3. General Properties of Hyaluronic Acid–Catechol
3.1. Biocompatibility

High levels of HA are present in tissues and cartilage, particularly in those of the
musculoskeletal system. In addition, HA is widely used in medical applications mainly
due to its biocompatibility. The conjugation of molecules to HA does not significantly affect
its biocompatibility. For instance, injectable tyramine-conjugated HA hydrogels prepared
by the oxidative crosslinking of phenolic groups maintain high cell viability (>95%) of
human mesenchymal stem cells (hMSCs) for up to 14 days [87]. In addition, the viability of
MSCs in an HA hydrogel crosslinked with polyethylene glycol (HA–PEG gel) was ~100%
when 106 cells mL−1 of MSCs were treated with the hydrogel for three days [88].

Similarly, HA–catechol is also non-cytotoxic and biocompatible. Treatment of cells at
a density of 1.0 × 106 cells/100 µL with a pre-gelation HA–catechol solution preserves cell
viability (~100%) [46]. Treatment with extracts of HA–catechol hydrogels maintains ~83%
viability in L929 cells compared to that obtained using fresh media. In addition, the via-
bility of human hepatocytes (hHEPs) encapsulated in HA–catechol hydrogels prepared
by the addition of NaIO4 was ~70.9%, which is far higher than that observed using HA–
methacrylate hydrogels (~52.2%) on day 14 of treatment [46,89]. Furthermore, HA–catechol
hydrogels incorporated with basic fibroblast growth factor exhibit improved hHEPs cell
viability to ~81.4% after 14 days [37]. The viability of human neural stem cells (hNSCs) in
an HA–catechol hydrogel after seven days was approximately 70%, which is two-fold that
observed using an HA–methacrylate hydrogel (less than 30%).

3.2. Tissue Adhesive Properties

HA has anti-adhesive properties; therefore, HA-based physical barriers have been
developed to prevent post-surgical adhesion. However, the conjugation of catechol groups
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to HA significantly increases the adhesiveness of HA–catechol to tissues. As mentioned,
the oxidized catechol groups (i.e., catechol quinone) can covalently react with the amine or
thiol groups that are abundantly found in native tissues, including proteoglycan structures,
resulting in superior tissue adhesive properties. The tissue adhesive properties of HA–
catechol are commonly measured with a lap shear test using animal skin, such as chicken
or porcine skin (Figure 2a). In addition, post-crosslinking of HA–catechol adhesives is
carried out prior to its use on skin or dermal tissues to improve tissues’ adhesion properties
in general. The adhesive stress withstood by joint chicken skins in the presence of HA–
catechol hydrogels is approximately 10 kPa, which is far greater than that bore when using
methacrylated HA hydrogels (Figure 2b) [52]. In addition, tissue adhesive properties are
improved by the addition of an oxidative intermolecular crosslink agent (NaIO4) and by
an increase of DS in HA–catechol. The maximum adhesive strength is 90.0 ± 6.7 kPa
when using HA–catechol with high DS (0.45) at a molar ratio of 1:2 (catechol/NaIO4).
Moreover, the addition of Fe3+ ions to the hydrogels increases the adhesive stress of HA–
catechol. The detachment stress of hydrogels containing HA–catechol/Fe3+ complexes is
14.8 ± 0.9 kPa, while that of an HA–catechol solution is 0.9 ± 0.5 kPa, measured using
mouse subcutaneous tissues [47].

Figure 2. (a) Schematic illustration of a lap shear tissue adhesion test. (b) Average adhesive stress
(kPa) of methacrylated HA (MeHA) and HA–catechol (HA-Cat) hydrogels (** p < 0.01). Reprinted
with permission from [52]. Copyright © 2019 Elsevier.

HA–catechol-based composite materials also show excellent adhesive properties.
For instance, HA–catechol and Pluronic F127 (16 wt%) composite hydrogels show excellent
stability with approximately 10-fold greater adhesive strength (~7.2 kPa) than HA–catechol
alone (~1.7 kPa) [48]. HA–catechol/PVA (Polyvinyl alcohol) hydrogel composite films can
be used as mucoadhesive films for the treatment of oral candidiasis [49]. HA–catechol/PVA
hydrogels have a high detachment force of approximately 0.23 N, which was measured
using a bovine buccal membrane. HA–catechol/PLL (poly-L-lysine) hydrogels enzymat-
ically crosslinked with horseradish peroxidase (HRP) with H2O2 showed a significant
improvement in adhesive strength, from 20.8 kPa to 33.8 kPa [39]. Therefore, HA–catechol
is useful for long-term tissue adhesion and may have great potential for use in biomedi-
cal applications. Furthermore, the tissue adhesiveness of HA–catechol may prevent the
malposition or movement of the HA-based materials on the targeted tissue surfaces.
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3.3. Catechol-Involving Reactions

The catechol groups in HA backbones can undergo chemical and physical reactions
during the manufacture of formulations (i.e., hydrogels, thin films, and nanoparticles) and
help them adhere to various substrates (i.e., tissues, metal/metal oxide, polymer surfaces).
For example, hydrogels can be prepared by the covalent and/or non-covalent crosslinking
of polymers via catechol-involving reactions (Figure 3) [37,39,43,46–48,50–58]. Catechol
groups in basic pH conditions transform into catechol quinone, which is highly reactive
towards amines, thiols, and other catechol groups because of their pKa values (pKa1: 9.25;
pKa2: 13.0) [90]. Oxidants (e.g., sodium periodate, NaIO4) are used to achieve the rapid
gelling of HA–catechol hydrogels [37,46,51–54]. HA–catechol achieves a crosslinked gel
state with instantaneous solidification upon the addition of NaIO4. The optimized stoichio-
metric ratio of NaIO4/catechol for the preparation of HA–catechol hydrogels is 1.5:1, which
results in rapid gelation within 10 s [37]. Additionally, oxidoreductase has previously
been used to prepare HA–catechol hydrogels [39,57]. When H2O2 (0.01% v/v) and HRP
(0.05 mg/mL and 0.1 mg/mL) were added to an HA–catechol solution, the gelation time
significantly decreased to 12.5 s for 0.05 mg/mL of HRP and to 5.2 s for 0.1 mg/mL of
HRP [57]. In addition to covalent crosslinking, HA–catechol hydrogels are prepared by
non-covalent reactions of polymers. In general, the catechol groups can bind to various
molecules and substrates by hydrogen bonds, π–π stacking, cation–π interactions, and
metal coordination. In particular, catechol groups strongly bind to Fe3+ ions, as previously
reported [91–96]. The rapid gelling of HA–catechol hydrogels is achieved by the addition
of Fe3+ ions to a solution of HA–catechol [47,59]. The elastic modulus value of Fe3+ ion-
mediated HA–catechol hydrogels at a concentration of 10 mM FeCl3 was ~4.6 kPa, which
is far higher than that of the HA–catechol solution (~1.7 Pa) [47]. In addition, the gelation
time could be controlled by changing the Fe3+–catechol stoichiometric ratio. For instance,
the gelation time decreased by increasing the Fe3+–catechol ratio from 1:1 (6.5 mM Fe3+ and
catechol) to 1:3 [59]. Therefore, catechol-involving reactions of HA–catechol can be utilized
to prepare injectable hydrogels, drug delivery depots, and tissue engineering scaffolds.

Figure 3. Schematic illustration of catechol-involving reactions of HA–catechol: (a) covalent bonds, (b) π–π stacking,
(c) hydrogen bonds, and (d) metal coordination.

4. Biomedical Applications

HA–catechol is widely used in biomedical applications owing to its biocompatibility,
adhesiveness, and anti-inflammatory properties. In this section, we describe the various
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biomedical uses of HA–catechol, focusing on its physicochemical properties and catechol-
involving chemical reactions with tissues and/or biomacromolecules.

4.1. Antifouling Materials

HA is a representative antifouling material mainly due to its hydrophilicity and its
unique moisture retention and lubrication abilities. The catechol moiety of HA–catechol
can form a thin film on substrates (Figure 4a). These HA–catechol coatings on Au surfaces
enhance hydrophilicity (11.9◦ of water contact angle) compared to that measured on bare
Au surfaces (81.6◦) [40]. In addition, HA–catechol-coated Au substrates have extremely
low protein-adsorption levels (<5 ng/cm2) for single proteins (i.e., bovine serum albumin,
lysozymes, and β-lactoglobulin). Polyimide (PI), Au, poly(methyl methacrylate) (PMMA),
polytetrafluoroethylene (PTFE), and polyurethane (PU) are coated with HA–catechol to
prepare antifouling substrates [60]. All substrates coated with HA–catechol exhibit im-
proved hydrophilicity of the substrates (less than 50◦ of water contact angle) compared to
the unmodified substrates, as shown in Figure 4b. The adsorption of bovine serum albumin
on HA–catechol-coated substrates was dramatically reduced to 22–46% compared to that
on unmodified surfaces (Figure 4c). Therefore, HA–catechol is an excellent coating agent
for the antifouling treatment of biomedical devices.
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Figure 4. (a) Schematic illustration of HA–catechol (dopamine-conjugated HA: DA–HA) coating on various substrates (i.e.,
PI (polyimide), gold (Au), poly(methyl methacrylate) (PMMA), polytetrafluoroethylene (PTFE), and polyurethane (PU)) for
antifouling applications. (b) Water contact angle measurements of various substrates before and after HA–catechol coating.
(c) BSA (bovine serum albumin) adsorption (µg/cm2) on bare and HA–catechol-coated surfaces after treatment with a BSA
solution (1 mg/mL) at 37 ◦C for 6 h (* p < 0.05). Reproduced with permission from [60]. Copyright © 2020 Elsevier.
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4.2. Wound-Healing Materials

HA–catechol materials have been investigated as wound-healing materials because
reactive oxygen species can be scavenged by catechol groups. The incorporation of anti-
inflammatory drugs into HA–catechol hydrogels significantly improves wound closure
and healing. For instance, arginine derivatives have been incorporated into HA–catechol
hydrogels, as shown in Figure 5a [62]. To confirm the antioxidant properties, 2,2-diphenyl-
1-picrylhydrazyl (DPPH) and hydroxyl radical (OH) scavenging experiments are generally
used. An arginine/HA–catechol composite hydrogel showed strong antioxidant activity
with maximum OH and DPPH free-radical scavenging rates of 41.1% and 67.4%, respec-
tively. In addition, complete wound closure and healing could be achieved using these
hydrogels after 21 days (Figure 5b). HA–catechol conjugated with chitosan is also used
as a wound-healing material [57]. Wound healing can be improved by increasing the
concentrations of H2O2 and HRP. HA–catechol/chitosan composite hydrogels with the
addition of H2O2 (0.05%, v/v) and HRP (0.1 mg/mL) showed complete wound healing
nine days post-surgery, which depicts a wound closure effect similar to that obtained using
surgical suturing, indicating that these hydrogels could replace surgical sutures to achieve
wound closure. In addition, a mild acute inflammatory response was observed for six days
after the implantation of HA–catechol/chitosan hydrogels, and inflammation receded on
the ninth day after surgery. This is similar to the biocompatibility of surgical sutures and
enzymatically (HRP) crosslinked hydrogels.
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Figure 5. (a) Schematic illustration of methacrylated HA–catechol (HA–DA) and arginine derivatives
(AD) composite hydrogels for wound healing. (b) Photographic images of rat skin wounds after
treatments of HA–DA/AD hydrogels with various pore sizes (14.18 ± 1.54 µm for HA–DA/AD1,
13.09 ± 0.79 µm for HA–DA/AD2, 11.08 ± 1.16 µm for HA–DA/AD3, and 9.07 ± 2.17 µm for
HA–DA/AD hydrogels). Treatment with PBS was used as a control. Reproduced with permission
from [62]. Copyright © 2019 Elsevier.
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4.3. Drug/Gene Delivery Carriers

A challenge in cancer treatment is targeting anticancer drug delivery to increase
the efficiency of drugs. Because HA interacts with CD44, overexpressed in cancer cells,
HA-based hydrogels as drug/gene delivery carriers have been developed for anticancer
drug therapy. The catechol groups in HA can act as coating and crosslinking moieties to
achieve sustained drug release. For instance, HA–catechol/chitosan composite nanopar-
ticles containing the anticancer drug doxorubicin (DOX), with a high loading capacity
of 250 µg/mg, exhibited a controlled release of DOX, in comparison to the administra-
tion of free DOX [63]. In addition, the nanoparticles showed mucoadhesive properties;
over 60% of the nanoparticles remained on the buccal mucosa after washing with artifi-
cial saliva, while only 10% remained when dextran was used as a control. In addition,
these nanoparticles showed enhanced cellular uptake and accumulation in HN22 cells.
Furthermore, treatment using DOX nanoparticles led to extensive apoptosis (22% of the
apoptotic rate), which was higher than that observed using free DOX (16%). HA–catechol
hydrogels containing amine-functionalized graphene oxide (GO) are prepared by covalent
reactions involving the catechol groups of HA and the amine groups of GO [53]. DOX is
noncovalently bound to GO in hydrogels by hydrophobic interactions and π–π stacking.
In addition, controlled DOX release profiles have been obtained using HA–catechol/GO hy-
drogels. HA–catechol hollow nanoparticles have also been developed to deliver anticancer
drugs. Silica nanoparticles are coated with HA–catechol, and the inner silica particles
are removed to fabricate hollow HA–catechol particles to load anticancer drugs, such as
DOX [65]. The hollow HA-catechol particles showed drug-loading efficiency (~20 wt%)
with different drug-release profiles between pH 5.5 and 7.4. At pH 5.5, 67% of DOX was
released from the particles within 8 h, while 25% of DOX release occurred at pH 7.4 after
60 h. Considering the pH of the physiological conditions and the cancer microenvironment,
these particles can effectively lead to cancer cell death after pH-triggered DOX release.
In addition, HA–catechol-coated Au nanorods have been fabricated for cancer therapy via
the interaction of catechol and Au [66]. DOX was covalently conjugated to HA–catechol,
which has an acid-labile hydrazone linkage. The release of DOX from the HA–catechol-
coated Au nanorods was controlled by two stimuli, namely, pH and NIR (near-infrared)
light, and was found to be successful in inhibiting the growth of breast cancer cells.

HA–catechol-based gene delivery has been performed using calcium phosphate (CaP)-
containing plasmid DNA or siRNA [45]. HA–catechol has been used as a binder for CaP and
cancer-targeting materials. Stabilized CaP/siRNA/HA–catechol nanoparticles are prepared
by the simple mixing of solutions and involve specific interactions between calcium and
catechol. The nanoparticles deliver siRNA to cancer cells via endocytosis. In the HT29-luc
tumor xenograft model, the nanoparticles showed no sign of hepatic toxicity after systemic
administration and successfully inhibited cancer growth through the gene silencing effect
of siRNA. In addition, CAP nanoparticles stabilized by HA–catechol have been designed
to enhance the transfection of hMSCs in a gene delivery system, as shown in Figure 6 [41].
The CAP nanoparticles stabilized by HA–catechol showed efficient gene delivery of both
pBMP-2 as a plasmid DNA and mir148b as a microRNA to stem cells via CD44-specific
receptor-mediated endocytosis.

4.4. Tissue Engineering Scaffolds

In general, chemical modification of HA-based materials is required for tissue engineer-
ing, mainly due to the poor mechanical properties of unmodified HA under physiological
conditions. The conjugation of catechol to HA increases its mechanical properties with
excellent stability against hyaluronidase. HA–catechol is especially useful to promote
osteogenesis and angiogenesis. Vascular endothelial growth factor (VEGF) was previ-
ously immobilized on a Ti surface using HA–catechol [50]. The VEGF-immobilized Ti
substrate (60 ng/cm2) sustained osteoblast proliferation (70,000 osteoblasts/cm2) after
seven days of incubation. In addition, the alkaline phosphatase activity (0.7 µM/mg) of
VEGF-immobilized Ti substrate was greater than that of bare Ti surfaces (0.3 µM/mg).
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Moreover, the VEGF-immobilized Ti substrate using HA–catechol not only allowed osteo-
genesis for bone formation, but also inhibited bacterial adhesion. In addition, HA–catechol
can form thin films with chitosan on a Ti–Nb–Zr alloy (TNZ) [67]. HA–catechol- and
chitosan-coated TNZ surfaces improve the proliferation of osteoblast cells, with approxi-
mately 35,000 osteoblasts/cm2 after seven days, which is comparable with the proliferation
levels achieved with bare TNZ (30,000 osteoblasts/cm2). The modification of Ti surfaces
with HA–catechol can be used to enhance osteogenesis and angiogenesis. HA–catechol has
been used for salivary gland tissue engineering (Figure 7). A polycarbonate (PC) membrane
coated with HA–catechol showed enhanced adhesion of embryonic submandibular glands
(eSMGs) (5.2-fold increase of for the number of adherent eSMGs) compared to both bare
and HA-coated membranes [44]. In addition, branching morphogenesis, including average
bud counts, was enhanced by HA–catechol coatings mimicking an HA-rich environment.
HA–catechol composite hydrogels with carbon nanotubes (CNTs) and/or polypyrrole
(PPy) have been developed for hNSC engineering [54]. The catechol groups bound to CNTs
via hydrophobic and π–π interactions promote the polymerization of and. CNT and/or
PPy in hydrogels contribute to the improvement of electroconductivity to promote the
differentiation of human fetal NSCs and human induced pluripotent stem cell-derived
neural progenitor cells. In addition, upregulated calcium channel expression and activa-
tion of depolarization have been observed in human stem cells using HA–catechol/CNT
hydrogels, and intracellular calcium influx is also enhanced by the stimulation of electrical
signals. Therefore, HA–catechol can be used in various tissue-engineering applications,
including those involving bone, cartilage, salivary gland, and neural tissue regeneration.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 14 
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5. Conclusions

In this review, we have described the synthetic and characteristic methodologies, gen-
eral properties, and various biomedical applications of HA–catechol, including antifouling,
tissue adhesives, wound healing, drug/gene delivery, and tissue engineering. Catechol
conjugation onto HA backbones significantly enhances HA mechanical and tissue adhesive
properties due to catechol-involving reactions, allowing various biomedical applications.
In addition, the intrinsic properties of HA, such as biocompatibility and biodegradability,
are still conserved after the conjugation of the catechol groups. We expect that HA–catechol
will be exploited as an adhesive and biocompatible material in many clinical settings,
opening the doors to translational researches to enhance therapies.
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