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Abstract: The advent of telerobotic systems has revolutionized various aspects of the industry and
human life. This technology is designed to augment human sensorimotor capabilities to extend
them beyond natural competence. Classic examples are space and underwater applications when
distance and access are the two major physical barriers to be combated with this technology. In
modern examples, telerobotic systems have been used in several clinical applications, including
teleoperated surgery and telerehabilitation. In this regard, there has been a significant amount
of research and development due to the major benefits in terms of medical outcomes. Recently
telerobotic systems are combined with advanced artificial intelligence modules to better share
the agency with the operator and open new doors of medical automation. In this review paper,
we have provided a comprehensive analysis of the literature considering various topologies of
telerobotic systems in the medical domain while shedding light on different levels of autonomy for
this technology, starting from direct control, going up to command-tracking autonomous telerobots.
Existing challenges, including instrumentation, transparency, autonomy, stochastic communication
delays, and stability, in addition to the current direction of research related to benefit in telemedicine
and medical automation, and future vision of this technology, are discussed in this review paper.

Keywords: teleoperation; medical robotics; share autonomy; multilateral telerobotics; telerehabilita-
tion; telesurgery

1. Introduction
1.1. Telerobotics General Context

Telerobotic systems have extended the sensorimotor capacity of humans beyond the
natural competence to achieve an augmented sensorimotor ability, which allows humans to
interact with objects and environments remotely [1]. During the last two decades, teleoper-
ated robotic systems have attracted a great deal of interest due to the remarkable benefit of
medical [2,3], and non-medical applications [4]. Focusing on medical applications, two ma-
jor categories can be identified, namely, teleoperated surgery [2,5,6], and teleoperated
rehabilitation robotic systems [7,8], which have shown significant potential to transform
the delivery of healthcare services. In this regard, teleoperated surgery has been widely
investigated and commercialized. Yet, telemedicine applications also include various new
remote services (whose interest grows during pandemics), such as a simple consultation or
an expertise with a specific healthcare professional, telemonitoring/diagonosis [9], or an
assistance for a particular procedure or examination [10–19], over telecommunication
networks.

Conventional telerobotic systems are composed of one leader robotic module (clas-
sically named as a master module) and one follower robotic module (classically named
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as a slave module) [1]. The leader robot is to be operated by the human operator, and the
follower robot is to replicate the motions of the leader robot for interaction with the envi-
ronment. The potential advantages of robotic manipulation over human manipulation are
numerous and one can mention:

• agility; precision; repeatability;
• automatic trajectory tracking and no-fly-zone generation;
• ability to satisfy constraints in position, and speed domains;
• real-time fusion of multimodal exteroceptive information;
• automatic recording of gestures made.

1.2. Introduction of Robotics in Medicine

The rise of robotics in medicine has opened up broad perspectives and suggests further
progresses, not only related to the precision and comfort of surgeons but also related to the
benefits for patients (reduction of invasiveness, recovery time, reduction in pain, and side
effects). The medical robot remains a cooperative device for the practitioner, the sole leader
on board. Moreover, humans cannot be replaced by robots in the context of medicine (in
particular surgery) due to several factors, some of which relate to the need for extremely
high cognitive-sensorimotor skills of the clinicians (e.g., surgeons) and imperative medical
domain knowledge which cannot be replaced (this is a controversial topic). Medical doctors
should be at the heart of the operation because they can integrate complex information from
multiple sources and conduct the operation based on their complex medical knowledge
related to the physiological and pathological context of the operation. They also possess
not only the ability to analyze a rare situation and make critical decisions but also the
ability to adapt, even improvise in rare cases. For all these reasons, it matters to keep the
practitioners as much as possible in the loop while trying to augment their cognitive and
sensorimotor competence using multimodal telerobotic systems.

In the context of surgery, the environment is usually the organs of the patient on
which the surgery is being operated. This is the feedforward information path. As the
feedback path, the operator will receive sensory information from the environment about
the interaction between the follower robot and the environment, through various sensory
channels, e.g., haptics, visual, auditory. The sensory information replicated by the leader
robot for the operator allows her/him to conduct the operation based on transparent
situational awareness achieved using the received sensory information [2,20–23]. Medical
applications of various extensions of conventional topology have also been explored in the
literature and will be discussed in this paper in Section 2.

1.3. History of Telerobotics in Medicine

The first medical robot was developed in Vancouver B.C., Canada, in 1983, while the
first use of a (non-medical) robot for medical purpose happened on 11 April 1985, at the
Memorial Medical Center of Long Beach (California) during a stereotactic brain surgery [24].
During this kind of operation, a stereotactic probe is manually inserted in the brain so that
its tip is exactly positioned at the location of a tumor located employing a computerized
tomographic (CT) scanner. The surgeon can use this probe as a frame to safely perform
a biopsy or any other neurosurgery operations. Yet, the insertion of the probe through
a straight-lined trajectory required much experience to limit the lateral damages. In this
application, a Puma 200 6-degree-of-freedom (DoF) industrial robot (Unimation) held this
probe and performed a linear trajectory to install the probe according to the target position
and the approach orientation determined from the CT pictures. See [25] for an overview of
the use of industrial robots in surgery.

The first medical robots (specifically manufactured for medical application and not a
modified industrial robot) have been introduced in operating rooms a few years later (in
the late 1980s and early 1990s), mainly to assist surgeons for needle placement with the
patient located inside an imaging system (see [26] for a recent detailed historical review),
but their rise happened with teleoperated robots for Laparoscopy, where the need of
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controlling the endoscope was the first widespread robotic application. To understand
this craze, it is necessary to distinguish between remote operation robots, guidance robots,
telerehabilitation, and robotic simulators for training hospital staff [27,28].

In 2001, Sung et al. stated that laparoscopy had changed the way surgeons perceive
and practice surgery [29]. Indeed, laparoscopy was a new surgery technique, under the
umbrella of Minimally Invasive Surgery (MIS), which involved only small incisions in
the abdomen to install a laparoscope surgical tool from the outside of the patient’s body.
The main benefits of this technique, such as reduced blood loss [30], reduced damage to the
tissues [31], reduced risk of infection [32], reduced recovery time [33], and cosmetic bene-
fits [34], were provided for the patients while it was also a new challenge for surgeons to
manipulate such tools. The limited sensory awareness has been a conventional bottleneck
for manual MIS [35,36]. It led to the need for extensive and specialized sensorimotor train-
ing; however, even with such training, experienced surgeons had difficulties in efficiently
perceiving the surgical site (putting a significant amount of mental and physical burden
on them [37–39]) and raising concerns about the need for extensive training and possible
restrictions for conducting a variety of surgical tasks [1,20,40,41]. De facto, indirect manipu-
lation, limited perception, mirrored motion, and degraded hand-eye coordination led to the
design of the first teleoperated endoscope, named AESOP (Automated Endoscope System
for Optimal Positioning) [42]. Using AESOP, the surgeon, located at a very short distance,
could move the laparoscope in every direction in the field of view of the video feedback by
giving commands through foot pedals and sensorized hand controllers. The experience
gained through the use of AESOP motivated the development of a wide range of assistive
robots in the operation rooms resulting in several subsequent technologies, such as the
Laparoscopic Assistant Robot System (LARS by IBM, Armonk, NY, USA) [43], which was
used to manipulate surgical instruments in delicate surgeries resulting in “Steady Hand”
and cooperative control. Later on (1998–2003), Zeus (Computer Motion Inc., Goleta, CA,
USA) [44], built upon AESOP by adding new arms manipulating surgical, was used for
the first transatlantic telesurgery “Operation Lindbergh” [45]. It was then replaced by
the successful da Vinci Surgical System (from Intuitive Surgical Inc., Mountain View, CA,
USA) [46], which added the 3D stereoscopic vision (enabling depth perception for the
surgeons, which was detrimental in previous telerobotic systems), and enhancing maneu-
verability of MIS instruments. This technology was initially aimed at minimally invasive
abdominal surgery [47], but it rapidly opened to other clinical applications [48]. It can be
mentioned that da Vinci Surgical System was a complete revolution in the field of medical
robotics. More details are provided in the subsequent sections of this paper.

After the invention of the da Vinci Surgical System, other industries and academic
centers proposed new robotic systems for specialized surgeries [49,50]. For instance, in
2009, the German Aerospace Center (DLR) designed the MiroSurge telerobot for experi-
mental research purposes. This robot introduced force feedback: a major missing function
in commercial telerobotic systems. Haptic feedback is still an open research question,
and several techniques and technologies have been proposed in research centers and indus-
tries with the hope of addressing the corresponding challenges (which mainly associate
with the cost, instrumentation, transparency, and stability); see Section 2. We can also
mention the Flex (Medrobotics Inc., Raynham, MA, USA), specifically designed for use
in Trans-Oral Robotic Surgery, the MAZOR SpineAssist/Renaissance® and the ROSA®

(Zimmer Biomet-Medtech, Montpellier, France), both dedicated to spinal surgery, and the
BrightMatter™ suite (Synaptive Medical Inc., Toronto, ON, Canada) robots [51]. Among
the more recent introductions on the international market [52,53], the following products
and companies can be mentioned: the Senhance (TransEnterix, Morrisville, NC, USA,
approved by FDA for gynecologic and colorectal procedures in 2017), the Mako (from
Stryker Corp., Kalamazoo, MI, USA, for total knee and hip replacement), and the Versius
Robotic System (Cambridge Medical Robotics, CMR Surgical, Cambridge, UK, approved
for use in Europe and currently studied by the American FDA).
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1.4. The Motivations for Telerobotics in Medicine

The above-mentioned efforts illustrate the high interest in telerobotic systems for
revolutionizing the field of medicine. The ultimate goal of teleoperation, especially in
medicine, is realizing the perfect “telepresence”, a concept popularized in the robotic
community by Sheridan in 1995 [54]. Telepresence is the sense of being and acting at a
location other than where one is. Even if this may be seen as an unreachable objective in a
short time frame (especially due to the complexity of robotized perception), the research and
development in this field have been actively followed by many researchers and industries
to enhance the existing technology (knowing that robotics-mediated haptics sensation is
far from the actual perfect direct touch, in terms of perception) [55].

One of the initial motivations for surgical teleoperation is the need for a long-distance
medical operation. At the scale of a country, rural hospitals often lack equipment and expe-
rienced surgeons. To investigate the feasibility, in early 2000 some experiments have been
performed. In this regard, in 2003, more than 20 telesurgeries were conducted at a distance
of 400 km in Ontario, Canada, with a Zeus-TS surgical robot [56]. Two surgeons (one in each
hospital) could take the local control of the robot when desired. This successful experience
has shown the feasibility and potential to use telerobotic systems for telesurgery in rural
and underprivileged areas. At a higher distance, since 2004, the National Aeronautics and
Space Administration (NASA) has conducted experiments on remote laparoscopic surgery
for astronauts in space conditions, initially with a Zeus robot [57]. The main difficulty,
in this case, was a significant time latency. It has been shown that telesurgery performed
by an experimented surgeon located on earth was more effective than an on-board surgery
conducted by a less expert surgeon on board. Despite these motivating experiments,
the current regular practice requires the patient and the surgeon to be in the same hospital
(and in most cases the same room). Nonetheless, telesurgery has the potential to facilitate
“the exchange of medical expertise around the world without requiring physicians to travel.”
This saves time, money, and effort by bringing the remote operating room to the fingertips
of the surgeon and vice versa [58].

Teleoperation is also required for medical manipulations in workspaces unreachable
by the surgeons’ hands. For instance, MRI-guided interventional robotics is an emerging
field. MRI technology is a widespread high-quality imaging technology that has shown
great potential to be used for real-time visualization of deep soft tissues [59]. However, MRI
machines require fixation of the body region in a long and small tube which significantly
limits the possibility of conducting a manual operation. Due to the electromagnetic nature
of this machine many operational tools and other machines cannot be used. In 2012,
Seifabadi et al. demonstrated the feasibility of MRI-guided prostate biopsy using an MRI-
compatible teleoperated needle driver module based on piezoelectric motors [60]. In 2013,
a solution combining pneumatic and piezoelectric actuation was introduced [61]. A recent
review on this topic can be found in [62,63].

Besides surgery, there are several other medical applications of telerobotic systems. In
this regard, in Section 2.2, we will introduce telerobotic rehabilitation, which is an emerging
field of medical telerobotics. Telerobotic rehabilitation has the potential to transform how
remote patients with motor disabilities (such as post-stroke ones) can receive kinesthetic
motor therapy over a communication network and possibly when they are at home inter-
acting remotely with a clinician in a hospital [7,64]. This technology provides an equal
opportunity of accessing rehabilitation services, regardless of geographical limitations, and
provides patients with an immersive experience of teletherapy and interpersonal interac-
tion. This paradigm for delivering intensive active-assist therapy attracts more interest
recently due to the increased awareness caused by the COVID-19 pandemic. Without
such technology, patients who may be considered at high-risk would potentially receive
a degraded quality of therapy during a global health crisis (such as a pandemic), due to
the limitations around accessibility to public places and requirements regarding reducing
the frequency of interpersonal interactions in the healthcare systems. This topic is more
discussed in Section 2. It should also be mentioned that the conventional use of a telerobotic
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system enables direct supervision of the operator over the conduction of the task. Indeed,
more advanced telerobotic systems have embedded local intelligence allowing for the
realization of shared-controlled tasks (see Section 3.2), during which the operator and the
machine share the autonomy for task conduction. Several examples include telerobotic
systems which compensate for the surgeon’s hand tremor during operation, scale down the
surgeons motor control to enhance the precision, provide forbidden and guiding virtual
fixtures, or compensate for the movement of the organs during operation. The shared
autonomy frameworks are designed to reduce the mental and physical burden on the
surgeon and maximize the quality of surgery up to the level which is not possible to
achieve without the use of a telerobotic system. Some examples can be found in [2,65–76].

Another interest of surgical telerobots is their ability to help train surgeons. For in-
stance, in [77], the daVinci robot is able to record and simultaneously playback laparoscopic
videos, robot arm motions, and surgeon–console interactions. A user can then replay on-
demand recorded procedure sections with the opportunity to watch stereo videos and
simultaneously feel the recorded movements on the hand controllers, at adjustable speeds.
This approach has been recently used in [78] to determine experimentally how a surgical
robotic system can be used for training novice surgeons in conventional laparoscopic.
These authors show that combining the playback function and discovery training (trainees
learned a surgical task by themselves through trial and error) leads to the best accuracy
compared with trainees who used playback or discovery alone. It is valuable to record
surgical robot usage by surgeons to collect data for several purposes: (1) training purposes
as exposed earlier, (2) the development of advanced control algorithms enhancing the
autonomy levels of surgical robots, (3) retrospective error analysis [77]. Yet in 2017, Nagy et
al., envisioned that all the objective data available (with patient-privacy constraints) pro-
vided by these recordings and surrounding sources (such as medical imaging systems)
could be used through big-data analysis for the three aforementioned purposes. For ex-
ample, surgical data science should therefore “provide better patient outcomes and a reduction
in healthcare costs”. An example of such approach is provided by Wang et al., in [79].
They experimentally showed the efficiency of machine learning to provide automated skill
assessment in surgical training using public MIS robotic datasets.

1.5. The Critical Issue of Stability and Transparency of Telerobots

One of the main performance metrics for any telerobotic system is the transparency of
the coupling. Transparency means that the degree to which the operator would feel the
environment and deterioration of transparency would result in deterioration of perception.
This can be caused by a violation in velocity tracking at the environment side or force
tracking at the operator side. One of the main challenges for transparency is the dynamical
behavior of the robots in the loop of teleoperation. To address this challenge initially,
Lawrence’s four-channel teleoperation (see Figure 1 with C5, C6 = 0) was introduced in
the literature [80], which would require the sending of both force and velocity from one
side to the other side. However, due to the complexity of the four-channel design and the
low stability margin of the architecture, an extended version of the four-channel design
has been proposed by adding a local force control loop on both operator’s side and the
environment’s side [81] (see Figure 1). The extended Lawrence architecture can drop
one channel and achieve three-channel teleoperation while guaranteeing transparency
(see Figure 1 with C3 = 0). A modification of extended Lawrance architecture has been
proposed by Atashzar et al., which allows for achieving perfect transparency only with two
communication channels, reducing the complexity of the system and increasing the stability
margin (see Figure 1 with C3 = C4 = 0). Although the transparency of the system can be
achieved using the aforementioned architectures, stability has always been a major concern
for the designers of telerobotic systems. Stability is one of the main bottlenecks of adding
haptic feedback to surgical telerobotic systems. Using hybrid transfer matrix evaluation
of a transparent teleoperation system, it can be shown that stability and transparency are
two conflicting criteria in telerobotic systems. As a result, any stabilizer would result in
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deterioration of the transparency of the system. More advanced stabilizers optimize the
amount of waveform deterioration, minimizing transparency degradation. It should also
be noted that some features of telerobotic systems such as scaling, can affect the stability
of the system since it directly affects the loop gain, and it can be shown that based on the
small gain criterion, increasing the feedforward gain of force from the environment side to
the operator’s side results in reducing the stability margin of the system. This should be
considered if force magnification is considered as one of the features of the system.

Figure 1. Lawrence’s four-channel teleoperation (which becomes E-LFC when C5, C6 6= 0).

One of the main challenges of haptics-enabled telerobotic systems is the communica-
tion delay. It can be mathematically shown that the delay would inject extra energy into
the system resulting in accumulation of energy in the closed loop system which can (under
some circumstances) result in instability and divergence. There has been a wide range of
research and development activities to design and implement various stability frameworks
for robotic and haptic systems to deal with the instability caused by the delay. Most of the
existing approaches function based on Weak Passivity Control Theory (W-PCT). For this,
the environment and the operator are usually considered to be passive, while the commu-
nication network is considered to be the source of nonpassivity due to the communication
delays. Based on W-PCT, by making the communication passive, a telerobotic system will
be converted to a negative interconnection of passive subsystems (Human, Communication,
Environment), which will be passive and thus stable. The existing approaches usually
provide local (on one side) or distributed (on two sides of the communication) damping
to dissipate the extra energy introduced into the system by a nonpassive interconnection
link and guarantee global passivity and thus stability. In this regard, the wave variable
transformation (WVT) rooted in scattering transformation (ST) is the most commonly used
approach in the literature [82] (see Figure 2). Using WVT, the transmitted force and motion
signals are converted to wave variables. It has been shown that in the presence of unknown
constant communication delay, WVT results in the passivity of the network. An important
feature of WVT is that the transformation at the leader side is the inverse of transformation
at the follower side. As a result, in the absence of communication delay (which would
result in the passivity of the communication), the two transformations would cancel out
each other, and thus no signal deviation would be imposed. However, in the presence of
communication delays, the two transformations cannot completely cancel out each other,
and this would result in a deviation of force and velocity tracking. WVT utilizes a tuning
factor named wave impedance, which distributes the deviation from the reference between
the force and velocity channels. A major problem with WVT is the sensitivity to variable
time delays. Various versions of the WVT have been proposed in the literature (see [83]
for a 2014 review), some of which are to make it robust to variability in the time delay, for
example, using wave scaling, the intensity of which depends on the variability of time
delay (the higher the variability, the lower the scale). Although the problem has been
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addressed theoretically, this approach results in excessive deviation of tracking through
the need for wave scaling. Wave scaling modifications do not tolerate delays that change
abruptly (when derivation of delay is greater than unity).

Figure 2. Wave variable transformations for communication link passivation.

Another approach for stabilizing the telerobotic system in the presence of variable
and unknown time delay, relaxing the assumption of slow changes of delay, is the time-
domain passivity control (TDPC) approach [84]. This class of adaptive nonlinear stabilizer
utilizes the concept of passivity observer (PO) and passivity controller (PC) (see Figure 3).
PO observes the passivity condition of the system by monitoring the energy flow, and PC
injects adaptive damping into the system to dissipate the extra energy. This approach was
originally implemented in the energy domain; however, a modification of this approach
has been implemented in the power domain to result in a smoother control behavior by
distributing the dissipation over time. TDPC has been used as a one-port controller when it
is placed only at the leader side, and it has also been used as a 2-port controller when two
sets of PO/PC are placed on the two sides of the communication network to reduce the
conservatism of the system. It should be noted that the one-port design of TDPC makes it
possible to use that for the haptics system when the environment is virtualized, and this is
another difference between TDPC and WVT. The above-mentioned approaches guarantee
the stability of the system, assuming that the environment and the operator behave like
inherently passive systems. However, in the context of rehabilitation or telerehabilitation,
the behavior of virtual or human therapists would include the injection of mechanical
energy into the system to empower the patient and make the task feasible. Energy injection
is a non-passive behavior violating the main core assumption of conventional approaches.
To address this problem, Atashzar et al. has extended the design of the passivity-based
stabilizers and designed a new class of nonlinear adaptive stabilization framework based
on strong passivity theory (SPT), which does not require passivity of all included compo-
nents [7,85]. For this, the excess of the passivity of the user’s biomechanics is identified
and used in the design of two passivity-based stabilization frameworks of the mentioned
family. It has been shown that with the use of this new family of stabilizers, there is no need
for assuming passivity on the environment side addressing the problem with telerehabili-
tation and assistive haptics-enabled systems. In this regard, this new family of nonlinear
stabilizers considers the amount of energy that can be damped out by the biomechanics
of the user, and this makes a margin of passivity which allows the environment to be
non-passive to some extent (depending on the excess of the passivity of the operator).
Besides passivity-based stabilizers, Small Gain Control Theory has also been used in the
literature not only to analyze the stability behavior of the system but also to synthesize
a new class of stabilization. The benefit of using small-gain control is that it does not
make any assumption on the passivity behavior of the system; since it cares about the
overall loop gain without consideration of the sign of signals. Due to its unique behavior,
the Small Gain Control (SGC) approach has been proposed by Atashzar et al. in the context
of telerobotic rehabilitation [64].
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Figure 3. Time-domain passivity control (TDPC).

1.6. Outline of This Paper

In this paper, we detail how advanced telerobot-mediated medical tasks can be
achieved using various topologies of telerobotic systems, beyond conventional single-
leader-single-follower architecture. This topic is discussed in details in Section 2. Besides,
Section 3 details solutions found in the literature for enabling various levels of teler-
obotic autonomy.

2. Medical Telerobotic Topologies
2.1. Single-Leader Single-Follower Topology (SL/SF)

The conventional topology used in telerobotic systems is composed of a single leader
robot and a single follower robot. The single-leader–single-follower topology (SL/SF,
see Figure 4) has been used, as mentioned before, to augment human sensorimotor compe-
tence [28,86]. A successful example of an SL/SF telerobotic system is the da Vinci Surgical
System [23], using which it is now possible to conduct minimally invasive laparoscopic
surgeries inside a patient’s body with an ultra-precision, reliability, and safety [65,87,88].
This topology transfers the pose commands of the surgeon collected by the leader console
to the follower robot inserted through small incisions inside the patient body to conduct
the surgery under the direct control of the surgeon while augmenting the sensory and
motor skills of the surgeons [65,87–90], as explained in the next subsections.

Figure 4. Single-leader–single-follower topology where n is the number of network ports/terminals
(Images ©2020 Intuitive Surgical, Inc., Sunnyvale, CA, USA).

There are several other examples of applications for SL/SF topology in the medical
domain (beyond laparoscopic surgery) when interactional forces can be much higher or
much lower than laparoscopic surgery. One example is SL/SF telerobotic rehabilitation
which allows for remote tele-physical sensorimotor interaction between an in-hospital
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clinician and an in-home patient for remote delivery of physical therapy as a new paradigm
for delivering intensive active-assist therapy for patients with neurological damages or
disorders addressing accessibility issues [64,85,91]. As another example of SL/SF topology
telemicromanipulation can be mentioned, for instance, [92] introduces a haptics-enabled
SL/SF magnetic micro-manipulation platform with promising potential for a range of
micro-scale biomedical applications. The follower robot uses a controlled magnetic field for
manipulating a ferromagnetic micro-device when the leader robot is a haptics-enabled de-
vice taking position commands of the user (to be scaled down and followed by the follower
robot) and rendering the scaled-up force field. On the other side of the spectrum, high-force
SL/SF teleoperation has been also used in medicine. Especially in oral surgery [93] and
orthopaedics [94–98], drilling is a common high-force and sensitive task. In the rest of this
section, we explain in more detail how telerobotic systems can augment the sensorimotor
skills of clinicians and enhance the outcome of therapy. We will also discuss the existing
challenges and future visions for this topology.

2.1.1. Sensory Augmentation through SL/SF Telerobotic Surgery

Telerobotic systems provide the operator with complementary perceptual awareness
during the conduction of tasks (such as surgery) to augment the knowledge of the op-
erator (such as the surgeon) regarding the condition under which the operation is being
conducted. This augmentation has been achieved through visual [40,99], auditory [100]
and haptic [2,35,101,102] channels. Telerobotics-assisted sensory augmentation in surgery
is particularly designed to address the three critical sensory restrictions, which exist in
manual minimally invasive surgeries, namely (a) degraded hand-eye coordination [103]
(b) lack of depth perception [20,104], and (c) insufficient or inaccurate haptic feedback [35].
See [63] for details about desired characteristics of haptic interfaces.

In most commercialized examples, visual augmentation has been the main focus.
Through the use of the stereoscopic 3D vision systems at the leader robot console, surgeons
can intuitively perceive the depth position information during operation while not needing
to wear heavy and fatigues head-mounted displays [20,105]. This was not achievable
using conventional hand-held minimally invasive systems [65,87]. Since the forward
and inverse kinematics are solved locally, and the two robots are synced in task space,
the conventional issues such as mirroring motions (which exist in manual minimally
invasive surgery (MIS)) are compensated for [2,106–109]. The line of sight of vision directly
collides with the hand motion frame; thus, the hand-eye coordination and visuomotor
misalignments are all corrected when compared with manual MIS [10]. This has made the
visuomotor control of the leader-follower telerobotic surgical system a superior compared
with conventional manual MIS. Besides, surgeons have direct access to more advanced
methods of augmentation, such as using fluorescent cameras in the same visual system,
which allows surgeons to detect pathological tissues such as affected lymph nodes [110].
Preoperative images have been used to visually guide the surgeon during the surgeries for
enhanced accuracy [67,111,112]. However, one has to take into account its limitations: in
2016, Meccariello et al. stated that the use of visual haptic feedback (instead of real force)
did help surgeons compensate for this lack [113], but also increased the average applied
force magnitude on the tissue by 50%, and the peak applied force by at least a factor of
2, while the introduction of real force feedback decreased accidental tissue damage by a
factor of 3 [114].

Besides vision augmentation in laparoscopic surgeries, advances in multimodal
robotics also contributed to new image-guided percutaneous procedures [115,116] includ-
ing robotic catheterization, when recurrent X-rays imaging has helped the clinicians during
navigation. In this regard, through remote manipulation of the catheter, health profession-
als are no longer exposed to X-rays and can navigate the medical probe using a telerobotic
medium. Other benefits are better ergonomics at work for the clinician, besides higher
precision of outcome, and shorter operational time (which reduces the radiation to the
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patient). More recent image-guided telerobotic surgical systems for vision augmentation
include MRI-compatible robots and MRI-based robot navigation for MIS [117].

Deployment of visual augmentation has been successful using telerobotic surgical
systems, and commercialized examples have been using mentioned advanced features [1].
Besides visual augmentation, auditory cues have also been provided for the surgeons to
enhance sensory awareness [118–120]. However, since the audio channel has been occupied
heavily in operating rooms for communication between surgical team members, in com-
mercialized examples, the auditory channel has not been utilized extensively. This kind
of feedback has nevertheless interesting applications in basic surgical training contexts,
as demonstrated in [121].

Regarding haptics-based augmentation it can be mentioned that despite two decades
of research and existing evidence of a significant benefit of haptic feedback in surgical
operations [100,122,123], the commercialized surgical robotics systems are not equipped
with haptic feedback [35,36,55,101,109,122,124]. The reason for this absence is explained
later in this section. However, before investigating the corresponding reasons, the impor-
tance of haptic feedback in surgery should be discussed, as given in the following. In the
literature, it has been shown that haptic sensation provides critical information during
manual surgery regarding (a) the mechanical characteristics of tissue (such as texture, stiff-
ness, size, and location of tumors) [125], (b) the amount of force which may cause damage
on the tissue [122,126,127], and (c) quality of tool manipulation to avoid issues such as
suture breakage and needle slippage [40,99]. It is also known that haptic information is
very critical for reducing surgical errors [35,36], and tissue damage [122,126,127], besides
operating times [1]. The mentioned knowledge has been achieved by systematic studies
conducted in many cases on manual surgeries due to the conventional concerns related to
degraded haptic sensation in manual MIS caused by the following factors:

• friction inside the cable-driven tools [128–134], also between the tool and the tro-
car [125,135],

• the disturbing forces at the trocar and abdominal wall, the disturbing forces on the
tool by nearby organs [136],

• the small point of contact between the tool and tissue causing low signal to noise ratio,
and the long mechanical distance between the point of contact with tissue and the
hand of the surgeons [36,136,137].

Despite the benefits of minimally invasive surgeries, such as reduced blood loss [30], re-
duced damage to the tissues [31], reduced risk of infection [32], reduced recovery time [33],
and cosmetic benefits [34], the limited sensory awareness (caused by factors mentioned
in the above) has been a conventional bottleneck for manual MIS [35,36]. The mentioned
challenge has called for extensive and specialized sensorimotor training for manual MIS
surgeons and has raised excessive concerns about the ability of surgeons to perceive the sta-
tus of the surgical site even for experienced surgeons [1,20,40,41]. Thus, in many complex
surgical cases, MIS is known to be excessively challenging for surgeons to conduct, putting
a significant amount of mental and physical burden on them [37–39]. The situation is
more challenging for microsurgeries, as the amount of force is much lower than the ability
of human perception, which has made those surgeries visually heavy and cognitively
complex [66,138–144].

However, the above-mentioned restrictions on haptic sensation can be addressed using
robotic surgical systems. In theory, small arrays of tactile sensors can be mounted on surgi-
cal tools which can detect the interactional forces during the surgery [7,122,125,136,145,146].
The measured force signals can then be filtered, processed, amplified, and sent to the force
control loop of the actuated leader robot, which can then replicate the resulting force for the
surgeon, increasing the haptic awareness during surgeries [101,102,147]. It should also be
noted that the measured force can also be visualized and sonified for the surgeon indirectly
increasing the haptic awareness in the absence of direct feedback. This technique is known
in the literature as a sensory substitution [40,99,100,145,146] and is usually suggested as
a replacement for direct force feedback when the stability of closed-loop force feedback
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cannot be guaranteed. Besides, to address the issue of the small amplitude of force during
micro-robotic surgery, such as retinal surgery, ultra-small, and accurate force sensors have
been suggested in the literature which can measure micro- to milli-Newton forces, and be
magnified for the surgeons for better awareness [66,138,139]. The above-mentioned topic
has been studied in the literature under the umbrella of haptics enabled telerobotic surgery,
and Longmore et al. recently listed direct and indirect force-sensing solutions in [52].

The benefit of adding direct or indirect haptic feedback to robotic surgical systems has
been studied extensively in the corresponding literature, some of which were conducted
on the da Vinci surgical robotic system [100,122,123]. Clinical benefits have been reported
such as (a) reduced average and peak forces on the tissue, and tissue damage [122,126,127];
(b) enhanced quality of knot tying, reduced frequency of suture breakage during surgery,
enhanced force consistency [40,99,148], (c) realization of haptics-enabled tumor localiza-
tion [125], and improved safety (for the patient) and lowered fatigue (for the surgeon) [148].

However, haptic feedback has not been achieved yet in commercialized examples [55,101],
and this is known to be one of the most significant limitations of existing telerobotic surgical
technologies motivating researchers and industries to locate the challenges and invest in
mitigation strategies [108,109]. Still in 2017, there was no consensus about the best way to
provide haptic feedback to the user, and also, no human factors and ergonomic (HFE) was
available to prove the interest of each in practice [149]. There are two major challenges in
this regard, namely: (a) instrumentation [136], (b) stability [7,82,85,150].

Regarding instrumentation, it should be noted that sensors to be used on robotic
surgical systems should be miniaturized, sterilizable, biocompatible, durable (to pass steril-
ization process), disposable, and cost-effective (since they need to be disposed of after a few
uses to avoid infection transfer between patients and warranting safety) [36,125,136,151].
The amplitude of the force signal is relatively high for laparoscopic surgeries and is very
low for microsurgeries. Implementing a sensor that can measure multidimensional forces
while providing a high signal to noise ratio and meeting all the above-mentioned require-
ments is a technically challenging task. There has been significant research on this topic,
and as one solution (for some applications), optical force sensing, in particular fiber Bragg
grating (FBG) sensor, is introduced as the technical solutions for this challenge [152–155].
FBG sensors allow keeping expensive, unsterilizable, and technologically-challenging com-
ponents outside of the patient’s body while only some thin fiber-optics are connected to
the tool, occupying a very small volume in space and measuring forces with high accuracy.
FBG sensors are flexible and can be mounted on the body of the surgical tools, or inside the
tools, or at the tip of the tool to measure different force features. Besides, the optical fibers
are inexpensive, disposable, and biocompatible [153–155]. As a result, optical force sensing
is known to be a future direction for enabling the next generation of telerobotic surgical
systems in reflecting force sensation [154,156–162].

However, even if the forces are measured accurately, it is not trivial to reflect the
force for the surgeon while guaranteeing stability [67,111,163–165]. It has been shown in
the literature that high transparency of force reflection by leader robots and stability of
telerobots are two opposing criteria [3,64,85,166–169]. Thus, a haptics-enabled telerobotic
surgical system that has near-to-ideal transparency in force reflection may suffer from poor
stability and vice versa. The poor stability would sacrifice the safety of physical interaction
between the patient and the robot, which is absolutely not acceptable in particular when
robots interact with humans [1]. There are conventional stabilizers, such as wave variables,
or time-domain passivity approaches, which degrade the transparency to guarantee the
stability of the system. It should be noted that, due to the neurophysiology of haptics sensa-
tion, distracted force feedback may sometimes be even worse than not having the feedback
at all. This is because humans rely heavily on haptics modality for conducting delicate
tasks; thus, high quality of force reflection can significantly improve the performance of
fine motor control of the surgeons using the robotic surgical system [146,170,171] while a
low quality of force feedback may potentially defeat the purpose. Degraded force feedback
can degrade the performance by misleading motor control of surgeons, when compared
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with the lack of force feedback, which would push surgeons to put all the weights of
sensory awareness on to the visual channel [145,146,170–173] which in many cases has
been considered as a successful practice through visuohaptic skill development.

It should also be noted that the instability challenge will be magnified significantly if
the leader and follower robotic systems are placed in two distant locations requiring a sig-
nificant networked connection, which would result in variable time delays with significant
jitter, data loss, and latency [172,174–177]. With the invention of 5G and beyond networked
systems and major promise in maximizing the reliability of data transfer while minimizing
the time delay, it is now possible to think about solutions that can not only address the
stability [178,179] of local leader-follower telerobotic surgical systems but also networked
telerobotic surgical systems. For this purpose, advanced control techniques have been
recently proposed based on small gain control theory [64,180] and strong passivity control
theory [7,85,166,181], which can potentially rely on an ultra-reliable 5G communication
network to guarantee the stability and to maximize the performance of force reflection.
There are several different studies on the amount of allowable delay in a telerobotic system,
especially when used for surgical operation. Various numbers are given in the literature,
mainly in the range of 100 to 200 ms. However, it should be noted that the amount of delay
depends on many different aspects. For example, the type of operation and the sensitiv-
ity of the surgical submissions can significantly affect the allowable delay. For example,
if the surgeon is operating near to a beating heart, the acceptable delay would be very
low compared to some other surgeries when the organ is less sensitive or when it does
not have motion. This is about the feedforward path for position control at the follower
side. It should be noted that in the case of force-feedback teleoperation, the delay can (a)
affect the perception of the stiffness of the environment, and (b) can destabilize the system
resulting in safety concerns which should be stabilized by adding controllers which can
then further affect the fidelity of force feedback. Because of all the reasons mentioned
above, it is not possible to provide a fixed number for the acceptable delay in a medical
telerobotic system. Readers will find more recent information on this topic in [27,182,183].

Thus with the use of advanced technology, including ultra-fast communication, ad-
vanced instrumentation, and algorithmic stabilizers [7,64,82,85,150,166,180,181,184], it can
be envisioned that the next generation of telerobotic surgical systems is equipped with
means of high-fidelity haptics reflection enabling surgeons to not only benefit from an
augmented vision but also augmented haptic sensory feedback.

2.1.2. Motor Augmentation through SL/SF Telerobotic Surgery

Besides sensory augmentation, telerobotic surgical systems are known to augment the
motor performance of surgeons to directly correct and enhance the manipulations gener-
ated by the surgeon to minimize errors and increase the quality of surgery. In this regard,
tremor compensation [2,65,66], organ motion compensation [75,76], surgeon’s motion scal-
ing [2,5,185], guiding force fields [67–71], and forbidden virtual fixtures [67,68,111,112,186–188]
are existing examples of motor augmentation achieved using teleoperated robotic sys-
tems [1].

Regarding tremor compensation [65,87,189], it can be mentioned that through basic
low pass filtering or in a more advanced manner through accurate estimation of hand
tremor in realtime with minimum phase lag using advanced signal processing modules,
such as band-limited multiple Fourier linear combiner [190–193], it is now possible to
extract and predict the high-frequency, low amplitude, involuntary tremorous motions
of the surgeon’s hand and damp them out before sending the motion to the surgical
robot [1,189]. Thus, through the computerized signal intervention achieved by leader-
follower telerobotic systems, the tremorous motion of the surgeons can be converted to
smooth ultra-fine motor commands, which increases the quality of delicate surgeries (in
particular for microsurgeries such as in retinal operations) [66,138,139].

In addition to tremor compensation, using leader-follower teleoperated robotic sys-
tems, it is possible to scale down the motions generated by the surgeon [1,2,5,185,194]. This
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would result in converting a very fine motor requirement to a course motor task for the
surgeon. This would significantly increase the accuracy by reducing the complexity of
control [5]. For example, the surgeon can move the leader robot accurately in centimeter
ranges, while the motion can be scaled down to micrometer and can be replicated by
micro-actuator in delicate surgeries. This framework is also valid for larger-scale operation
such as laparoscopic operation when the surgeon can decide to scale down the motion to
reduce the burden of fine motor control using telerobotic systems [194]. In the literature,
motion scaling and tremor filtering are identified as two critical features of telerobotic
surgical systems that enhance the dexterity and performance of surgeons when compared
with manual surgeries [2,5,185].

Regarding organ motion compensation, it can be mentioned that through advanced
computer vision and image processing modules (most of which have a Kalman filter core
algorithm [11,192,193,195–198]) it is now possible to measure motions of moving organs
such as heart and lung during the operation and compensate automatically for the physio-
logical motions while the surgeon can be responsible only for providing relative positional
commands. The image modalities used for these applications are usually acquired by
endoscopic cameras or ultrasound probes connected to the robotic tools [10–13]. A major
challenge for this motor augmentation task is the large latency for processing the images
when compared with fast organ motions [11,199–201]. For example, generically, heart mo-
tion during surgery (after deceleration by medication) can be as high as 210 mm/s with
an acceleration of 3800 mm/s2 [199]. For addressing this issue advance and lightweight
signal processing modules such as Kalman filter [11] and advanced control modules such
as model predictive control [202] have been suggested in the literature and sometimes
are fused with other modalities such as electrocardiograms (ECG) to track, predict and
compensate for the phase lag [11,199–205]. This task is a form of shared autonomy (see
Section 3.2) using which robots can utilize computer vision to compensate for the repetitive
motions [12,199,203,206–208]. This will significantly increase the accuracy of the operation
since it significantly reduces the mental, cognitive, and physical load on the surgeons
during operation [10,11,200,209–212].

Regarding the virtual fixture concept, it can be mentioned that leader-follower robotic
systems can provide kinesthetic corrections, guidance, and avoidance for the surgeons
based on the fusion of preoperative and intraoperative information [1,67,68,111,112].
Virtual fixtures (also known as “active constraints”) are high-level algorithms that generate
a kinesthetic no-fly-zone for telerobotic systems. For this, the algorithm would generate a
virtual spatial manifold (the topology of which depends on the task) with specific stiffness
(usually high stiffness). As a result, when the user hits the manifold in the space he/she
would feel a resistive/repulsive force avoiding penetration to the virtual “wall”. Although
typically virtual fixtures do not suffer from communication delays, they still are virtually
rendered, thus the stability of interaction would be challenged by the digitization (the
sampling period). This challenge is pronounced since usually virtual fixtures have very
high stiffness which would significantly reduce the margin of stability making the system
susceptible to even the smallest delay caused by digitization. This concept has been dis-
cussed in the literature under the topic of Z-width which shows that each haptic system
can safely display a limited range of impedances (this range is called Z-width). In 2014,
Bowyer et al., reviewed the existing algorithms found in the literature and detailed the
various strategies to overcome this issue [67]. As mentioned, one main issue is reproducing
a haptic interaction with highly rigid virtual walls. As mentioned, it has been shown
that the sampled nature of the control loop can virtually generate non-passive energy
and destabilize the whole control loop [84]. Recent works on this issue propose using the
H∞ approach to design controllers capable of rendering stiff walls (<5000 N/m, much
higher than with other control approaches) in an oscillation free manner and with actuator
force limitation to avoid their saturation. For more viscous interactions such as the ones
encountered in neurology, recent works are brought by Gil et al., in [213]. The forbidden
region virtual fixtures are to restrict surgeons’ operation on sensitive tissues (such as ma-
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jor arteries or delicate organs) through the generation of repulsive force field provided
kinesthetically for the surgeon and through stopping the follower robot from hitting those
no-fly zones [67,111,112]. This feature directly enhances the performance, accuracy, and
safety of the operation by correcting the dangerous maneuvers by surgeons, (in particular,
novice surgeons) and preventing damages [68,111]. Using repulsive virtual fixtures, the
telerobotic system can continuously monitor the motion of the surgeon for some forbidden
regions [69,214]. This technology has been very successful for operations on rigid tissues
(such as bones) or structured organs such as retinas [68,186–188,215], but it faces signifi-
cant technical difficulties for soft, highly dynamic, and unstructured soft tissues due to
technical difficulties in registering preoperative and intraoperative information sources.
There is active research on this topic under the umbrella of Dynamic Active Constraints
(DACs) [123,151] for realization on soft tissues.

In an opposite scenario, using guiding virtual fixture telerobotic systems can assign
novice surgeons to converge to a desirable trajectory or path (which can be annotated pre-
operatively by expert surgeons) [68–71,118,216,217]. This technology is usually used under
training environments (not during actual surgeries) when novice trainee surgeons practice
surgery with robots on highly structured and clean surgical training phantoms mimicking
an actual surgical site and allowing the implementation of guiding virtual fixtures for
helping trainees with learning and developing a motor task [136,163,206,208,218].

2.2. Single-Leader Single-Follower Telerobotic Rehabilitation

During the last decade, the topic of robotic rehabilitation has attracted a great deal
of interest as adjunct (or ultimately replacement) interventions, which can significantly
reduce the load on healthcare systems (please see [219]).This is since stroke is the lead-
ing cause of significant motor disabilities and results in excessive economic pressure on
healthcare systems.

Telerobotic rehabilitation [64,85,91] is a natural extension of robotic rehabilitation,
which can provide equal opportunity, regarding access to rehabilitation services, to the
people, regardless of geographical and accessibility limitations. Telerobotic rehabilitation
architectures allow for remote multimodal and tele-physical sensorimotor interaction
between an in-hospital clinician and an in-home patient. The technology has been recently
proposed, and several research centers are focusing on the realization of such a technology.
Telerobotic rehabilitation can provide patients with an immersive experience of real-time
teletherapy and interpersonal interaction. The teleoperated system realizes a new paradigm
for delivering intensive active-assist therapy for patients regardless of accessibility issues.

This technology has not been utilized on a large scale yet. However, due to the
COVID-19 crisis, the need for such technology is pronounced. The pandemic has affected
the accessibility of those in need of rehabilitation centers, and this is a major concern
for patients in isolation and those with co-morbidity resulting in a significant pause for
delivery of rehabilitation services. The pause, unfortunately, can have a permanent impact
on the lost sensorimotor capabilities of those patients since the chances of post-stroke
recovery are at a maximum during the three months following a stroke when the brain has
maximum plasticity, after which plasticity is rapidly lost. Telerobotic rehabilitation will
address this need by enabling clinicians to have wide-range access to patients across the
country (including in rural areas) to conduct various objective sensorimotor assessments
and rehabilitation interventions. This is to promote high and equal access to healthcare
services and is a major need globally. Beyond accessibility at the time of crisis or for remote
areas in the country, the technology can significantly increase the number of hours in
which a remote patient can receive rehabilitation and sensorimotor assessment services.
More information about the COVID-19 and medical robotics is available in [220–222].

The realization of telerobotic rehabilitation was not possible in the past for reasons
such as the requirement of critical sensitivity of active-assist technologies and multimodal
sensorimotor rendering systems to the quality of service (QoS) of communication networks,
concerns about reliability and resiliency of the network, and security of data transfers
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(see, for instance [223,224]). It is shown that latency, jitter, and packet loss not only can
deteriorate the fidelity of information rendering, but it can also result in a phenomenon
called “non-passive network coupling.” This results in an exponential energy accumulation
at ports of the telerobotic communication and can potentially result in asynchronous out-
of-control behavior of the coupled robotic systems. When the two multimodal robotic
modules (e.g., one at the patient’s side and the other at the therapist’s side) are coupled
through a network, degraded QoS can even result in “instability” which can be a significant
safety concern and has been a bottleneck for the realization of telerobotic rehabilitation.
This calls for the design and implementation of novel control architectures to provide safe
remote sensorimotor rehabilitation as a line of development for modern healthcare systems
addressing the critical challenges of the current robotic and digital rehabilitation systems.
Some recent efforts in this regard can be seen in [7,64,85] in which novel passivity-based and
small-gain-based stabilizers are proposed to address the stability issue while maximizing
the performance and transparency of force-motion coupling between the remote therapist
and the patients.

2.3. Multilateral Teleoperation

A natural extension of the conventional use of bilateral telerobotic systems is multi-
lateral telerobotic systems (see [4] and references therein). Multilateral teleoperation is an
upgraded version of conventional bilateral SL/SF teleoperation systems, which consists of
more than a single set of leader-follower robotic modules. Multilateral telerobotic systems
have at least three terminals which can be connected to single-port modules interacting
with a remote task or a remote user. Technically, these systems can be composed of multiple
leader robotic modules and multiple follower robotic modules.

According to the topological structure of multilateral systems, they are categorized as
Single-leader/Multi-follower (SL/MF), see for example [4,225–229], Multi-leader/Single-
follower (ML/SF), see for example [230–232], and Multi-leader/Multi-follower (ML/MF),
see for example [4,233–246]. These systems allow for the realization of a variety of new
tasks that require multiport communication between distributed modules such as collabo-
ration and interactions between multiple network terminals, multiple robots, and multiple
operators enhancing efficacy, precision/accuracy, dexterity/manipulability, loading capac-
ity (through distributed power) and handling capability through joint task conduction and
shared autonomy, see for example [218,227,230,247–252].

An example for medical application is tele-mirror-rehabilitation when a human ther-
apist holding the first robot works with a remote patient holding the second robot with
her/his left hand and the third robot with her/his right hand (in a mirrored fashion)
to provide kinesthetic mirror rehabilitation exercises [247,253,254]. As another example,
the same structure can be used for an expert-in-the-loop (EIL) surgical training mechanism
to train a novice surgeon on how to conduct tasks such as telesurgery [206,208].

In this section, we will provide a summary of applications with a focus on the surgical
domain, functionality, and challenges for teleoperation systems considering trilateral and
eventually multilateral topologies. It should be noted that the trilateral topology is a special
case of multilateral topology, but because of the extensive work that has been conducted
for this particular category, a separate sub-category is considered.

2.3.1. Multi-Leader/Single-Follower (ML/SF)

Multi-leader–single-follower (ML/SF) system grants the ability for multiple operators
to command one single follower robot through manipulation of their associated leader robot
and fusion of their motion command to control the follower robot [218,230–232,255–257].
Applications of these systems can be seen in various forms such as EIL multi-robot re-
habilitation [4,247,253,254,258–267], collaborative surgery [163,206,237,268] and surgical
training [4,163,206,208,258,260–268]. More specifically, using this topology, multiple sur-
geons can share the control of a single follower robotic system (details of medical autonomy
are given in Section 3.2 of this paper). A simple case is through a switching mechanism
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at the follower position controller so that the two surgeons can take turns to conduct the
surgery when the other surgeon would go to an observation mode. This has been realized
using the dual-user da Vinci surgical system when an expert surgeon conducts a task and
then observe the conduction of the same task by the novice trainee [218,269–274]. Instead
of switching, fusion scenarios have been conducted when the motions of the two surgeons
are fused through a mixing matrix to control the follower robot. This would allow reducing
the errors and increasing accuracy [247,253,258,266,269,270]. The mixing matrix is usually
calculated and set based on the expertise level of the surgeon before the operation. In a
more advanced manner, it is suggested that the performance of the two surgeons can
be concurrently calculated, and the authority level of the surgeons can be shared based
on the corresponding performance matrix, which can change and evolve [258,275,276].
The performance measure can be calculated on the fly based on metrics like the smoothness
of motion, task completion time, the economy of motion, gaze stability [150,207,247]. In the
literature, techniques such as fuzzy logic algorithms have also been utilized to evaluate
the performance of the two surgeons in real-time and adaptively calculate the authority
level to be assigned [240,241,258,277]. It should also be noted that during a motor training
scenario, the motion of the skilled user (such as the surgical trainer) has been seen as
a reference for evaluating the performance of the second user, taking advantage of the
multi-user design [216,217]. Besides, the expert trajectory has been used to generate a
guiding force field at the trainee’s robot so that the trainee can develop the needed spatial
and visuospatial mapping based on the kinesthetic guidance from the expert side. This is
called robot-mediated hand-over-hand training [64,206,208,258,278].

Another use of this topology is to enhance the operability of the task-side (follower)
robotic system when there exists kinematic and structural asymmetry, causing discrepancies
between degrees of freedom of leader and follower robots. In this scenario, each user
may take control of parts of the follower robotic system hence increasing the human
interface dexterity [279–282]. As another application, surgical tasks such as needle insertion
can benefit from this topology. For this, the needle insertion can be divided into two
independent tasks of (1) controlling the position and orientation of the needle, and (2)
controlling the depth of insertion [230]. Yet another example of such a scenario is therapist-
in-the-loop (TIL) mirror robotic rehabilitation for post-stroke patients, using which the
therapist’s trajectories (first leader robot) is modulated by the user’s hand on the less
affected side in a mirrored fashion (second leader robot) to rehabilitate the hand on the
affected side (the follower robot). This architecture not only allows for higher safety and
reliability of the therapy but can potentially allow for stimulating neural recovery through
the medium of mirror rehabilitation [247,253,254].

Motivated by the significant benefits of ML/SF topology in several real-life appli-
cations, a variant of this topology is also investigated in the literature when the inter-
action between the follower robot and the environment is virtualized so that multiple
users at multiple leader sides can share the control of a certain task in a virtual reality
environment [250,255,256,283–286]. The aforementioned application grants significant
benefits for the simulation-based medical applications such as surgical training [287],
and non-medical applications such as collaborative sculpting and even online computer
gaming [250,255,256]. For virtualized ML/SF topology, the virtual reality environment
can be shared in a single server (client–server) format or distributed among users (peer-to-
peer) [283].

Despite several benefits, there are some existing challenges with the use of this topol-
ogy. It should be noted that in both virtualized and real-world usages of the ML/SF
topology, a question is the fusion methodology between the commands of different users
and the corresponding synchrony [218,284]. It should also be noted that such topology
may suffer from a nonhomogeneous distribution of delay between different operators
and between them and the follower robot, which calls for a specialized stabilization
framework. One of the major challenges with the distributed delay is the complexity of
the stabilization architecture [4,218,272,273]. Improving the performance, stability, and
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functionality of ML/SF topology is ongoing research, and several advanced topics have
been investigated during the last decade. Examples are wave-variable controller [284],
graph theory, and network topology optimization [256], feedback-based synchronization
controller consisting of a linear compensator with a Smith predictor [288], virtual cou-
pling scheme [285,289], event ordering via global time coordinate frame [290] and remote
dynamic proxies [291–295].

2.3.2. Single-Leader/Multi-Follower (SL/MF)

Another topology of the multilateral teleoperation system is Single-leader/Multi-
follower (SL/MF) structure. In this type, more than one follower is in the loop to improve
dexterity, manipulability, performance, and functionality of the system. This topology is
usually used when one leader is sufficient for commanding the task, while one follower
cannot overcome the complexity and geometry of the task [4]. Examples of applications
for this topology are micro-tweezing [227], handling heavy and bulky objects [225], coop-
erative manipulation [225,226], motion coordination of multiple robotic agents (swarm
robotics) [228], assembly line tasks such as for bolt-nut pairs [225]. The main challenges
are the synchrony between multiple follower robots operating in a shared environment
while ensuring a secure grasp under the command of the leader robot [226]. A control
algorithm that has been used to ensure the security of the grasp is a passivity-based control
framework for cooperative robotic systems at the follower side [226,227], using which the
dynamics of the follower robots are divided into two subsystems; shaping system and
locking system. The shaping system gets controlled by disturbance cancellation to make
sure the grasp is secured, while the locking system is controlled based on the operator’s
commands with higher dynamics. This control approach was applied to the bio-operation
micro-tweezing task. There are other control strategies designed for enhancing the perfor-
mance of SL/MF topology such as task-oriented controller [225] that requires knowledge
of the task before the operation, and wave-variable controller [229], which is used to syn-
chronize follower consoles in the presence of time-varying communication delays while
guaranteeing stability.

2.3.3. Multi-Leader–Multi-Follower (ML/MF)

Multi-leader–multi-follower (ML/MF) systems are the most complex teleoperation
topology in terms of the number of leader and follower components involved in a task (see
Figure 5). To provide an illustration of the kind of robots that enter this category, the da
Vinci system is a decoupled ML/MF robot: the operator manipulates independently two
handles that each controls one robotic arm. This topology takes advantage of (a) improved
dexterity, grasp, and manipulation due to the use of multiple follower robots, and (b) more
flexibility and cooperation due to the involvement of multiple operators commanding and
monitoring the operation [249]. Such systems can make the execution of more complex
tasks possible [296]. Potential other applications include the cooperation between several
surgeons with more than two tools, with operators potentially being distant from each other
and from the patient. An important feature needed for this topology is for avoiding collision
between robots on the side of follower consoles since the control is shared between multiple
operators [297]. The challenges for this topology can be categorized into two branches, (a)
safety [233–236], and (b) motion synchronization of the systems [240–243]. For the safety
of the system, different measures have been taken into account in the literature to avoid
collision of the follower robots [233–236]. One approach is through predictive models,
which predict the trajectory overtime for the motion of the followers and uses it to ensure
safety and avoid collision [233]. Another approach is to predict and render a model of
the environment on the leader site instead of transmission of force or velocity signals,
which can also improve the bandwidth of the overall system [234,235]. The aforementioned
controllers are mostly known as model-mediated controllers, which use the information
about the environment to avoid collisions [233–237].
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Figure 5. Multilateral topologies used in telerobotics, n is the number of network ports/terminals. (a)
Single leader–multi follower (b) multi leader–multi follower (Images ©2020 Intuitive Surgical, Inc.).

In addition to motion synchronization and stability, force reflection strategy is another
studied topic for this topology. In some scenarios, each operator controls a separate follower
robotic arm, while force reflection provides information about the collision. In some other
scenarios, environmental force is also reflected. It should also be highlighted that control,
local autonomy, and task sharing for this architecture are challenging in the presence
of distributed communication delay and uncertainties at each leader or follower side.
Several advanced architectures have been introduced in the literature to address some of
the mentioned issues, including distributed event-based controllers [238,239], adaptive
neural/fuzzy controllers [240–242], and Passivity-based approaches [243–246,249,296,298].

2.3.4. Trilateral Teleoperation

Trilateral teleoperation is a specific case of multilateral systems in which the system
has three terminals between which the motion and force profiles get exchanged (see
Figure 6). Due to the particular use of this architecture, here, we have separately discussed
trilateral teleoperation. This architecture has been used in three different configurations,
as explained below.

Human–Machine Shared Control (HMSC)

This configuration consists of one operator/leader robot, one autonomous agent
(please see Section 3 for more details), and one follower robot [206,216,251,299–303].
The configuration has also been seen as a variation of SL/SF architecture, which is aug-
mented with artificial intelligence. In this setting, the operator’s actions and the task are
monitored by the autonomous agent, which refines the leader’s command that is to be
given to the follower robot [206,216,299]. Among the scenarios that this configuration has
been suggested for, are surgical training and supervised autonomous surgery. For motor
training, the trainee (at the leader side) shares the control of the teleoperated task with the
autonomous agent. Haptics cues generated by the autonomous agent can be provided to
guide gently or to impose a trajectory strictly to be followed [206,216,299]. For surgical
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autonomy, the autonomous agent is in charge of monitoring and conducting certain aspects
of a task in collaboration by (and under the supervision of) the surgeon, to help reduce the
difficulty of repetitive tasks for a surgeon [251,304] (Please see Section 3).

In non-medical scenarios, HMSC systems have been used in telemanipulation, mainte-
nance, and repair procedures for space applications (such as space robots) to take advantage
of the intelligence of an operator for decision making and teleoperation, as well as au-
tonomous control of the agent in the loop [300–303].

Figure 6. Trilateral topologies used in telerobotics, n is the number of network ports/terminals
(Images ©2020 Intuitive Surgical, Inc.).

Dual-User Shared Teleoperation (DUST)

This configuration refers to structures that have two leader stations for the cooper-
ation of two operators on one follower console. This collaboration helps improve the
task execution in comparison with the same task done individually [273]. The concept
of haptic-enabled negotiation between two operators can be made feasible using this
framework to control the follower console collaboratively through haptic communica-
tion [305]. More details on this can be found in Section 3.2 where we compare various
autonomy levels. The wide literature related to DUST architectures can be categorized
into two main branches of research: (1) control [150,207,269–274,277,306–309], and (2)
Functionality [4,247,253,254,258–267].

For controlling DUST topology, subjects such as closed-loop stability have been ex-
amined in detail, and researchers have proposed several techniques to overcome existing
issues including instability under shared telemanipulation [4,163,258]. In this regard, con-
trollers are developed based on what is known to be the “dominance factor”, which defines
the level of authority of each leader over the follower action [268]. Several controllers and
stability analysis techniques have been introduced for constant dominance factors in DUST
structure based on algorithms such as fuzzy controllers [277], basic PID controllers with
dissipative gains [308], and passivity control theory [150,207,307].

The concept of variable dominance factor was first introduced by Shahbazi et al.
in [163] to enable time-varying real-time adjustment of the authority levels of the two
operators. Thereafter, based on methods such as passivity-based approach, and small-gain
control, other control frameworks have been examined to maintain the stability of DUST
topology in the presence of communication delays [150,207,308,309].

Regarding various functionality of DUST topology, several applications have been
introduced in the literature related to robotic rehabilitation and haptics-enabled surgical
training [4,247,253,254,258,260–267]. In the context of rehabilitation, DUST topology is
used as a way to conduct therapist-in-the-loop (TIL) mirror rehabilitation therapy in which
the therapist and the less-affected hand of the patient are controlling the two leader robots,
and the more-affected side is connected to the follower robot. With this architecture, not
only the therapist can provide rehabilitation exercises, but also the patient can control the
administration of the therapy (considering the comfort, pain, and other factors) using the
second leader device. This architecture would generate a mirrored motion between the
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more affected and less affected sides under the supervision of the therapist and is classified
under a mirror rehabilitation framework, which is a well-known technique for promoting
cross-cortex activity of the brain [247,253,254].

In the context of surgical training, DUST topology has been used for EIL haptics-
enabled training scheme. For this, the expert and the novice surgeons control the two leader
robots while the follower robot is to conduct tasks on a physical phantom of the surgical
site designed for training. Using this architecture while the expert surgeon is conducting
the task, using a rigid virtual fixture implemented at the novice’s side, the novice would
learn how to manipulate and control. Besides, when the novice surgeon is performing the
task, the expert surgeon can provide corrections and cues since there is a haptics coupling
between the two leader robots. In addition, when the two surgeons conduct the task, the
system can adaptively tune the authority level and the stiffness of the virtual fixture. In
this way, if the novice surgeon is generating high-quality motions (which can be quantified
through comparison with the expert surgeon’s motion on the fly and during the operation,
and based on measures such as trajectory differences, smoothness, etc.), the system can
allow for higher authority and lower stiffness of the dynamic virtual fixture. Examples
of such designs can be found in the literature [4,163,258,260–268]. In [258], for instance,
an expertise-based surgical training framework was introduced, in which novice trainees
will be guided with haptic guidance, and when the acquiring higher expertise, the force
feedback would gradually switch from the haptic guidance toward environmental force
reflection. Fuzzy logic is used in this work to fuse several objective measures about the
expertise of the novice surgeon.

Dual-User Redundancy Control (DURC)

The difference between this topology and DUST topology is that here the two operators
control different degrees of freedom, joint, or motions of the follower robot, while in DUST
topology the two leader motions are fused to control the Cartesian motion of the follower
robot in the task space. This feature improves the operability of the follower robot for
complex environments and enables multitasking due to the separate assignments of the
degrees of freedom of the follower robot to the operators [279]. DURC topology is used for
tasks such as robotic telerehabilitation [280] in which a 6-DoF arm motion of the patients is
to be controlled using two 3-DoF leader systems controlled by two operators to perform
complex rehabilitative tasks. It is crucial for the leader robots to operate in synchrony to
coordinate arm movements safely (for which a local intelligence can be of high benefit).
Other examples can be found in [281,282,310].

Section Vision

Having established various topologies of teleoperation systems, their design, usages,
challenges, the future direction of this field of research should be evaluated holistically.
We have shown that several topologies of telerobotic architecture have allowed for a
large spectrum of tasks and applications, which would not be possible in the absence of
such technology. Among all the challenges facing teleoperation, uncertainty, and time
delay are still the most prominent problems resulting in asynchrony, instability, and task
failure. New advanced intelligent control architecture, predictive models, and the use of
autonomous agents can help to mitigate the mentioned challenges.

3. Autonomy Levels

This section aims at describing different levels of autonomy and embedded intelligence
in various telerobotic solutions in the context of teletherapy. We consider a gradual increase
from direct telerobots with no intelligence to fully-autonomous telerobots.

The gradual increase in autonomy was first defined by Sheridan et al. in 1978 [311]
with ten levels of autonomy (including none and full autonomy). Conway et al. reduced
this scale in 1990 [312] to (1) direct continuous teleoperator control, (2) shared continuous
teleoperator control, (3) discrete command control by the human operator, and (4) supervi-
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sory control. In 2016, Nichols et al. [313] modernized the terms into bilateral teleoperation,
shared control, supervised control and supervisory control, modified the order of shared
and supervised control, and introduced a new level, i.e., traded control, which corresponds
to a mix in time between teleoperation and shared control, and formalized a generic soft-
ware architecture related to that. Abbink et al. [314] and Yang et al. [304] also revised these
terms (with six levels). In this paper, we propose to bring some refinements to the scale
proposed in [313], taking into account [304,314], and proposing a rising score of autonomy
order for telerobotic systems (details can be found below and in Figure 7):

1. Bilateral teleoperation: features any exchange of position (and force) between the
leader and the follower robots (only position exchanges were envisaged in [313]) and
uses a SL/SF topology defined in Section 2.1;

2. Shared control which can be split in two subcategories:

• Assisted Shared Control: the operator is assisted with an auxiliary feedback
added to the teleoperation such as continuous vibratory feedback, or virtual
fixture. This is in agreement with the definition of “shared control” in [312,313];

• Multi-user Shared Control: corresponds to architectures which include several
operators sharing the control of the same telerobot;

3. Traded Control where the users alternate between bilateral teleoperation and shared
control [313] or supervisory control [314]. They may switch assisted/automated
control off when it does not comply with the task requirements.

4. Supervisory Control, where some high-level information (parameters and/or offline
programming) is sent to the follower robot to be reproduced with some degree of
controlled autonomy, knowing that in main medical applications, there are no very
long-distance constraints.
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Figure 7. Autonomy levels, from teleoperation (left) to supervisory control (right) in teletherapy
applications.

3.1. Bilateral Teleoperation

As mentioned in Section 2, in teleoperation architectures, the follower robot mimics
the actions of a leader robot controlled by an operator. In surgical applications, typically,
two arms are independently controlled by both operators. Thus the system is indeed
two independent SM-SS architectures (see Section 2.1). A complementary human–robot
interface (HRI), often featuring pedals, enables the operator to move the third arm handling
the endoscope.

Still recently, many generations of surgical robots have only relied on position-position
exchanges: the follower tracks the position of the leader and reciprocally. For instance the
da Vinci robot does not enable force feedback (a solution to circumvent this limitation on
this specific robot has been recently proposed in [114]). Yet, as detailed in Section 2.1.1,
some reports have been regularly published about the usefulness of haptic feedback in
specific medical applications. Though teleoperation systems have featured force feedback
for a long time in other applications (spacial, submarine, mobiles robots, ...) [4,54,206,312].
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This lateness in the medical field can be explained, on the one hand, by the patents of
intuitive surgical that blocked the development of this market, and on the other hand, by
the difficulty to measure the interaction forces during surgical tool-patient interactions,
while remaining compliant with medical sanitation laws, and to efficiently transmit it to
the surgeon. Hopefully, force feedback has been progressively integrated into the next gen-
erations of medical robots.The very first haptics-enabled commercialized surgical robot is
considered to be the NeuroArm (IMRIS, Inc., Minnetonka, MN, USA): a telerobot designed
for MR-guided biopsy and stereotaxy embedding two 3-DOF optical force sensors. It is con-
trolled remotely by a surgeon from a robot workstation featuring several display monitors
and two haptic devices. It was first introduced as a project in [315], used for a first neuro-
surgical procedure in 2008. In 2009, the MiroSurge telerobot from the German Aerospace
Center (DLR) had similar functions to ZEUS and LARS, but with force feedback [49,50].
Since, other robots with force feedback were introduced, such as the AQrate® System
(KB Medical) for minimally invasive spinal surgery, Avatera (Avateramedical GmbH, Jena,
Germany), MiroSurge, Revo-I®, Senhance (2017, TransEnterix, Morrisville, NC, USA), the
CMR Surgical (Cambridge, UK) Versius, the REVO-I RAS system (Revo Surgical Solutions,
Seoul, Korea), or the Stryker’s Mako platform for total knee and hip replacement [52].
Recent works published promising solutions for medical applications, providing haptic
feedback with forces about 4 N with a resolution of 0.03 N and stiffness about 3.6 N/mm
with a resolution of 0.025 N/mm [316].

One of the great features of bilateral teleoperation is the opportunity to provide scaled
manipulation [317], to manipulate objects at a smaller scale and to magnify rendered
forces. In medical applications, the motion of the follower effector is often scaled down
to perform delicate and precise tasks. Yet, Cassilly et al. showed that motion scaling
reduces the number of errors at higher magnifications, but could also increase the task
completion time [318]. Indeed, the drawback is that the attainable space is proportionally
reduced, which prevents the surgeon to perform larger movements to navigate between
targets. This is why a clutching approach has been rapidly integrated into medical robots:
when clutched, the follower does not move and the surgeon can move the leader back to
extend his movement once unclutched. However, this is repetitive and time-consuming.
Recently, Zhang et al. introduced a self-adaptive motion scaling mechanism that adapts
to the user skills and the task requirements [319]. We cite this work here for readability
concern, but it corresponds to shared control solutions detailed in the next section.

Bilateral teleoperation is also applied for remote ultrasonography [320,321]. Nowa-
days, over a quarter of emergency admissions requires an ultrasound examination for
preliminary diagnosis purposes. This is a low-cost radiation-free examination technique,
which implies that the physicians remain very close to their patients to position the ul-
trasound probe on the targeted anatomic area. Since the late 1990s, several solutions of
telerobotized ultrasonography have been developed to compensate for the lack of ultra-
sound experts in medically isolated settings (see, for instance [18]). Two concepts have
been proposed to teleoperate the ultrasound probe: either with a robotic arm or with a
light-weight specific robot maintained on the patient by a paramedic, while the physician
remotely actuates the probe to collect and then later analyze the ultrasound images. Ultra-
sound probe guiding robots can also be used for enhanced ultrasound examination as an
assistance [16,17], such as described in the following shared control section.

Nowadays, bilateral-control based solutions are mainly studied in terms of stabil-
ity [64] (or passivity [182,322]) and transparency [182,323] taking into account commu-
nication delays [182,274,320], packet drops, disconnections, data quantization, actuator
saturation, operator dynamics [168] to provide safer low-level architectures that can then be
used with embedded operator assistance intelligence, to generate the following categories.

3.2. Shared Control

The shared control paradigm has been proposed in various forms to assist teletherapy
operations. It mainly helps improve the operators’ sensorimotor and spatial reasoning
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skills. Using this strategy, the operators control the remote robot, but they are assisted
in performing the task. This approach is also referred to as cooperative or collaborative
teleoperation, as it can be seen as a collaboration between either several operators (such
as in the aforementioned dual-user topologies) or between a “robot intelligence” and the
operator. In the second case, depending on the amount of assistance provided to the human
operator, the cooperation is performed at different levels, ranging from low-level sub-
tasks (kinematic transformations, environment motion compensation [324], force filtering,
motion planning [325]) to high-level tasks (situation analysis, planning generation, and
decision/proposal making [313]). There is no single definition for shared control [314]. We
propose to divide the shared-control-based solutions into two types of strategies: those
based on task decomposition and those based on authority blending.

3.2.1. Task Decomposition Based Shared Control

The first category of shared control strategies, shown in Figure 8, lies on the task-
decomposition approach, which consists of decomposing the task into several sub-tasks,
where some of them are performed by the user, and others are automated for assistance
purpose [16,313,325–327]. This decomposition can be performed by automating the most
difficult part of the motions while leaving the operators free for safe motions and agency.
A motivation for reducing their maneuverability is the decrease in their cognitive load.
This approach is also called dimension reduction in [313], where the palpation task was
decomposed into three chained sub-tasks: the robotic agent decides for the palpation
locations, then the operator controls the palpation during the downward stroke until the
force threshold is reached, and at which point, the robotic agent controls the upward
palpation stroke . Thus, the operator is solely responsible for imparting forces. Another
application is proposed in [327] where a flexible manipulator creates dynamic trajectory
plans automatically. The surgeons only need to define the dissection trajectory with a few
markers, while the system generates a trajectory based on the feedback from the stereo
endoscope system, with consideration of the deformation of the tissues.

Motion compensation is another application of task decomposition. For instance,
the steady hand cooperative control was introduced at first in 1999 in [66]: a force sensor
detects forces exerted by the surgeon on the leader handle, and the follower robot moves to
provide smooth, tremor-free precise positional control and scaled force feedback. This med-
ical application would be extremely difficult and unsafe (if even possible) for the patients
without this assistance. For instance, in [328], the beating heart motion compensation
is decomposed into three tasks; (1) motion synchronization, (2) image stabilization, and
(3) shared control. In [211], for lung motion compensation during needle insertion, an
impedance-based control was used. This approach has been enhanced in 2017 in [16]
for tele-echography purposes where an impedance-controlled teleoperation system com-
pensates for the natural motion of organs such as heart, chest movements uniquely via
appropriate parameter adjustment in the desired impedance models, without requiring
any direct measurement and/or online prediction of the organ’s motions, and even in
the presence of communication delays and modeling uncertainties. An enhanced version
has been proposed in [329] and a multi-user version is available in [324] for training or
cooperation purposes.

In the particular case of multi-user training, the number of sub-tasks is increased
proportionally. In this case, in addition to the aforementioned tasks, a new task adds
position guidance to the trainees during the training procedure, and another one provides
force feedback to the additional operators regardless of their levels of authority over the
follower robot.
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Figure 8. Shared control based on task decomposition, main principle (Images ©2020 Intuitive
Surgical, Inc.).

Virtual fixture functions described in Section 2.1.2 provide guidance or inhibition
feedback that is generated in a subtask synchronized with the operator’s manual subtask.
These features add safety and directional operations through software. For instance,
in [326], a subtask is responsible for the online generation of some VFs using interaction
force measurements, preoperative information (such as CT scans), and intraoperative
information (such as body motion). A 2014 detailed survey about VFs is available in [67].

Traditionally camera control is conducted manually by the surgeon during the surgical
workflow. An autonomous robotic system can help to decompose the controlling of
tools and camera separately with minimum interruption of the continuous operation of
surgical flow. In the past years, several shared control frameworks have been proposed
by semi-autonomous systems for camera control. A review of the state of the art of
autonomous camera control systems in surgical applications is conducted in [330], in which
various techniques are introduced for autonomous control of the camera based on eye-gaze
tracking, instrument position in space, and image-Based scene tracking. For example,
eye gaze tracking is used to automatically center the viewpoint of a laparoscopic camera
regarding the user’s point of gaze in [331]. As another relevant topic, path planning
methods for the camera control have also been evaluated in the literature, such as an
algorithm based on rapidly exploring random tree (RRT) [332]. The development of
autonomous camera control of the da Vinci Surgical System is investigated in [333]. It can
generate autonomously-centered and zoomed viewpoints by keeping the surgical tools
in the camera’s field of view. The aforementioned technique has shown reduced user-
perceived workload and increased efficiency, and progress. Besides, it should be noted
that autonomous camera control can be very beneficial for the initial stages of surgical
training, when the trainee is becoming familiar with robotic surgery, and thus simplifying
the control can be significantly beneficial for the early stages of training. In this regard, the
autonomous camera navigation during the robotic surgical training is investigated in [334]
where the experimental evaluations suggested improved performances and efficiency of
training with robot-assisted surgery. In summary, it can be mentioned that autonomous
control of the camera can be considered as one modality of shared control (between the
machine and the operator) to reduce the cognitive workload, enhancing ease-of-use and
providing more safety and consistency of surgery.

Task decomposition for a human–machine shared control strategy is also used in
various medical applications such as the control of a wheelchair [325]. In this case, a brain–
machine interface using steady-state visual evoked potentials is introduced to guide the
wheelchair while a vision-based algorithm provides simultaneous localization and map-
ping (SLAM) to help with navigation among the obstacles. Another relevant application is
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myoelectric control of prostheses [335,336], which allows users to recover lost functionality
by controlling a prosthetic robotic device with their remaining muscle activity. In [337],
computer vision (for autonomous object recognition) and mechanomyography (to estimate
the intended muscle activation) data are fused to conduct a shared control that predicts
user intent for grasp and then realizes it. In [338], once the user establishes a pre-contact
between the robotic hand and an object (manual task), the shared controller optimizes the
actuation of the fingers of a robotic hand to maximize the contact between the hand and
object to obtain full-contact (robotic task).

In 2018, Watanabe et al. proposed a shared-control based solution to perform semi-
autonomous suturing with two robotic arms. In this procedure, the operator inserts the
needle into an organ using one of the follower robots when follower A1 was directly
controlled through a bilateral teleoperation architecture and follower A2 automatically
grasps the tip of the needle and pulls it out from the organ, and automatically hands the
needle back to follower A1. The operator repeats the same for each throw. An estimation
of the force involved in the interaction of A1 with the organ is used to trigger the start of
the A2 sub-task. This way, the completion time was decreased by an average of 20% in
total. This is an interesting mixture of autonomy levels. Ref. [339] highlights that finding
the point of puncture or holding the needle are activities that require some adaptation
or manual correction by the surgeon, with risks of incorrect suturing and subsequently
postoperative complications (calling for more advanced research related to autonomy).

3.2.2. Shared Authority Blending-Based Control

In this second category, the authority of control of the follower robot is distributed
among the (real human or virtual) operators, with a balance that can vary in time. They share
a complementary part of the control authority that is manually set on-line by one of the
users or dynamically managed. Such authority blending is applied on multilateral teleoper-
ation topologies (ML/SF and ML/MF, see Sections 2.3.1 and 2.3.3), out of them, dual-user
topologies are the most studied ones (see Figure 9). Typical applications of dual-user haptic
systems are for cooperation or training purposes, where both humans control the system
through the shared control structure and are both provided with haptic feedback. It is
also introduced as shared autonomy when a human and an autonomous system work to-
gether to achieve shared goals [340,341]. We will distinguish linear and nonlinear blending
approaches in this section in dual-user contexts and then in multilateral ones (more than
two users).

Considering the training application, the interest of haptics-enabled computer-based
training systems for gesture training is that the follower is virtual (a simulation of the tools
and the environment and their interactions) such that the trainees can rehearse as many
times as necessary on the same exercise while being provided with objective assessment.
Even if the aid from an experienced person can accelerate the training, this person can only
guide the trainees “from the outside of the simulation”, through a hand-over-hand guiding.
As for traditional hands-on training, this approach does not permit both users to feel and
dose the forces to apply to the tools as they share the same interaction. Dual-user training
systems permit the trainers to get into the simulation (or even the manipulation of a real
surgical robot), with force feedback for trainers and trainees.

Linear Blending

Shared control based on linear blending has been first introduced by Nudehi et al. ,
in 2005 in [268] for MIS telesurgical training, to allow for hands-on training of novice
surgeons based on the skills of experts. It consists of a variable α ∈ R with α ∈ [0, 1], such
that the follower robot velocity, vs, is a weighted sum of both user input velocity vmi with
i ∈ {1, 2} (m and s corresponding respectively to master (leader) and slave (follower))
such that:

vs = αvm1 + (1− α)vm2 (1)
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Figure 9. Shared control based on authority management, in the specific case of a dual-user topology
(Images ©2020 Intuitive Surgical, Inc.).

Thus, when α = 1 (resp. 0), user #1 (resp. #2) teleoperates the follower robot and
user #2 (resp. #1) inputs do not affect the follower robot motion. When α ∈ [0, 1], the fol-
lower velocity reference is mixed according to Equation (1) so that both users share the
leading of the follower according to the level of α. When α = 0.5, both users’ actions are
equally balanced.

There is no unified approach in the literature on the haptic feedback blending. In [268],
the only feedback received by the users from the tool-environment interaction was visual,
employing a remote camera image displayed on a local monitor. In practice, they fell in
their hands a force proportional to the difference of position difference between them:

fm1 = K(1− α)(xm2 − xm1)

fm2 = Kα(xm2 − xm1)
(2)

where xmi and fmi are respectively the position and the force feedback of master (leader
robot) i, with i ∈ {0, 1}, K ∈ R+.

This provided the “following” user with some virtual force, guiding him/her toward
the “leading” one, but it did not help novice users feel and learn the tool-environment
interaction forces fe. Therefore, this kind of training system can only be used to train users
on motions, not on efforts. The same limitation applies to [263] where the tool is virtual.
Khademian and Hashtrudi-Zaad overcame this limitation in [266] with two architectures:
the complementary linear combination (CLC) and the masters correspondence with envi-
ronment transfer (MCET). In both architectures, master (leader) controllers are fed with
reference signals that are linear combinations of desired velocities and feedback forces.For
the CLC architecture, they are:

vm1d
= αvs + (1− α)vm2 , fm1d

= α fe + (1− α) fm2

vm2d
= (1− α)vs + αvm1 , fm2d

= (1− α) fe + α fm1

(3)

where vmi is the velocity of master i ∈ {0, 1}, fmi the force applied by the user on master i,
vmid

is the desired velocity for master i ∈ {0, 1}, fmid
the desired feedback force for master

i, fe the interaction force between the environment and the follower robot. For the MCET
architecture, the desired feedback force is half of the environmental force for both users:
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vm1d
= vm2 , fm1d

=
1
2

fe

vm2d
= vm1 , fm2d

=
1
2

fe

(4)

Unfortunately, as visible in previous equations, both architectures feed users with a
distorted tool-environment force. As a matter of fact, in numerous works, confusion for
the user between the interaction forces (reflected from the follower robot interaction with
the remote environment) and those generated for guidance and training is possible due
to their mixing. In practice, in the low-level control, a force (or a torque) is generated by
an actuator, and this force is generated so that the haptic device follows a combination of
desired velocities and feedback force. It is then difficult for the user to differentiate the
force generated to control the velocity and the feedback force during transient periods.
During free motions, the force feedback typically corresponds to some guidance if any.
During immobile interactions, as there every device is steady, the force feedback should
reflect fe (no follower interaction), Trouble in sensing correct force feedback may arise
when switching between free motion and immobile interaction phases and during mobile
interactions (while touching soft materials for instance). In this last case, feeling the right
environment force requires the leader device to be moving at the exact desired velocity.
As advised in [342], visual help should be provided to the “following” users to correctly
position their device as the “leading” ones, during tool-environment contact phases to
mitigate this challenge.

Another linear-blending architecture is defined by [208], using an intrinsically passive
architecture that enables both users to experience a full fe force feedback. One can find
other recent uses of linear blending for dual-users systems in [343,344]. In practice, the
authority blending should be ensured taking into account variable communication delays,
packet loss, data duplication, and packet swapping [308], and actuator saturations [295].

The linear blending approach also increases efficiency; Saeidi et al. demonstrated
in [345] that a 2D-pattern cutting task with partial blood occlusion could result in a work
time diminution compared to a fully manual task. This experiment highlighted the interest
of a confidence-based shared control strategy with an adaptive blending. The aforemen-
tioned works on brain-interface for wheelchair navigation also make use of adaptive linear
blending [325], which permits to dose the trajectory between the desired direction and
the avoidance of obstacles. However, it remains important to leave some control on the
blending to the users. Indeed, Gopinath et al. introduced in [340] a theoretical framework
based on optimal control to optimize in real-time the linear blending according to users’
preferences (i.e., own cost functions). It resulted that the amount of assistance was volun-
tarily lowered as some subjects favored retaining more control during the execution over
better task performance.

Nonlinear Blending

Nonlinear blending has been introduced by Ghorbanian et al. by splitting the domi-
nance into two factors α and β [308]. Here, α balances the authority between both users
while β sets their supremacy over the follower robot. This provides an additional degree
of freedom in the authority mechanism that is leveraged employing a nonlinear relation
between α and β. Finally, only one parameter has to be set, which provides finer con-
trol of the authority. In the nonlinear blending category, we distinguish linear-blending
based strategies where α is determined using nonlinear mechanisms (we will refer to these
solutions as “nonlinear over linear” solutions (NL/L), and full nonlinear solutions).

In the NL/L category, Shahbazi, et al. [206] propose an adaptive fuzzy-logic-based
design to dynamically set α, according to the acquired expertise of the novice surgeon. It is
evaluated on the fly from various measures by comparing the performance of the novice
user with that of the expert. In [208,346], the adaptive authority adjustment (AAA) function
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is proposed to automatically revert, in trainee evaluation mode, the authority from the
trainee to the trainer in case of undesired behaviors of the trainee (as soon as the trainer
deviates from the trainee’s trajectory to rectify it). Following the same need of attributing
the authority to the right user, the solution introduced in [347] reverts the authority to the
trainer when he/she applies a force greater than a predefined one on his/her haptic device.
In [348], in the context of surgical grasping, the robotic controller and the human inputs
are linearly blended with a balance based on the computed confidence in the identification
of the grasped object by an online identification of the grasped tissue. This strategy
outperformed the regulation of the grasping forces to the desired target force compared to
manual control.

We cite here some authority blending solutions that are not based on the Equation (1)
linear approach. In [247], adaptive blending is applied for robotics-assisted mirror re-
habilitation therapy with the therapist-in-the-loop (TIL) approach, realizing a nonlinear
Assist-as-Needed Therapy (ANT), see Section 3. A haptic-negotiation model that dy-
namically mixes the velocity and haptic feedback exchange between a wheelchair driver,
an assistant, and the wheelchair follower controller is proposed in [349]. At first, a real
human assistant trains a Gaussian process (GP) regression model that will then act as a
virtual assistant.

Authority Blending with More than Two Users

Authority blending has been extended to multilateral (ML/SF) topologies for generic
purposes in [218], for the integration of a human assistant (forming so a trilateral topol-
ogy, in [247,349]), for cooperation purpose in beating-heart surgery (in the aforemen-
tioned [324]), and for training purposes with one (dual-user [218]) or several trainees
(multi-user [342]) with real tool-environment force feedback simultaneously felt by every
user. Multi-trainee architectures allow several trainees, along with a trainer (potentially
several ones) to use and learn on the same haptic training simulator (or real follower device)
at the same time. This avoids the trainer to repeat the same gestures for each trainee. One
trainee can perform a demonstration for evaluation purposes simultaneously towards
the trainer and the other trainees, who can observe it, which can be interesting from a
didactic point of view. In [218], a linear blending is proposed so that operators experience
force feedback from the follower-tool-environment interaction force corresponding to their
authority level. An impedance-based control methodology is adopted to guarantee the
passivity and so the stability of the system in presence of communication delay. In [342],
a trainer can also demonstrate a particular motion trajectory (and trainees follow this
demonstration with haptic feedback). As another sample application, the works exposed
in [324] permit shared collaboration and training between n operators with non-oscillatory
feedback in a beating-heart surgery context. In this work, multi-user linear blending is
proposed with a second force scaling factor β that permits to enable position guidance
for trainees in demonstration mode (called fundamental training) independently from the
authority attribution parameter α. This guidance is provided as a virtual force generated
by a virtual fixture designed to guide the trainees along the right path of the surgery.

3.2.3. Shared Control Synthesis

Table 1 synthesizes a wide range of works in the literature. This table does not include
all existing works in the literature due to the significant size of existing research. However,
it provides examples of each category. The table focuses on medical application, the level
of the task performed by the assistance, the activity of the assistance, the presence of haptic
feedback, the corresponding topology, the autonomy category, and the solutions for shared
control. This table shows that solutions are provided in the literature from low to high
levels of control layers, for a wide variety of applications.
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Table 1. Shared control samples for teletherapy applications.

Papers Application Task Level Assistance Haptic Feedback Topology Category Solution

[313] Surgical Manipulation
(palpation) High-level Decision Making 3

SL/SF Task Decomposition

Dimension Reduction
[327]

Surgical Manipulation (dissection)

Low-level Motion Control

7

[326] 3 Virtual Fixtures

[328] Surgical Manipulation (tracking) 7

Motion Compensation
[329,350] Surgical Manipulation

(tissue contact)

3[16] Tele-echography

[348] Surgical Grasping

Authority Blending Linear Blending[345] Surgical Cutting

[325,340]

Assistive Rehabilitation

High-level Decision Making 7

[247]

Low-level Motion Control 3

Trilateral

Task Decomposition Virtual Fixtures

[349]

Authority Blending

Nonlinear Blending
(virtual

spring-damper)

[206,208,268,269,
308,343,344,347,

351]
Surgical Training

Dual-user
Linear Blending

[352] Nonlinear Blending
(cubic polynomials)

[218,324] ML/SF Linear Blending
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Besides medical applications, there exist several other works that relate to shared
control strategies for other applications. A few of them are cited below, selected for their
interest. For instance, in [353], authors have developed virtual fixtures to help operators
grasp objects in a scene, resulting in an improvement of 20.8%, 20.1%, 32.5% in terms of
completion time, linear trajectory, and perceived effectiveness, respectively, between the
proposed approach and standard teleoperation. As surgical grasping is a common task,
such improvement should help enhance teletherapy applications.At a higher control level,
Javdani et al., highlighted that the assistance provided by the autonomous system requires
“knowing” the user’s goal to be effective. Solutions found in the literature based on a
predict-then-act model (see [341] for corresponding references) may not be effective due to
the intrinsic limitations of prior prediction of human intentions. The authors then proposed
a real-time observation based on a Markov decision process with online optimization to
determine the most probable current goal of the user. Experiments showed that this ap-
proach “reduced the task time compared to predict-then-act, required less user input, decreased user
idling time, and resulted in fewer user-robot collisions”. Knowing the high cognitive require-
ment of surgical operations, such an approach should also be interesting in a teletherapy
context. In [354], the assistance is achieved through programming by demonstration (PbD).
The assistance and user inputs are blended according to two confidence indices (on user
and assistance) computed online that determine their relative weight. The assistive sys-
tem uses a Gaussian mixture model (GMM) to represent the task, and the desired state
associated with a confidence level is obtained using a Gaussian mixture regression (GMR).
Experimental results on teleoperated object manipulations showed a light preference for
the trained solution. Authors conclude that this is a promising approach that still requires
investigation to become more effective. Other similar shared autonomy formulations can
be found in [355,356]. We can also cite the works of Zakerimanesh et al., that permit
multilateral teleoperation (using nonlinear authority blending) for remote applications
featuring time-varying communication delays, actuator saturations, nonlinearity in the
dynamics (which corresponds to a common teleoperation practical situation), and more
particularly for follower robots with redundancy, which is interesting with medical robots
as this redundancy is typically used to avoid collisions with the staff and other devices
around the patient. Shared control can also be used for some severely disabled people
with brain–computer interfaces (BCI). Non-invasive motor imagery-based (MI-based) BCI,
relying on Computer Vision and electroencephalography (EEG) has been proposed in [357]
to control a robotic arm. Experiments with five subjects were performed. Users only
needed two different mental tasks to reach the surrounding area of the target. The grasp of
the target was then realized employing a depth camera. The success rate was above 70%
with no specific user training.

A 2017 survey about shared control, not limited to teletherapy applications, is provided
in [358] with more details and highlights potential great enhancements in shared autonomy
medical applications in the future.

3.3. Traded Control

In traded control (introduced by Matijevic et al., in [359] and Hayati et al., in [302],
the follower robot sometimes operates autonomously (performing for instance a task of
bone drilling [360] or surgical knot tying [361]) and, sometimes, teleoperatively to facil-
itate the trade-off between teleoperated and autonomous modes. In practice, it can be
considered as an intermediary remote control strategy between supervisory or shared
control/bilateral control.The surgeon can use automation features when they are efficient,
and can take back the full control of the follower robot if necessary. In 2018, Watanabe et al.,
highlighted that “automating ubiquitous surgical subtasks such as suturing makes surgery
more efficient, e.g., reduction of surgeon fatigue and/or surgery time”, but “conduct-
ing fully-autonomous surgical task remains risky due to individual difference in human
body” [362]. What differentiates this category from shared control is that the level of
autonomy is discretely switched in time on demand of the surgeon. In shared control,
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the autonomy level is continuously moderated, manually, or automatically. As declared
in [313], this collaboration strategy is not commonly used in the literature. A search in July
2020on “x control” AND teleoperation with x ∈ {bilateral, shared, traded, supervisory}
in Scopus (See https://www.scopus.com) database provided respectively 432, 198, 14,
and 104 results, respectively. Moreover, Scopus outputs only one paper corresponding
to traded control in a medical context: [313]. The same requests on the IEEE database
(See https://ieeexplore.ieee.org) provided only seven results for traded control and only
two in the medical context, from the same authors as [313]. This can show great potential
for investigation on the context of traded control.

It should be noted that Parasuraman et al. [363] introduced a four-stage model of
human information processing in teleoperation tasks (i.e., (1) information acquisition,
(2) information analysis, (3) decision and action selection, and (4) action implementation)
where the functions in each stage can be automated. For instance, automation at stage 1 can
be performed by providing active sensors directing themselves towards the area of interest
or by providing adaptive noise filtering. In stage 2, one can envisage predictive functions
to bring up more useful information. In stage 3, an expert system may help the surgeon
choose the best strategy, and in stage 4, the computer can relieve the surgeon by realizing
itself a repetitive or dangerous task (automatic palpation for instance). This model is
aimed at guiding roboticists in their design of teleoperation architectures. The multilateral
manipulation software framework (MMSF) was introduced in [313], aimed at structuring
collaborative tasks to facilitate rapid development of human–robot collaboration models.
This framework is to be used upon low-level robotic software frameworks such as ROS.
It has been applied for the segmentation of a relatively stiff tissue (e.g., a tumor) from the
surrounding soft tissue task.

Traded control is also useful for telerehabilitation purposes. In this regard, the concept
of learning from demonstration is utilized for robotic rehabilitation [364–367]. This strat-
egy encompasses two distinct phases: during the first (therapist-in-loop) phase, the ther-
apist interacts directly with a patient through bilateral teleoperation. During the second
(therapist-out-of-loop) stage, the follower robot displays the learned therapeutic behavior
to the patient (for example via an impedance control loop).

3.4. Supervisory Control

Supervisory control is when the operator asks the follower robot to perform au-
tonomous high-level tasks under the supervision of the operator who can interrupt them.
Functions provided by supervisory control include planning, teaching, monitoring, repair-
ing, and learning from experience [368]. This approach derives from contexts with very
high transmission delays and low bandwidth, such as in space and submarine applica-
tions [369], which could result in the inability of the operator to provide the appropriate
commands on the fly (due to the affected causality) and could result in instability and
divergence. It has been reused repetitively for swarm robotics where the followers are
numerous so not directly controllable by the operator [370].

Supervisory control is now used to get performance on “routine tasks” [368], such as
autonomous parking functions in autonomous cars. In the surgical domain, this is a
very active topic of research and the corresponding research is accelerating. There are
several technical challenges to be addressed including tissue deformations and mobility,
unpredictable scene changes resulting from cutting, suturing, or cauterizing operations.
There are some legal structure which should be also implemented for autonomous surgery
before its wide deployment [371].

In 2016, Shademan et al., demonstrated [372] that supervised control performed on
the smart tissue autonomous robot (STAR) was “not only feasible but also, by some metrics,
surpassed the performance of accepted surgical techniques, including robot-assisted surgeries
(RAS), laparoscopy, and manual surgery”. In 2020, Liu et al. report the use of supervisory
control in orthopedic operations with a RoboDoc (THINK) robot [373]. Operations are
performed in two stages: surgical planning by the surgeon considering pre- or intra-

https://www.scopus.com
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operative patient information from CT–MRI scans or 2D/3D fluoroscopy, and then robotic
autonomous execution. More examples of surgical autonomy can be found in [372,374–376]
and references therein.

3.5. Discussion about Robotic Autonomy

Robots have been progressively moving the frontier of tasks that can be conducted
remotely, collaboratively, or autonomously. The raising autonomy of robots helped hu-
mans secure and optimize basic tasks but also opened the way to new applications
which are hardly-feasible or not feasible manually such as in several micro-scale sur-
gical tasks [51,53,377,378], some maxillofacial surgeries [360], some dental surgeries [93],
and some ophthalmic operations [148,378]. There remain several operations that are chal-
lenging for robots especially those including the unpredictability of the environment (such
as autonomy on soft and deformable tissues) and those requiring a high level of domain
knowledge for fast reflexive reactions (in extremely sensitive operations). Research in
robotics has augmented sensorimotor skills of human and at the same time provided
insight on ways to cooperatively perform tasks which are not feasible by robot only or
human only.

Thanks to the arrival of new telecommunication paradigms such as 5G and beyond,
a new generation of teleoperated applications can be envisioned with ultimate fidelity
and safety of force feedback thanks to unprecedented quality of service (very low band-
width, delays, and jitters) of novel communication systems and performance of advanced
control algorithms.

It can be imagined that the level of autonomy of medical telerobots and patient safety
will progressively increase along with technological progress.

Based on the current trend, we can envision that autonomous telerobots will not
aim to replace surgeons but to expand human capability through more efficient, adaptive,
high-level, and safe operation offered by robotic dexterity and artificial intelligence.

4. Conclusions and Future Directions

Telerobotic technologies have opened new doors to investigate the future of the
modern healthcare system when smart and connected infrastructures can address sev-
eral existing challenges. Telerobotic systems were initially designed to extend human
access to remote environments and bypass physical barriers, such as deep water, space,
and radiations. With the utilization of modern medical telerobotics, other potentials of this
technology have been realized. With the use of this technology, currently, many clinical
tasks are possible, which were not realizable before the use of telerobots.

In this paper, we discussed several applications of telerobotic technologies, including
telerobotic surgery and telerobotic rehabilitation. We have identified sensory augmentation
and motor augmentation benefits of intelligent telerobotic systems; when using a sensorized
tool, the awareness of the operator (e.g., a surgeon) about a particular task has reached
a level beyond human competence, and the resolution of movement control has been
significantly improved. These benefits are mainly discussed in the context of telerobotic
surgery, for which a successful commercialized example is the da Vinci surgical system.
We have also highlighted other medical applications of telerobotic systems, in particular,
telerobotic rehabilitation for delivering physical therapy and assessment of patients with
motor disabilities at remote locations when patients are at home and clinicians are located
at far distances in clinics. We have explained how such technologies have attracted a great
deal of interest, especially after the COVID-19 pandemic, due to their power in augmenting
the current telemedicine, which relies only on visual and verbal interaction between the
clinician and the patient. This paper also discusses the existing challenges about the use
of telerobotic systems, including the lack of force feedback in several medical telerobotic
technologies due to the challenges associated with instrumentation and stabilization. We
have discussed that with the use of advanced instrumentation technologies and intelligent
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stabilizers, the next generation of medical telerobotic systems can be enabled with force
feedback modality.

In addition to the above, this paper also investigates other topologies of telerobotic
systems when the number of robots involved is more than two resulting in a multilateral
architecture. The multilateral architectures can allow for either collaboration between
several operators to contact a joint task or can allow collaboration between several remote
robotic arms to interact when and if the task cannot be conducted using one follower
robotic systems. Another application of multilateral architectures is explained to be expert
in the loop training of novice clinicians (such as novice surgeons). The paper highlighted
that with the use of advanced architectures, the autonomy of task conduction can be shared
between the human operator and the machine intelligence.

The concept of autonomy and various levels of autonomy were explained in detail
in this paper. Various examples of shared autonomy were introduced, such as when au-
tonomous agents compensate for the natural tremor of the surgeon’s hands, or compensate
for organ motions, or provide virtual fixtures to generate either a forbidden region or
guiding force field to help the surgeon enhance the quality of the outcome. We have also
discussed the use of advanced machine learning methods for augmenting the intelligence
of surgical robots and sharing various levels of autonomy between the operator and the
machine. In the end, we have categorized and discussed more diverse applications of
telerobots, which can form the future of telemedicine in modern healthcare.

To summarize, this review paper provided and updated a comprehensive analysis
of the literature and discussed the challenges and future directions of research and devel-
opment of this technology. We believe this review article can raise awareness of various
sectors, including stakeholders and policymakers, to exploit the potential of this technology
and boost our healthcare system of tomorrow.
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