
applied
sciences

Article

An Event-Driven Serverless ETL Pipeline on AWS

Antreas Pogiatzis * and Georgios Samakovitis *

����������
�������

Citation: Pogiatzis, A.; Samakovitis, G.

An Event-Driven Serverless ETL Pipeline

on AWS. Appl. Sci. 2021, 11, 191.

https://dx.doi.org/10.3390/app11

010191

Received: 31 October 2020

Accepted: 22 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: c© 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

School of Computing and Mathematical Sciences, University of Greenwich, Old Royal Naval College,
Park Row, Greenwich, London SE10 9LS, UK
* Correspondence: a.pogiatzis@greenwich.ac.uk (A.P.); g.samakovitis@greenwich.ac.uk (G.S.)

Abstract: This work presents an event-driven Extract, Transform, and Load (ETL) pipeline serverless
architecture and provides an evaluation of its performance over a range of dataflow tasks of varying
frequency, velocity, and payload size. We design an experiment while using generated tabular data
throughout varying data volumes, event frequencies, and processing power in order to measure:
(i) the consistency of pipeline executions; (ii) reliability on data delivery; (iii) maximum payload
size per pipeline; and, (iv) economic scalability (cost of chargeable tasks). We run 92 parameterised
experiments on a simple AWS architecture, thus avoiding any AWS-enhanced platform features,
in order to allow for unbiased assessment of our model’s performance. Our results indicate that
our reference architecture can achieve time-consistent data processing of event payloads of more
than 100 MB, with a throughput of 750 KB/s across four event frequencies. It is also observed that,
although the utilisation of an SQS queue for data transfer enables easy concurrency control and data
slicing, it becomes a bottleneck on large sized event payloads. Finally, we develop and discuss a
candidate pricing model for our reference architecture usage.

Keywords: serverless; FaaS; event-driven; distributed; AWS; ETL; architecture

1. Introduction

Efficient, scalable, and cost-effective data processing and pipelining have become
critically important in real-time analytics for decision making. Naturally, the paradigm
favours real time event-driven solutions over periodic batch processing. Systematic tech-
niques for these tasks have been thoroughly investigated and many open source tools and
frameworks emerged and adopted by industry [1–4]. Even so, these are predominantly dis-
tributed solutions that require costly infrastructure and significant effort for development
and maintenance.

Data processing requirements in such environments most frequently consist of at
least one typical Extract, Transform, and Load (ETL) pipeline in order to accommodate
for heterogeneous sources. Generally, an ETL pipeline entails a data source that receives
incoming data, a computation stage that is scheduled to run at fixed intervals and a data
sink to store the post-processed data. Event-driven ETLs offer an alternative approach,
removing the need for fixed interval runs by operating in a more reactive manner, by al-
lowing changes in the data source to trigger data processing. This approach features real
time feedback, the efficient utilization of resources and elasticity [5], and it is often more
desirable with respect to business requirements. Yet, it is intrinsically harder to implement
due to its architectural complexities.

Recent advancements in serverless computing afford new opportunities in designing
architectures that realise high scalability, elasticity, and performance, while minimising
the cost and development effort. Such advancements have lowered entry barriers in the
implementation of event-driven ETL pipelines. In this paper, we adopt an event-driven
ETL pipeline architecture that was built on the AWS platform while using exclusively
serverless technologies and offer experimental evidence for its performance. To do so,

Appl. Sci. 2021, 11, 191. https://dx.doi.org/10.3390/app11010191 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8887-0139
https://orcid.org/0000-0002-0076-8082
https://dx.doi.org/10.3390/app11010191
https://dx.doi.org/10.3390/app11010191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/app11010191
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/1/191?type=check_update&version=2

Appl. Sci. 2021, 11, 191 2 of 13

we develop a reference implementation of an event driven serverless architecture that is
based on various serverless design patterns [6–10].

An empirical evaluation is performed through a series of experiments across different
dimensions in order to test for consistency, reliability, pricing, performance, and payload
limits of the architecture. In this context, this research

• Presents a reference architecture of a serverless ETL pipeline on AWS and indicates
advantages and limitations.

• Provides a data-driven analysis of the architecture through 92 distinct experiments.

• Conducts a critical analysis on the results, evaluates the critical aspects of the system,
discusses bottlenecks, and suggests alternative solutions.

Because one of the key motivations of this empirical research is to explore how the
reference serverless architecture behaves under a variety of parameters, we believe this
work offers a solid contribution to that end. It is imperative to clarify that the scope of this
research does not entail a comparative evaluation with other ETL solutions. Conversely,
it proposes a serverless architecture in order to accommodate ETL pipelines and empirically
demonstrates its capabilities and limitations.

2. Background

Serverless computing is a relatively recent and increasingly popular evolution of cloud
computing technology. It aims to provide a new programming model that fully abstracts
away the infrastructure layer for developers [11]. Throughout the literature, the term
“serverless” most often refers directly to Function-as-a-Service (FaaS) providers; however,
the term FaaS does not cover all serverless technologies. Figure 1 provides a view of
the spectrum of services that are typically classified as serverless. In this paper, the term
“serverless” refers to the wider definition that wraps these technologies.

Recent major industry shifts towards containers and microservices [12] led, in turn,
to increasing interest towards serverless computing. A main factor of attraction is that
the serverless paradigm supports a pay-as-you go model, allowing for (i) cost-effective
agile development and rapid prototyping [13] and (ii) acclaimed elasticity from zero to
“infinity”, given that scaling, parallelisation, and concurrency are delegated to the cloud
provider [14]. Therefore, it becomes significantly easier for developers to roll-out cloud-
based deployments that fulfil demanding non-functional requirements in a cost effective
manner, avoiding the labour of managing the infrastructure. As already mentioned,
although the scope of this work is not to formally compare this system with the traditional
ETL solutions, there are also intrinsic serverless advantages against serverful approaches
that are inherited by the proposed architecture. Table 1 summarises a high level comparison
of traditional and serverless ETL solutions across the aforementioned aspects.

Despite these new opportunities, serverless computing also poses significant risks
from the user perspective. Adopting serverless architectures without proper planning
can potentially hinder the smooth and successful development process. It requires rigor-
ous design and planning to ensure: (i) architecture parity with Quality of Service (QoS)
requirements and (ii) controllable costs as deployment scales [14]. A recent study identi-
fied use cases, where FaaS services fail to meet expectations mostly due to design-driven
constraints [15]. It is important to understand that shifting to serverless technologies comes
with a convenience-over-control trade off. Thus, it is imperative for the developer side to
ensure that delegating control will not impede changing business requirements.

Major cloud providers support a wide variety of out-of-the-box serverless services that
come with distinct advantages and limitations. One of the earliest FaaS was AWS Lambda,
which was launched by Amazon in 2014, and then followed by Google Cloud Functions,
Microsoft Azure Functions, and IBM OpenWhisk launched in 2016 [14]. Apart from pro-
prietary products there are several open source projects, such as OpenLambda, OpenFaas,
OpenWhisk, Knative, and Kubeless [16–19]. Even though open source alternatives afford

Appl. Sci. 2021, 11, 191 3 of 13

higher independence from the proprietary solutions, they are primarily self-hosted, which,
in effect, carries the burden of managing the infrastructure.

Figure 1. Developer control and serverless computing (adapted from [11]).

Table 1. Comparison of Traditional vs Serverless ETL solutions.

Traditional ETL Serverless ETL

Maintenance

Traditional ETL pipelines require regular infras-
tructure maintenance to ensure the Quality of
Service. This is usually managed by another ded-
icated team.

Infrastructure maintenance and updates is taken
care by the serverless components’ vendor.

On-Demand Require provisioning and the pricing is the same
whether the resources are utilized or not.

Serverless ETL pipelines can be used/created On-
Demand which lead to a flexible and dynamic
pay per data processed model pricing model.

Cost Effectiveness
Infrastructural components provisioned for tra-
ditional ETL solutions are usually priced at a
very high level of utilisation.

On the contrary, Serverless cloud services usu-
ally have a very granular pricing which results
into high cost effectiveness in the long term.
i.e., AWS Lambda functions are now billed per
1 ms of execution.

Data Sources Data sources are usually constrained to a limited
set of integrations of structured data.

Can be adapted to almost any data source/format
as long as there is a clearly defined approach of
transforming it.

Processing Mainly batch processing of records which leads
to only near real-time applications.

Allow for stream processing which can accom-
modate real-time applications

Pipeline Configuration

Have a very limited set of options to configure
the ETL pipeline and it heavily depended on
and defined by the implementation. Usually
only defined in a single programming language.

Serverless ETL pipelines configuration is still
heavily depended on the implementation but
there is significantly less technical effort on en-
abling polyglot implementations.

Elasticity
Scaling horizontally requires provisioning be-
forehand and careful planning to ensure the
smooth integration of new resources.

Serverless components are very elastic allowing
for almost instant horizontal and vertical scaling

3. Related Work

Already, multiple studies have focused on harnessing the power of serverless tech-
nologies in order to modernise traditionally tedious tasks. Many evaluated performance
across different dimensions, others addressed scalability issues, and others introduced
novel paradigms. Hence, the related literature can be categorised into evaluations and
applications of serverless technologies, yet there is often an overlap between the two.

A seminal example on the application side is PyWren [20], which introduced a MapRe-
duce primitive that was built on top of AWS lambda functions. PyWren provided a simple,

Appl. Sci. 2021, 11, 191 4 of 13

highly parallel, serverless data processing system, which showcased a performance compa-
rable to Spark. However, PyWren is not event-driven, still requires external orchestration,
and only addresses the data processing stage. Similarly, ExCamera [21] applies the same
principle in order to leverage extreme parallelism for digital video encoding, but, yet again,
also requires a centralized orchestrator for functions. Stanford researchers also worked on a
serverless orchestration framework, called gg [22]. It is a more generalisable approach that
still requires an external coordinator, yet it only targets to improve highly-parallelised tasks
rather than event-driven data processing. Flint [23], on the other hand, directly focuses
on distributed data processing by implementing a PySpark scheduler on AWS Lambda
functions and SQS queues for maintaining state. Although the design is convenient due to
Spark interoperability, it does not provide a comprehensive evaluation and, thus, comes
with challenges in its practicality. Mijanrur et al. supported the idea of using serverless
computing for ETL pipelines and presented a very high level overview of an exemplar
Serverless ETL architecture on AWS; however, their work did not include any evaluation
metrics [24]. Motivated by low maintenance and cost efficiency, Zang et al. proposed
a serverless AWS architecture targeting particularly power grid emergency generation
dispatch [25]. Unlike previous studies, Perez et al. [26] proposed an event-driven serverless
data processing architecture that was built on top of Kubernetes and OpenFaaS. While this
is a novel approach, the effort that is required to be deployed and maintained is substan-
tial; minimising that effort is one of the aspects that our reference architecture aims to
directly address. Finally, several authors focus on evaluating serverless computing over
major cloud providers by exploring performance, consistency, elasticity, security, latency,
and task variation, but they are constrained to a single serverless technology, rather than
an architecture, as this work [27–29].

As presented by the existing literature, many scholars actively explore how far serverless
technologies can be stretched. Some target insurmountable parallelization and others focus
on specific use cases. In this context, we extend the state-of-the-art in this field of research
by adding our proposed to architecture to the set of practical serverless systems for general
ETL data pipelines.

4. Architecture

We chose the AWS platform for our experimental evaluation for several reasons. Firstly,
according to a Canalys report, AWS holds the largest market share amongst the major
cloud providers [30]. Furthermore, AWS lambdas cold-start times have been proven to be
more consistent across multiple invocations [28] and they provide better CPU performance,
network bandwidth, and I/O throughput as implementations scale [29]. Other empirical
results suggest that the Amazon S3 offers low latency and comparable throughput over
other providers [31]. We selected Python3.7 to run our experiments, given that Python is
one of the most popular AWS Lambda runtime choices amongst academic studies [32].

Our event-driven ETL pipeline follows a rather basic architecture. The primary
aim of this research is to study the behaviour, overheads, and costs in the context of
serverless event-driven pipelines, in a manner that is as platform-agnostic as possible:
therefore, adopting a straightforward architecture excludes any optimising features AWS
may support. Similar to a typical ETL pipeline, the subject architecture consists of a data
source, a processing stage, and a data sink. Two additional intermediate stages were
implemented for connecting the processing with the source and the sink, primarily for
observability and fault tolerance. For reference, we labelled these stages as ’triggering’
and ’writing’. Figure 2 gives a high-level overview of the whole architecture, which is
outlined here:

Data Source: We use an AWS S3 bucket as a data source. Using S3 is both a cost-
effective and scalable choice as it provides low latency and out-of-the-box lambda integra-
tion capabilities. While, technically, data could be sent directly to lambda functions while
using an API Gateway, S3 acts both as a data source and datalake. Hence, the data persist

Appl. Sci. 2021, 11, 191 5 of 13

and they can be processed again in the event of system failure, or act as input for other
data analysis pipelines.

Triggering: S3 supports notifications that directly trigger a lambda function. Notably,
this is less desirable in live production environments, as it delegates the burden of im-
plementing a fail-over strategy down to the function. Yet, our implementation uses SNS
topics and SQS queues in order to invoke the processing stage. Although this increases
architectural and network overhead, it is an essential element of the architecture in order to
achieve observability and fault tolerance. More precisely, SQS triggers a lambda function
synchronously and, hence, any inputs that resulted in a failed invocation will be forwarded
to a dead letter queue. What is more, this architectural design allows for a fanout message
forwarding, as opposed to normal S3 notifications.

Data Processing: we employ stateless lambda functions for data processing. Ensuring
that the processing is stateless poses some limitations on the type of operations that can be
applied on the data, due to the lack of global context. There are ways to achieve statefulness
amongst many lambda functions [33,34], but these are not within the scope of this work,
as they introduce architectural complexities.

Data Writing: the same as in the triggering stage, data writing provides an extra layer
of fault tolerance and failover resolution by using an SQS and a lambda function, which is
responsible for persisting the data into DynamoDB. It must be noted that SQS limits
message sizes to a maximum of 256 KBs by design; therefore, each lambda transformation
worker must chunk the transformation output prior to sending it to the queue. This design
permits extremely high parallelisation, as each chunk is written by a separate writer.
Furthermore, it opens up the opportunity for applying some common processing logic to
all of the data after they have been processed (i.e., validation).

Data Sink: we use DynamoDB to store the processed data. DynamoDB is a serverless
NoSQL database and it fulfils all our experimental requirements. It is serverless, offers
a pay-on-demand plan, it has low latency, provides de-duplication and fast querying
capabilities, and it can be very easily extended with further data processing pipelines
through Dynamo Streams.

Figure 2. Overview of system architecture.

Pricing

In principle, serverless architectures should feature negligible costs when the system
is idle. An ideal alternative would fully eliminate costs, but this is not possible with the
current AWS platform capabilities. To have a more granular reference to the costs, we define

Appl. Sci. 2021, 11, 191 6 of 13

chargeable elements as anything that is charged as part of AWS services. That being said,
we categorise the chargeable elements of the architecture as active or passive, based on
how it is charged. Active costing refers to elements that are charged according to data flow
usage, while passive costing refers to charges that are applied, even when the system is
idle. An example of a passive chargeable element is S3 storage. Another, not very obvious,
passive chargeable element is SQS polling requests: when lambda functions are being
triggered by SQS, they keep polling the SQS queue, even when there are not any available
messages. The standard rate of polling is 15 requests per minute by design. Table 2 lists
active and passive chargeable elements across the proposed architecture.

Table 2. Active and passive chargeable elements of architecture.

Data Source Triggering Transformation Data Writing Sink

S3 SNS SQS Lambda SQS Lambda DynamoDB

Active

Requests (S3Req)

Messages (SNSmsg) Requests (SQSReq) GB/Seconds (GBSecCost) Requests (SQSReq) GB/Seconds (GBSecCost) Write Units (DBWrites)Data In (S3In)

Data Out (S3Out)

Passive Storage - Requests - Requests - Storage

5. Experimental Design

We design our experiments to investigate several aspects of the system across dif-
ferent data volumes, event frequencies, and processing power. These are critical factors
that should be considered when migrating to serverless configurations. Our empirical
evaluation pinpoints the I/O and processing overheads at high granularity. In particular,
by investigating how the architecture performs with respect to the following elements,
we attempt to answer the corresponding questions:

Consistency: Are pipeline executions consistent?

Reliability: What is the probability that the system delivers the data in its entirety?
How often are events lost (if any)?

Pricing: How chargeable elements scale across pipeline runs?

Performance: What is the end to end time of data flow? How do lambda function
execution times change across different data volumes and velocities?

Payload size: What is the maximum payload that a pipeline can handle?

For the initial phase of the experiments, we control the total data size to be sent,
the payload size for each event, the available memory for the AWS lambda worker, and the
frequency of the events. The event payload size is calculated, such that the sum the
payloads equals the total size of data to be sent within an hour of running, based on
the given frequency. More formally: let f , T, p, and D be, respectively: the frequency,
the time that the experiment is running for, payload size per event, and total data size to be
sent, then:

p =
D

f × T
where T = 60 min

We record the relevant metrics for each experiment question across 60 distinct pipeline
runs that arise from all possible combinations of the following dependent variables:

D: Total data size to be sent (MB): 1, 10, 100.

f : Event frequency (events per minute): 1, 2, 6, 30, 60.

M: Lambda worker available memory (MB): 128, 256, 512, 1024.

A secondary series of experiments was performed, where a single event was sent to
the system in order to address event payload size and performance. During this process

Appl. Sci. 2021, 11, 191 7 of 13

the end-to-end time from source to sink was recorded. Specifically, a total of 32 runs were
performed in order to cover the following dependent variables:

p: Event Payload Size (MB) : 1, 5, 10, 20, 40, 60, 80, 100.

M: Lambda worker available memory (MB): 128, 256, 512, 1024.

Because the payload and processing task of the writer function does not vary, the avail-
able memory for the writer lambda function is set to 128 MB across all of the experiments.
Similarly, the data processing task that the lambda worker carries out remains the same for
all experiments. To keep it consistent and quantifiable, we employed a simple pass-through
of the data without any extra I/O overhead, which translates to O(N) complexity. Therefore,
we can argue that any similar O(N) task can be subjected to our results. All of the Python
implementations for the tasks that were carried out by Lambda functions were developed
while using Pandas python package v1.1.0 [35] and Python standard libraries.

6. Discussion
6.1. Reliability

The official AWS documentation states that S3 events will most likely deliver an
event once, but it is possible that an event will be delivered multiple times, or not at all.
The documentation does not clearly quantify how often this may occur and, in order to cater
for this, we recorded any such occurrences through the experiments. Judging by our results,
S3 delivered the event notification successfully 100% across all experiments (71,280 events).
Nonetheless, we noticed two unexplained failed invocations when transferring a total of
100 MB at 1 event per minute using 128 MB of lambda memory (See Figure 3). The functions
logs indicated that those functions timed-out when attempting to send the output data
chunks to writer SQS queue. Although it is not clear why this time-out occurred, it is likely
that this could have been a minor outage of that particular SQS queue, which leads to
the conclusion that it is always necessary to establish failover strategies for production
environments. With our proposed architecture, this was picked up by the triggering dead
letter queue.

6.2. Consistency

It is imperative that each workflow in an ETL pipeline executes in a consistent manner.
Provided that the execution environment is not within our control, the consistency of the
system in terms of execution duration per function task and latencies was measured.

The high-level overview of invocation duration times in Figure 3 supports the lambda
workers’ pipeline execution environment is consistent. As a matter of fact, the average
standard deviation through all successful invocations did not exceed 160 ms.

6.3. Performance

We monitored the execution time on each subtask that was implemented in the
worker lambda function, bearing in mind that AWS does not provide clear specifications,
apart from memory, in their execution environments. Generally, as expected, higher mem-
ory functions perform orders of magnitude faster in terms of raw processing. More precisely,
the results suggest that the processing power is linearly proportional to the memory since
the execution time halves with each memory upgrade.

Figure 4 illustrates the end-to-end times from the source to sink of a single event
increasing in size. Specifically, for an event with a payload size of 100 MB, it takes slightly
more than 2 min. to process and persist in data sink, which results in around 750 KB/s pro-
cessing speed that is acceptable, but could be problematic at high data volumes. The cause
of this overhead is discussed further below.

Appl. Sci. 2021, 11, 191 8 of 13

Figure 3. Mean execution times, failed invocations, cold starts, and success rate for distinct Lambda worker operation
categorised by lambda function’s available memory.

Figure 4. End to end data flow times for event payload size and lambda worker memory. Table rows show time in seconds
per payload size. Cells without a value indicate that the lambda worker failed to process the payload.

Appl. Sci. 2021, 11, 191 9 of 13

Similarly, Figure 5 demonstrates the time that is spent performing on each worker
subtask. In larger data volumes, sending the data to SQS takes up most of the invocation
time, as it consists of blocking network operations. This is due to the need for chunking
the data in order to overcome the SQS payload size limits. Alternatives are discussed in
future work, as that intensive network operation can undermine successful processing of
larger data volumes. Notably, while the worker function forwards the transformed data to
the queue, the writer function is invoked in parallel upon notification of the first chunk.
Consequently, the total end-to-end data delivery time is reduced.

Figure 5. Mean execution times for distinct lambda worker operation separated by Lambda function’s available memory.

6.4. Payload Size

Another important element of the architecture are the limitations that are imposed on
the payload size of a single event. Worker functions with 128 MB and 256 MB of memory
failed to process payload sizes larger than 10 MB and 40 MB, respectively, due to lack of
processing power, as illustrated in Figure 4. On the contrary, 512 MB and 1024 MB memory
workers are shown to be able to handle payloads of sizes up to 100 MB and potentially
even larger.

6.5. Pricing

In any serverless system, cost-awareness is critical. Although calculating the pricing
for a single resource is straightforward, calculating the costs for the whole system can be a
daunting task. For that purpose we present a simple expression that models the costs of the
aforementioned architecture. Let D = ∑n

i=0 pi where pi is the ith payload size of n events
received over time t, (S3Req, SNSmsg, SQSreq, S3In, S3Out, GBs, DBWrites) be the pricing
of each chargeable element accordingly, and Wcost, WRcost, Wout, and WRrecords be,
respectively, the worker’s/writer’s duration in GB/Seconds, size of transformed output,
and number of records to be written in the DB, as also provided in Table 2. Subsequently,
the active costs can be summarised as:

Cost=n×(S3Req+SNSmsg+SQSreq)+D×(S3In+S3Out)+

(Wcost+WRcost)×GBSecCost+(Wout
256 KB+1)×SQSreq+WRrecords×DBWrites

More specifically, the division over 256 KB chunks models the fragmentation of SQS
messages to match the maximum message payload size of AWS (256 KB). Note that this is
not a complete model, as it neglects passive costs and redrive policies in the case of errors.
However, it affords us the observation that many of the costs have linear relationships
with the pipeline inputs. Still, the lambda function charges (Wcost, WRcost) are somewhat
harder to estimate, since they are affected by several factors. With this in mind, in Figure 6,

Appl. Sci. 2021, 11, 191 10 of 13

we empirically present the pricing attributed to the worker lambda function throughout
the experiments. Interestingly, it is observed that, in higher data volumes, tuning of the
lambda functions specifications is essential, since there are cases where a more powerful
lambda function costs less than an underspecified function (e.g., 128 MB/256 MB Memory
at one event per minute).

Figure 6. Lambda worker costs in GB/Seconds.

7. Limitations and Future Work

The discussion of this work’s results highlights the capabilities of the proposed system
across many aspects. In particular, we demonstrated that the proposed architecture can
cope reliably with large event payloads for frequencies up to one event per second. What is
more, we highlight the cost effectiveness of this serverless implementation by modeling
the chargeable components of the architecture and underlining their dynamic pay-as-
you- go nature, as opposed to fixed pay rates of serverful architectures. Nevertheless,
we summarise the limitations of our architecture and expand on future work to address
these. The main deficiency of our architecture is the SQS data throughput bottleneck. This is
naturally inherited by the AWS SQS 256 KB message size restriction. Furthermore, in our
methodology, we intentionally omit the pricing of components that are used for pipeline
failover, such as dead letter queues. Finally, the lack of lambda worker orchestration
requires that each ETL pipeline must be guaranteed in order to terminate before the
execution time of the AWS lambda functions runs out.

This research can be extended in a variety of ways. Regarding the evaluation and
architecture design, there is already a list of parameters in our backlog that we pursue to
tune and experiment. One of the top future work prioritiez is to overcome the limitations
of the proposed architecture by implementing alternatives to SQS data transfer. A possible
workaround would be to keep using SQS for triggering, but routing the data through
S3 or adopting an asynchronous approach for delivering SQS messages. Both of these
approaches would have their pros and cons and, hence, they are at the top of the future
tasks, for a more systematic investigation. In addition, in order to overcome the intrinsic
limitation of execution time that is imposed by the AWS Lambda function service, we are
planning to extend the proposed architecture, such that it can automatically orchestrate
long running ETLs to multiple interconnected Lambda function invocations. Adding to
this, improvements may be sought in the writing stage, and in terms of how the data are
chunked. Adding compression or further function orchestration may potentially eliminate
some of the limitations discussed in Section 6.4. Although this research provides evidence
of resilience against uniform event payloads, further investigation on the limits of the
architecture as frequency grows unpredictably would provide useful insights. Finally,
we plan to expand our evaluation with similar architectures that are built on other major
cloud platforms, such as Azure, GCP, and IBM, as comparison may allow for further
conclusions to be drawn.

Appl. Sci. 2021, 11, 191 11 of 13

8. Conclusions

In this study, we developed and presented a reference architecture for building an
event-driven ETL pipeline on top of AWS while using entirely serverless technologies,
hence enabling a pay-per-usage model. This was accommodated by an empirical eval-
uation, which concluded that the subject architecture provides consistency, reliability,
and acceptable performance for practical use in applications up to one event per second.
The study finally recommended a fundamental pricing model in order to approximate the
cost of chargeable active tasks in the pipeline.

The applicability of this work extends to fields, such as healthcare, fintech, traffic
control, IoT sensor analysis, and many more. Generally, the presented architecture is a
good fit for event-based reactive systems that seek to employ flexible ETL pipelines, with-
out the accompanying infrastructural overhead. Our model would provide an extremely
cost effective and practical solution for sparse event processing , such as patient journey
mapping [36], credit card fraud detection [37], or smart city sensor data analysis [38].

Author Contributions: This paper was accomplished based on collaborative work of the authors. A.P.
performed the experiments and analyzed the data. Experiment interpretation and paper authorship
were jointly performedby A.P and G.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors. The experiments use data generated for simulation purposes.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AWS Amazon Web Services
ETL Extract-Transform-Load
FaaS Function-as-a-Service
GCP Google Cloud Platform
QoS Quality of Service
SQS Simple Queue Service
SNS Simple Notification Service
S3 Simple Storage Service

References
1. Kreps, J.; Corp, L.; Narkhede, N.; Rao, J.; Corp, L. Kafka: A distributed messaging system for log processing. Proc. NetDB 2011,

11, 1–7.
2. Apache Flink: Stateful Computations over Data Streams. 2011. Available online: https://flink.apache.org/ (accessed on

24 September 2020).
3. Apache Flume. 2011. Available online: https://flume.apache.org/ (accessed on 24 September 2020).
4. Apache Airflow. 2015. Available online: https://airflow.apache.org/ (accessed on 26 September 2020).
5. Naeem, M.A.; Dobbie, G.; Webber, G. An event-based near real-time data integration architecture. In Proceedings of the 2008

12th Enterprise Distributed Object Computing Conference Workshops, Munich, Germany, 16 September 2008; pp. 401–404.
6. Taibi, D.; El Ioini, N.; Pahl, C.; Niederkofler, J.R.S. Patterns for Serverless Functions (Function-as-a-Service): A Multivocal

Literature Review. In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020),
Prague, Czech Republic, 7–9 May 2020; pp. 181–192.

7. Hong, S.; Srivastava, A.; Shambrook, W.; Dumitras, , T. Go serverless: Securing cloud via serverless design patterns. In Proceedings
of the 10th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 18), Boston, MA, USA, 9 July 2018.

8. Stafford, G. Event-Driven, Serverless Architectures with AWS Lambda, SQS, DynamoDB, and API Gateway | Programmatic
Ponderings. 2019. Available online: https://programmaticponderings.com/2019/10/04/event-driven-serverless-architectures-
with-aws-lambda-sqs-dynamodb-and-api-gateway/ (accessed on 15 September 2020).

https://flink.apache.org/
https://flume.apache.org/
https://airflow.apache.org/
https://programmaticponderings.com/2019/10/04/event-driven-serverless-architectures-with-aws-lambda-sqs-dynamodb-and-api-gateway/
https://programmaticponderings.com/2019/10/04/event-driven-serverless-architectures-with-aws-lambda-sqs-dynamodb-and-api-gateway/

Appl. Sci. 2021, 11, 191 12 of 13

9. Enriching Event-Driven Architectures with AWS Event Fork Pipelines | AWS Compute Blog. 2019. Available online:
https://aws.amazon.com/blogs/compute/enriching-event-driven-architectures-with-aws-event-fork-pipelines/ (accessed on
27 September 2020).

10. Kulmi, M.K. Building Serverless ETL Pipelines on AWS. 2020. Available online: https://www.impetus.com/blog/cloud/
building-serverless-etl-pipelines-aws (accessed on 23 September 2020).

11. Baldini, I.; Castro, P.; Chang, K.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah, R.; Slominski, A.; et al.
Serverless computing: Current trends and open problems. In Research Advances in Cloud Computing; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 1–20.

12. 2016 Future of Application Development and Delivery Survey. 2016. Available online: https://www.nginx.com/resources/
library/app-dev-survey/ (accessed on 15 September 2020).

13. Aljabre, A. Cloud computing for increased business value. Int. J. Bus. Soc. Sci. 2012, 3, 234–239.
14. Castro, P.; Ishakian, V.; Muthusamy, V.; Slominski, A. The server is dead, long live the server: Rise of Serverless Computing,

Overview of Current State and Future Trends in Research and Industry. arXiv 2019, arXiv:1906.02888.
15. Hellerstein, J.M.; Faleiro, J.; Gonzalez, J.E.; Schleier-Smith, J.; Sreekanti, V.; Tumanov, A.; Wu, C. Serverless computing: One step

forward, two steps back. arXiv 2018, arXiv:1812.03651.
16. Hendrickson, S.; Sturdevant, S.; Harter, T.; Venkataramani, V.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H. Serverless Computa-

tion with OpenLambda. In Proceedings of the 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16), Denver,
CO, USA, 22–24 June 2016; USENIX Association: Denver, CO, USA, 2016.

17. OpenFaaS: Serverless Functions Made Simple. 2019. Available online: https://www.openfaas.com/ (accessed on
21 September 2020).

18. Knative. 2018. Available online: https://knative.dev/ (accessed on 21 September 2020).
19. Kubeless. 2018. Available online: https://kubeless.io/ (accessed on 30 September 2020).
20. Jonas, E.; Pu, Q.; Venkataraman, S.; Stoica, I.; Recht, B. Occupy the cloud: Distributed computing for the 99%. In Proceedings of

the 2017 Symposium on Cloud Computing, Santa Clara, CA, USA, 24–27 September 2017; pp. 445–451.
21. Fouladi, S.; Wahby, R.S.; Shacklett, B.; Balasubramaniam, K.V.; Zeng, W.; Bhalerao, R.; Sivaraman, A.; Porter, G.; Winstein, K.

Encoding, fast and slow: Low-latency video processing using thousands of tiny threads. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA, 27–29 March 2017; pp. 363–376.

22. Fouladi, S.; Romero, F.; Iter, D.; Li, Q.; Chatterjee, S.; Kozyrakis, C.; Zaharia, M.; Winstein, K. From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional containers. In Proceedings of the 2019 USENIX Annual Technical Conference
(USENIXATC 19), Renton, WA, USA, 10–12 July 2019; pp. 475–488.

23. Kim, Y.; Lin, J. Serverless Data Analytics with Flint. In Proceedings of the 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 451–455.

24. Rahman, M.M.; Hasan, M.H. Serverless Architecture for Big Data Analytics. In Proceedings of the 2019 Global Conference for
Advancement in Technology (GCAT), Bangalore, India, 18–20 October 2019; pp. 1–5.

25. Zhang, S.; Luo, X.; Litvinov, E. Serverless computing for cloud-based power grid emergency generation dispatch. Int. J. Electr.
Power Energy Syst. 2021, 124, 106366. [CrossRef]

26. Pérez, A.; Risco, S.; Naranjo, D.M.; Caballer, M.; Moltó, G. On-Premises Serverless Computing for Event-Driven Data Processing
Applications. In Proceedings of the 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy,
8–13 July 2019; pp. 414–421.

27. Kuhlenkamp, J.; Werner, S.; Borges, M.C.; El Tal, K.; Tai, S. An Evaluation of FaaS Platforms as a Foundation for Serverless Big
Data Processing. In Proceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing, UCC’19,
Auckland, New Zealand, 2–5 December 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1–9.
[CrossRef]

28. Wang, L.; Li, M.; Zhang, Y.; Ristenpart, T.; Swift, M. Peeking behind the curtains of serverless platforms. In Proceedings of the
2018 USENIX Annual Technical Conference (USENIXATC 18), Boston, MA, USA, 11–13 July 2018; pp. 133–146.

29. Lee, H.; Satyam, K.; Fox, G. Evaluation of production serverless computing environments. In Proceedings of the 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018; pp. 442–450.

30. Global Cloud Services Market Q2 2020. 2020. Available online: https://canalys.com/newsroom/worldwide-cloud-infrastructure-
services-Q2-2020 (accessed on 20 October 2020).

31. Bjornson, Z. AWS S3 vs. Google Cloud vs Azure:Cloud Storage Performance. 2015. Available online: http://blog.zachbjornson.
com/2015/12/29/cloud-storage-performance.html (accessed on 10 October 2020).

32. Scheuner, J.; Leitner, P. Function-as-a-Service performance evaluation: A multivocal literature review. J. Syst. Softw. 2020,
170, 110708. [CrossRef]

33. Barcelona-Pons, D.; Sánchez-Artigas, M.; París, G.; Sutra, P.; García-López, P. On the faas track: Building stateful distributed
applications with serverless architectures. In Proceedings of the 20th International Middleware Conference, Davis, CA, USA,
9–13 December 2019; pp. 41–54.

34. Sreekanti, V.; Lin, C.W.X.C.; Faleiro, J.M.; Gonzalez, J.E.; Hellerstein, J.M.; Tumanov, A. Cloudburst: Stateful functions-as-a-service.
arXiv 2020, arXiv:2001.04592.

https://aws.amazon.com/blogs/compute/enriching-event-driven-architectures-with-aws-event-fork-pipelines/
https://www.impetus.com/blog/cloud/building-serverless-etl-pipelines-aws
https://www.impetus.com/blog/cloud/building-serverless-etl-pipelines-aws
https://www.nginx.com/resources/library/app-dev-survey/
https://www.nginx.com/resources/library/app-dev-survey/
https://www.openfaas.com/
https://knative.dev/
https://kubeless.io/
http://dx.doi.org/10.1016/j.ijepes.2020.106366
http://dx.doi.org/10.1145/3344341.3368796
https://canalys.com/newsroom/worldwide-cloud-infrastructure-services-Q2-2020
https://canalys.com/newsroom/worldwide-cloud-infrastructure-services-Q2-2020
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
http://dx.doi.org/10.1016/j.jss.2020.110708

Appl. Sci. 2021, 11, 191 13 of 13

35. Pandas Development Team. Pandas-Dev/pandas: Pandas. 2020. Available online: https://zenodo.org/record/4311557#.X-
LqptgzbIU (acessed on 30 September 2020).

36. Arias, M.; Rojas, E.; Aguirre, S.; Cornejo, F.; Munoz-Gama, J.; Sepúlveda, M.; Capurro, D. Mapping the Patient’s Journey in
Healthcare through Process Mining. Int. J. Environ. Res. Public Health 2020, 17, 6586. [CrossRef] [PubMed]

37. Arya, M.; G, H.S. DEAL–‘Deep Ensemble ALgorithm’ Framework for Credit Card Fraud Detection in Real-Time Data Stream
with Google TensorFlow. Smart Sci. 2020, 8, 71–83. [CrossRef]

38. Garcia Alvarez, M.; Morales, J.; Kraak, M.J. Integration and Exploitation of Sensor Data in Smart Cities through Event-Driven
Applications. Sensors 2019, 19, 1372. [CrossRef] [PubMed]

https://zenodo.org/record/4311557#.X-LqptgzbIU
https://zenodo.org/record/4311557#.X-LqptgzbIU
http://dx.doi.org/10.3390/ijerph17186586
http://www.ncbi.nlm.nih.gov/pubmed/32927669
http://dx.doi.org/10.1080/23080477.2020.1783491
http://dx.doi.org/10.3390/s19061372
http://www.ncbi.nlm.nih.gov/pubmed/30893843

	Introduction
	Background
	Related Work
	Architecture
	Experimental Design
	Discussion
	Reliability
	Consistency
	Performance
	Payload Size
	Pricing

	Limitations and Future Work
	Conclusions
	References

