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Abstract: This study optimizes furfural production from pentose released in the liquid hydrolysate
of hardwood using an aqueous biphasic system. Dilute acid pretreatment with 4% sulfuric acid
was conducted to extract pentose from liquid Quercus mongolica hydrolysate. To produce furfural
from xylose, a xylose standard solution with the same acid concentration of the liquid hydrolysate
and extracting solvent (tetrahydrofuran) were applied to the aqueous biphasic system. A response
surface methodology was adopted to optimize furfural production in the aqueous biphasic system.
A maximum furfural yield of 72.39% was achieved at optimal conditions as per the RSM; a reaction
temperature of 170 ◦C, reaction time of 120 min, and a xylose concentration of 10 g/L. Tetrahydro-
furan, toluene, and dimethyl sulfoxide were evaluated to understand the effects of the solvent on
furfural production. Tetrahydrofuran generated the highest furfural yield, while DMSO gave the
lowest yield. A furfural yield of 68.20% from pentose was achieved in the liquid hydrolysate of
Quercus mongolica under optimal conditions using tetrahydrofuran as the extracting solvent. The
aqueous and tetrahydrofuran fractions were separated from the aqueous biphasic solvent by salt-
ing out using sodium chloride, and 94.63% of the furfural produced was drawn out through two
extractions using tetrahydrofuran.

Keywords: aqueous biphasic system; dilute acid hydrolysate; furfural production; solvent extraction;
response surface methodology

1. Introduction

Lignocellulosic biomass is considered as an alternative energy resource that can mit-
igate the climate change associated with the excessive use of fossil fuels [1]. Owing to its
abundance and non-edibility, cellulose in particular, the key component of biomass, is a
rich source of carbohydrates and has been applied to value-add to chemicals or biofuels [2].
Hemicellulose and lignin, the other main components of biomass, combine complex and
dense forms of cellulose [3]. This physical barrier makes lignocellulosic biomass chemically
and microbiologically resistant [4]. This recalcitrance of biomass requires a pretreatment pro-
cess to ensure that lignocellulosic biomass is utilized properly and efficiently. The purpose of
the pretreatment process is to cleave lignin and hemicellulose and obtain cellulose to improve
accessibility for chemicals or enzymes [5]. Among several pretreatment methods, dilute acid
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pretreatment is considered to be a leading pretreatment technology. This is because it is able
to enhance the total sugar yield of the process by solubilizing and converting hemicellulose
to pentose [6]. As the pretreatment of lignocellulosic biomass is highly demanding in terms
of energy and additional processes compared to edible biomass, its economic feasibility is
reduced [7]. As such, utilization of all the main components of biomass to generate valuable
products is essential to make this resource more economically feasible.

Hemicellulose is a heteropolysaccharide composed of various monosaccharides such
as xylose, arabinose, and mannose [8]. Traditionally, it is considered a by-product in the
pulping industry, whereby most hemicellulose is dissolved into black liquor and used as a
heating source [9]. However, pentose in hemicellulose may also be converted to valuable
chemicals in the same manner as cellulose. This will subsequently improve the economic
feasibility of the biorefinery industry through the utilization of lignocellulosic biomass.

Furfural is a building block chemical applied to various fields such as fuel, chemicals,
polymers, and pharmaceuticals. Most furfural is produced by acid-catalyzed dehydration
of pentose derived from hemicellulose [10]. It may also be produced from lignocellulosic
biomass directly via acid catalyst treatment. Although this is a simple and mature process,
it is characterized by several disadvantages including low furfural yield, generation of
undesirable by-products, and difficulties in utilizing the remaining biomass, such as
cellulose or lignin [11]. For this reason, many studies have proposed a two-step process in
which hemicellulose is hydrolyzed into pentose or pentose-derived oligomers, and then
the pentose or the oligomer is dehydrated into furfural in different reaction systems. This
separated system offers several advantages including being able to produce a high furfural
yield via the optimization of the reaction system for furfural production (catalyst, solvent,
reaction condition, etc.) [12]. The separation of furfural from reaction media continues to
be a challenge due to several complicated processes [13].

Furfural may be degraded and condensed in the presence of an acidic catalyst and
water [14]. In an aqueous furfural production system that uses water as a solvent, the
degradation and self-condensation of furfural limits high yields of furfural. This is de-
spite the fact that water is a commonly used solvent for furfural production because it is
inexpensive and eco-friendly. To solve this problem, furfural must be separated from the
aqueous solvent system immediately after conversion from pentose.

An aqueous biphasic system may be used to separate furfural from water in the
system. The aqueous phase contains water, and the acid catalyst converts pentose to
furfural, while the organic phase is composed of the organic solvent that absorbs furfural
converted into the organic phase. Dichloromethane (DCM) [15], methylisobuthylketone
(MIBK) [16], and tetrahydrofuran (THF) [17] have been used as organic solvents for the
extraction. These organic solvents are advantageous in terms of conducting a simultaneous
process, including the conversion of pentose to furfural and the extraction of furfural.
Furfural is produced by an acid catalyst in the aqueous phase and is extracted immediately
by the organic phase [18]. Organic solvents may minimize furfural degradation, improving
furfural yield [19].

This study aims to optimize furfural production from the dilute acid hydrolysate
of Quercus mongolica. A xylose standard solution with the same acid concentration of
dilute acid hydrolysate and extracting solvent (THF) were applied to the aqueous biphasic
system to determine the optimal conditions for furfural production. A response surface
methodology (RSM) in which the independent variables were reaction temperature, time,
and xylose concentration was adopted to optimize the aqueous biphasic system. The
organic solvent was also evaluated to select the solvent that prevented the degradation and
self-condensation of furfural.

2. Materials and Methods
2.1. Materials

The xylose standard was purchased from Sigma-Aldrich Korea Co. (Yongin, Republic
of Korea). Quercus mongolica, a xylan-rich hardwood was used as the raw material for
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pentose and it was supplied by the National Institute of Forest Science (NIFoS, Seoul,
Republic of Korea). The particle size of the raw material was reduced to less than 0.5 mm
through grinding and sieving using a sawdust producer and air classifier mill, respectively.
The moisture content was less than 5%, and the chemical composition was determined
using the Laboratory Analytical Procedure of National Renewable Energy Laboratory
(NREL, Golden, CO, USA) [20].

2.2. Dilute Acid Pretreatment for Pentose Production from Lignocellulosic Biomass

Dilute acid pretreatment of Quercus mongolica for pentose production was conducted
following the methodology described in previous research [21]. Briefly, raw material was
mixed with sulfuric acid solution (4%, w/w) in an Erlenmeyer flask; the solid to liquid
ratio was 1 to 7. Then, the flask was placed in an autoclave (MLS-3020, Sanyo, Osaka,
Japan) at 121 ◦C for 102.3 min; these are the optimal conditions for pentose production
from Quercus mongolica as described in the previous research [21]. Following the dilute acid
pretreatment, the flask was immediately cooled to room temperature in the ice chamber to
stop the reaction. Then, the pentose-rich hydrolysate was separated from the solid residue
using a Büchner funnel equipped with filter paper (No. 52, Hyundai Micro Co., Seoul,
Korea). The chemical composition of the hydrolysate is shown in Table 1.

Table 1. Chemical composition of dilute acid hydrolysate of Quercus mongolica.

Component Concentration (g/L)

Sugars
Glucose 2.01 ± 0.05

Xylose+mannose+galactose (XMG) 20.02 ± 0.46
Arabinose 1.64 ± 0.06

Sugar derivatives
Acetic acid 6.17 ± 0.13
Formic acid 0.03 ± 0.00

Furfural 0.32 ± 0.04
5-Hydroxymethylfurfural (5-HMF) 0.01 ± 0.00

2.3. Response Surface Methodology for Optimization of Furfural Production from Xylose Standard

To maximize furfural production from the hydrolysate, the optimum conditions
needed to be determined; optimization was conducted using a xylose standard solution.
The xylose standard solution was adopted to investigate the relationship between reaction
conditions and furfural yield, excluding the effect of impurities. Briefly, 10 mL of xylose
standard solution containing a certain concentration of xylose was mixed with 20 mL of
organic solvent in a Teflon-lined reactor. The sulfuric acid concentration of the xylose stan-
dard solution was adjusted to 4% (w/w); this was the same as the dilute acid hydrolysate
used to obtain the optimum reaction conditions for the hydrolysate. The reactor was
then sealed and soaked in an oil bath that had been pre-heated to a target temperature.
The mixed hydrolysate was stirred during the reaction using a magnetic stirrer, and the
temperature was maintained for a certain reaction time at the target temperature. After
the reaction, the reactor was removed from the oil bath and immediately stored in the ice
chamber to cool to room temperature and prevent undesirable reactions.

An RSM was adopted to optimize furfural production using a xylose standard solution.
The analysis was conducted based on a 23 factorial central design (CCD) using Design Expert
11.1.0.1 software (Stat-Ease, Inc., Minneapolis, MN, USA). Table 2 presents 17 sets of reaction
conditions composed of six axial points and a duplication of the central point. The reaction
temperature (X1, ◦C), reaction time (X2, min), and xylose concentration (X3, g/L) were
designated as independent variables, while furfural yield (Y1, %) was the dependent variable.
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Table 2. 23 factorial experimental design varying on 3 factors and results of furfural yield.

Independent Variables Dependent Variable

No. Reaction Temperature
(X1, ◦C)

Reaction Time
(X2, min)

Xylose Concentration
(X3, g/L)

Furfural Yield
(Y1, %)

1 140 60 10 6.96
2 180 60 10 69.87
3 140 180 10 39.47
4 180 180 10 62.48
5 140 60 30 6.67
6 180 60 30 66.83
7 140 180 30 46.59
8 180 180 30 59.23
9 126.36 120 20 4.69
10 193.64 120 20 61.33
11 160 19.09 20 0.71
12 160 220.91 20 68.12
13 160 120 3.18 67.99
14 160 120 36.82 67.77
15 160 120 20 67.75
16 160 120 20 67.75
17 160 120 20 68.02

The coded level of the CCD from each run was applied to real independent variables
as follows:

Variable = value of central point/variation of coded level per one point
Reaction temperature (◦C) = 160/20, reaction time (min) = 120/60, xylose concentra-

tion (g/L) = 20/10
Following the optimization of reaction conditions based on the RSM, the extraction

solvent was altered from THF to dimethyl sulfoxide (DMSO) or toluene in the optimum
conditions to analyze the effects of the extraction solvent.

2.4. Furfural Production from Pentose Derived from Quercus Mongolica

Simultaneous reactions occurred involving the release of pentose from xylose and
the conversion of pentose to furfural in the same reactor without a separation process;
this places it in a good stead for industrial application. The pentose derived from xylose
was converted to furfural in the same reactor, used for pentose release. The dilute acid
hydrolysate of Quercus mongolica was mixed with 4% sulfuric acid to adjust xylose concen-
tration to optimal conditions in the Teflon-lined reactor; the total volume was adjusted to
10 mL. Then, 20 mL of THF (i.e., the organic solvent), was added into reactor for furfural
extraction. The reaction temperature and time were set to the optimal values as per the
results from the RSM analysis. After the reaction, the reactor was removed from the oil bath
and immediately stored in the ice chamber to cool to room temperature and prevent unde-
sirable reactions. The organic phase of THF, containing furfural, was separated from the
aqueous phase through the addition of NaCl. This was done to investigate the separation
efficiency of furfural from the final solution, including furfural and other products.

2.5. Analysis of Furfural and Other Products in Mixed Hydrolysate

The content of furfural and other products such as the remaining sugars was deter-
mined using high performance liquid chromatography (Ultimate-3000, Thermo Dionex,
Waltham, MA, USA) with an Aminex 87H column (eluent: 0.01 N sulfuric acid, oven
temperature: 40 ◦C, flow rate: 0.5 mL/min). Peaks were identified by comparing the
retention time of each peak. The concentration of peaks was identified by comparing the
standard calibration curve of each chemical. The furfural yield (Equation (1)) and pentose
conversion (Equation (2)) were calculated as follows:

Furfural yield (%) = furfural after reaction (mol)/pentose before reaction (mol) × 100 (1)

Pentose conversion (%) = (pentose before − after reaction (mol))/pentose before reaction (mol) × 100 (2)
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3. Results and Discussion
3.1. Pentose Production during Dilute Acid Pretreatment

Quercus mongolica is chemically composed of 46.67% of glucose, 19.14% of xylose,
mannose and galactose (XMG), 0.77% of arabinose, 22.56% of acid insoluble lignin (AIL),
3.19% of acid soluble lignin (ASL), 2.06% of extractives, and 0.05% of ash. It is known
that the glycosidic bond between hemicellulose-cellulose is cleaved, and the separated
hemicellulose is converted to pentose-like XMG dilute acid pretreatment [22]. As shown in
Table 1, the main component in dilute acid hydrolysate was XMG, and the main pentose
was xylose [21]. Glucose and arabinose derived from arabinoxylan or glucuronoxylan were
also detected; however, they were present in very small amounts compared with pentose.
In sugar derivatives, the main product was acetic acid derived from the O-acetyl group in
hemicellulose. Although furanic compounds such as 5-hydroxymethylfurfural (5-HMF)
and furfural were produced by the acidic dehydration of released sugar, there was only a
small amount of these compounds owing to the low severity of the dilute acid pretreatment.
This pretreatment had not boosted the dehydration of sugar to the furanic [23].

3.2. RSM for Furfural Production from Xylose Standard Solution with Extracting Solvent

Furfural was produced from the xylose standard by acid-catalyzed dehydration, as
listed in Table 2. In run #2 with a reaction temperature of 180 ◦C, over a 60 min duration
using a xylose concentration of 10 g/L, the maximum furfural yield was 69.87% with
96.02% xylose conversion. Although the maximum xylose conversion was 99.32% at run
#12, the furfural yield under these conditions was 68.12%; this is lower than the yield in
run #2. These results indicate that the more severe experimental conditions of run #12 as
a result of a longer reaction time induced the degradation of the furfural that had been
produced. The lower furfural yield due to furfural degradation under severe experimental
conditions was also observed in runs #4, 8, and 10; these runs were also characterized by
long reaction times at certain temperatures. It is inferred that these reaction conditions
caused furfural degradation despite the presence of the extraction solvent to prevent
furfural degradation. However, a previous study has reported that the amount of furfural
degradation due to severe experimental conditions when using an extracting solvent is
marginal compared to the amount of furfural degradation in conditions with no extracting
solvent [24]. The condensation of furfural was suppressed through the addition of the THF;
as such, there were no insoluble precipitates detected from furfural condensation in all
experimental conditions.

To evaluate the effect of each variable on furfural yield, regression analysis was
undertaken using a 23 factorial design matrix with corresponding furfural yield (%). The
following quadratic equation was generated (Equation (3)), based on the outcomes of the
regression analysis:

Furfural yield (%) = −1122.2746 + 11.8539 X1 + 2.4079 X2 + 1.0355 X3 − 0.0091 X1X2
− 0.0082 X1X3 + 0.0015 X2X3 − 0.0302 X1

2 − 0.0032 X2
2 + 0.0024 X3

2 (3)

In the equation, X1, X2, and X3 represent the actual reaction temperature, reaction
time, and xylose concentration, respectively. The model had a high regression coefficient
(R2 = 0.95), indicating 95% variability in the response, while the p-value was extremely low
(0.001), indicating that this regression model was significant. The coefficient of variation
(CV) was 18.74%, which indicates the high precision and reliability of the experiments [25].

A three-dimensional (3D) plot and detailed contour of the RSM for furfural yield was
established using Equation (3), by varying the three variables within the experimental range
(Figure 1). As shown in Figure 1a, the furfural yield increased with reaction temperature
and time to approximately 185 ◦C and 180 min, respectively. Once the temperature and
time exceeded these points, there was a decrease in furfural yield due to its degradation
under severe experimental conditions [26].
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This phenomenon was clearly observed in Figure 1b,c. Figure 1b depicts the furfural
yield based on the reaction temperature and xylose concentration with a fixed reaction time of
120 min. The furfural yield increased with temperature until approximately 165 ◦C, and then
remained stable at temperatures of 165–185 ◦C, which was where the maximum yield was
observed. Then, yield decreased when the temperature increased above 185 ◦C regardless of
the xylose concentration. These results are similar to the findings from previous research where
furfural production from biomass occurred using sulfuric acid as a catalyst [27,28]. Figure 1c
depicts the relationship between the furfural yield, the reaction time, and xylose concentration
with a fixed reaction temperature of 160 ◦C. The furfural yield increased with reaction time
up to 180 min. Beyond this time, yield decreased due to furfural decomposition [29] and
self-condensation [30]. The xylose concentration was considered a less influential variable
when compared to reaction temperature and time, as shown in Figure 1b,c. This inference was
also supported by the p-value of the variables (Table 3).

The sources related to xylose concentration (X3, X1X3, X2X3, X3
2) had high p-values,

indicating that xylose concentration was not as significant a factor for furfural yield. This
result differs from previous research, which has demonstrated that furfural yield generally
has an inverse relationship with xylose concentration. Higher xylose concentrations are
able to produce more furfural at once, leading to a higher collision possibility that causes



Appl. Sci. 2021, 11, 163 7 of 12

condensation of the furfural reaction [31]. It was assumed that the 10–30 g/L xylose concen-
tration range used in this study was too narrow of a range to affect furfural yield. This was
unlike a study by Yang [32] where they produced furfural at high xylose concentrations.
Yang [32] varied the xylose concentration from 40 to 120 g/L and found that furfural yield
had been relatively stable when the xylose concentration was from 40 to 70 g/L. Based
on the xylose concentration range used in this study (10–30 g/L), the effect on furfural
yield was negligible compared to reaction time and temperature. With a fixed xylose
concentration there was greater clarity in terms of the optimal conditions to maximize
furfural yield. Additionally, the reaction temperature and time were expanded compared
to the experimental range (Figure 1d).

Table 3. Analysis of variance (ANOVA) for furfural yield in dehydration of xylose model compound
and coefficients for quadratic equation.

Source Sum of Squares DF Mean Square F-Value p-Value Coefficient

Model 10,697.21 9 1188.58 14.13 0.0010 67.77
X1 4722.88 1 4722.88 56.14 0.0001 18.60
X2 2136.23 1 2136.23 25.39 0.0015 12.51
X3 0.00 1 0.00 0.00 0.9963 0.01

X1X2 955.35 1 955.35 11.36 0.0119 −10.93
X1X3 21.51 1 21.51 0.26 0.6287 −1.64
X1X3 6.48 1 6.48 0.08 0.7894 0.90
X1

2 1646.23 1 1646.23 19.57 0.0031 −12.08
X2

2 1513.50 1 1513.50 17.99 0.0038 −11.59
X3

2 0.67 1 0.67 0.01 0.9314 0.24
Residual 588.94 7 84.13

Lack of fit 588.89 5 117.78 4825.36 0.0002
Pure error 0.05 2 0.02

Corrected total 11,286.15 16

The optimal conditions to maximize furfural yield was calculated based on Equation (3).
The maximum furfural yield in the predicted reaction conditions was 75.1%, where the
reaction temperature was 170 ◦C, reaction time was 120 min, and xylose concentration was
10 g/L. To verify the model, actual furfural production was carried out using these predicted
optimal conditions, rendering a furfural yield of 72.39%, similar to the predicted yield.

3.3. Effect of Organic Solvent for Furfural Production and Extraction

Three kinds of organic solvents, THF, toluene, and DMSO, were evaluated to under-
stand the effects of organic solvents on furfural production and extraction. Toluene is
considered an effective solvent for furfural extraction [33], whereby it does not require
additional salt for phase separation because of its immiscibility with water. DMSO has been
used to improve the selectivity of 5-HMF from glucose by increasing the fructofuranose
isomer and stabilizing 5-HMF by hydrogen bonding [34]. Under a similar mechanism,
it was anticipated that DMSO could also improve furfural yield from xylose. Reaction
conditions were set to the optimal values predicted from analysis of variance (ANOVA);
this was a reaction temperature of 170 ◦C, reaction time of 120 min, xylose concentration of
10 g/L of, and the use of a 4% of sulfuric acid solution.

Table 4 shows the furfural yield from the xylose standard solution depending on
the organic solvent. THF had the highest furfural yield from the xylose standard, while
DMSO had the lowest among the three solvents. It was assumed that DMSO may not
effectively protect the generated furfural from acid or water as furfural has no hydroxyl
group compared with 5-HMF. In addition, DMSO has a reduced interaction with furfural
compared to the other organic solvents such as toluene or THF, as its polarity is higher
than that of furfural. THF had a higher furfural yield than toluene, even though the
polarity of toluene was close to furfural. To explain this phenomenon, the partition
coefficient of furfural in THF/water and toluene/water was calculated by dividing furfural
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concentration in the organic solvent by the concentration of furfural in aqueous water
(Table 4) to compare the solubility of furfural in a two-liquid mixture (water and organic
solvent). To calculate the partition coefficient of furfural to THF/water, NaCl was added to
separate THF from the water phase (salting out). THF had a higher partition coefficient
than toluene, indicating that the former was more effective in extracting furfural than
toluene, and yielding higher amounts of furfural.

Table 4. Properties of organic solvent and furfural yield from xylose standard based on the type of
organic solvent utilized.

Solvent THF Toluene DMSO

Spectroscopic polarity
(Furfural: 0.426 [35]) 0.6 [36] 0.55 [37] 1 [38]

Partition coefficient * 9.05 5.82 N/D **
Furfural yield (%) 72.39 ± 0.50 58.01 ± 0.00 38.28 ± 0.00

* Partition coefficient = [Furfural]org/[Furfural]aq, ** N/D: Not detected.

3.4. Production of Furfural from Pentose in Dilute Acid Hydrolysate

The optimal reaction conditions as predicted using the ANOVA (i.e., 170 ◦C, 120 min,
and 10 g/L of xylose) were adopted to maximize furfural production from pentose in
dilute acid hydrolysate. The xylose concentration was adjusted by mixing the hydrolysate,
which had already contained 4% (w/w) sulfuric acid, with 4% sulfuric acid solution. The
total volume of the aqueous phase was adjusted to 10 mL, similar to the xylose standard
solution, and 20 mL of THF was added to extract furfural from the aqueous phase.

Table 5 describes the pentose conversion and furfural yield from the xylose standard
and dilute acid hydrolysate. The furfural yield and pentose conversion of hydrolysate
were slightly lower, compared with the xylose standard. The presence of impurities such
as hexoses, organic acids, and acid soluble lignin, may have impacted on the extraction
efficiency of furfural from the hydrolysate [39].

Table 5. Pentose conversion and furfural yield from xylose standard and dilute acid hydrolysate.

Pentose Conversion (%) Furfural Yield (%)

Xylose standard solution 100 ± 0.00 72.39 ± 0.50
Liquid hydrolysate 94.69 ± 0.76 68.20 ± 0.20

The difference in furfural yield between the xylose standard and the hydrolysate was
not as considerable as had been expected. This indicates that THF effectively prevents
furfural loss by inhibiting the ring opening of furfural and condensation between furfural
and acid soluble lignin to form insoluble precipitate [40].

To investigate the distribution of impurities in the organic and aqueous phases, NaCl
was added to separate the hydrolysate into the organic and aqueous phases. Table 6
presents the change in the distribution of furfural and other chemicals in furfural that
produced hydrolysate by phase separation. Most furfural produced was extracted in the
organic phase with a partition coefficient of 8.43; this is slightly lower than that of the xylose
standard solution (9.05). Sugars, such as glucose, XMG, and arabinose favor the aqueous
phase owing to their hydroxyl group, while other chemicals such as furfural, organic acids,
and ASL tend to be extracted by the organic phase of THF. It is known that THF is able to
effectively dissolve lignin as it has a high affinity to phenolic compounds [41], thus, most
ASL was extracted to THF. Approximately three-quarters of organic acids were extracted to
the organic phase, and the THF was effective in extracting various organic acids; however,
the detailed extraction mechanism of THF to organic acid continues to be unclear [42,43].
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Table 6. Concentration of chemicals in furfural produced liquor prior to and after phase separation (organic phase, aqueous
phase) through the addition of NaCl.

Concentration (g/L)

Furfural Glucose XMG Arabinose Formic Acid Acetic Acid Acid Soluble Lignin

Before separation 3.08 ± 0.11 0.09 ± 0.02 0.22 ± 0.03 0.05 ± 0.02 0.49 ± 0.02 1.22 ± 0.03 0.84 ± 0.02
Organic phase 4.84 ± 0.10 0.00 ± 0.00 0.09 ± 0.00 0.00 ± 0.00 0.63 ± 0.02 1.61 ± 0.04 1.24 ± 0.00
Aqueous phase 0.58 ± 0.05 0.25 ± 0.05 0.29 ± 0.05 0.05 ± 0.00 0.21 ± 0.00 0.55 ± 0.03 0.21 ± 0.00

THF, the separated organic phase, was removed, and 20 mL of fresh THF was added
to 10 mL of furfural extracted aqueous phase to enhance the extraction rate of furfural to
the organic phase. After each additional extraction, the amount of extracted furfural and
other compounds were analyzed; the extraction rate was calculated as (Equation (4)):

Extraction rate (%) = Amount of products extracted in THF phase (g)/Amount of
products existed in furfural produced liquor before phase separation (g)

(4)

Figure 2 shows the increase in the furfural extraction rate to THF with the number
of extractions. Following the second additional extraction, the extraction rate increased
from 86.03% to 94.63%. However, impurities such as organic acids and ASL had also been
further extracted as the number of extractions increased. In particular, organic acids such
as formic acid and acetic acid were completely extracted to THF following the second
extraction. This means that additional impurity separation is required to acquire furfural
with higher purity. It was reported that organic acids and ASL may be separated from THF
by the ion exchange resin [44,45], and absorbents such as activated carbon, respectively [46].
However, lignin separation by an absorbent must occur prior to furfural production, as the
absorbent absorbs furfural and ASL through a π-π interaction [47].
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4. Conclusions

This study aimed to optimize furfural production from pentose in the dilute acid
hydrolysate of Quercus mongolica. The main component of the acid hydrolysate was XMG,
which was dominated by xylose. The optimization of furfural production was conducted
using RSM with a xylose standard solution and an extracting solvent THF, to enhance
furfural yield. The optimal conditions included a reaction temperature of 170 ◦C at a
reaction time of 120 min with a xylose concentration of 10 g/L; the predicted furfural yield
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was 75.1% under these conditions. An experimental furfural yield of 72.39% was obtained
under the optimal experimental conditions, similar to the predicted yield. Extracted
solvents such as THF, toluene, and DMSO were evaluated to understand the effect of the
solvent on furfural yield. THF achieved the highest furfural yield, while DMSO had the
lowest yield. Based on this result, furfural was produced from dilute acid hydrolysate
under optimized reaction conditions using THF as the extracting solvent. A furfural yield
of 68.20% was obtained based on pentose in the hydrolysate, similar to that of the xylose
standard solution (72.39%). Following phase separation through the addition of NaCl,
86.03% of the furfural produced was in the organic phase. The THF, and two additional
extractions using fresh THF enhanced the furfural extraction rate to 94.63%.
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formal analysis, J.-H.K. and J.-H.C.; investigation, J.-H.K.; resources, H.J. and S.M.L.; data curation,
J.-H.K. and J.-H.C.; writing-original draft preparation, J.-H.K.; writing-review and editing, J.-H.K.;
visualization, J.-H.K.; supervision, I.-G.C. and B.K.; project administration, B.K. All authors have
read and agreed to the published version of the manuscript.
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