
applied
sciences

Article

Design Patterns and Electric Vehicle Charging Software

Maria Meheden 1, Andrei Musat 1, Andrei Traciu 1, Andrei Viziteu 1, Adrian Onu 1, Constantin Filote 2

and Maria Simona Răboacă 2,3,*

����������
�������

Citation: Meheden, M.; Musat, A.;

Traciu, A.; Viziteu, A.; Onu, A.; Filote,

C.; Răboacă, M.S. Design Patterns and

Electric Vehicle Charging Software.

Appl. Sci. 2021, 11, 140. https://

dx.doi.org/10.3390/app11010140

Received: 2 December 2020

Accepted: 19 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Research and Development Department, ASSIST Software, Str. Tipografiei Nr.1, 720043 Suceava, Romania;
maria.meheden@assist.ro (M.M.); andrei.musat@assist.ro (A.M.); andrei.traciu@assist.ro (A.T.);
andrei.viziteu@assist.ro (A.V.); adrian.onu@assist.ro (A.O.)

2 Faculty of Electrical Engineering and Computer Science, Stefan Cel Mare University of Suceava,
Str. Universitatii Nr.13, 720229 Suceava, Romania; filote@usm.ro

3 National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Rm. Valcea,
240050 Ramnicu Valcea, Romania

* Correspondence: simona.raboaca@icsi.ro

Abstract: The development and maintenance of complex software systems, with ever-changing
requirements has benefited from the implementation of design patterns, which ensure a higher degree
of maintainability. The present article illustrates the essential role of design patterns in sketching
the software architecture for an electric vehicle charging management platform. We have integrated
a series of design patterns to create a solid base structure for the API (Application Programming
Interface). Furthermore, we have explored cloud design patterns in the deployment process to ensure
a proper multi-tenant cloud application with the best possible tenant isolation for the cost. The aim of
this paper is to offer readers an introduction in the case study theme, to describe a complex platform
development through design patterns. With proper examples from real projects debated in the
industry. The paper demonstrates the design patterns applicability from software level to cloud
resources plan and advocates for a high-quality solution in every segment of project development. In
conclusion, the results are promising, and the functionality of the established methods on this type of
platforms will be evaluated during the implementation period. Overall, design patterns have proven
to be essential in the development process, ensuring effective team communication and the delivery
of qualitative software solutions.

Keywords: software development; software design pattern; cloud design patterns; multi-tenant
architecture; electric vehicle charging; electric vehicle charging management platform

1. Introduction
1.1. Design Patterns in Software Development

Software development has undergone a rapid development over the last decades,
the software products having a variety of purposes and being subject to the constantly
evolving needs of the customer. Therefore, the ever-changing requirements make the
system more intricate and the code harder to navigate, with potential snowball effects in
different areas of the code, in the absence of clear separation of concerns. When designing
a software product, developers must anticipate aspects that may not be noticeable in the
early stages of implementation. Freshly written code is susceptible to subtle issues, which
cannot be detected immediately, and can trigger major flaws. A proactive approach to
software development meant to address this predicament is the implementation of design
patterns, which could be viewed as an indicator of the system’s long-long term survival.
Furthermore, using patterns contributes to the improvement of code readability for coders,
which further ensures efficient system maintenance.

Therefore, design patterns are recognized as reusable solutions to reoccurring glitches
that provide improved software maintainability. However, even though there are multiple
types of design patterns, which can be use in multiple scenarios, there is a gap when it

Appl. Sci. 2021, 11, 140. https://dx.doi.org/10.3390/app11010140 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6640-5308
https://orcid.org/0000-0002-7277-4377
https://dx.doi.org/10.3390/app11010140
https://dx.doi.org/10.3390/app11010140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/app11010140
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/1/140?type=check_update&version=3

Appl. Sci. 2021, 11, 140 2 of 24

comes to practice and the implementation of patterns in specific types of applications,
which have not been addressed to their full potential, so far.

Retracing the origins of the design patterns term, we learn that it originated as an
architectural concept, coined by the architect Christopher Alexander in his 1977 publication
entitled A Pattern Language: Towns, Buildings, Construction. Due to his experience,
the architect observed that there are several design constructs, which can generate the
envisaged results when applied to categories of recurring problems. Consequently, he set
out to register these patterns, for others to benefit from his observations and design their
own products. One of the most common examples with respect to patterns is “a place to
wait”. This general design pattern applies both to hospital waiting rooms and bus stops
and as different as these two instances may be. This is indicative of the pattern’s generality.
In software engineering, solutions that have proven successful in generating a pathway in
solving problems that occur in object-oriented software systems, have been handled by
four authors in 1994 in the book entitled Design Patterns: Elements of Reusable Object-Oriented
Software. A good approach in making these decisions is to plan the software solution based
on the design patterns concept. It is broadly utilized by software engineers to manufacture
complex systems. Design patterns have been explored by numerous specialists in the last
decades. This prompts the development of complex EV (electric vehicle) platforms shaped
under the design patterns umbrella.

The goal of this article is to elaborate an overview of current design patterns used in
software as a service (SaaS) type of software applications, to identify appropriate design
patterns and suggest improvements for a specific use case: software for EV charging
stations namely an EV charging cloud app, which is a distributed application that contains
multiple technologies: Backend Microservices, Frontend JabaScript Based app, Mobile
(IOS, Android), BlockChain and SQL Database. It also integrates cloud resources such as
storage containers, Docker containers for deployment, continuous integration/continuous
delivery, etc. It is possible to achieve a cloud native application with zero down-time, with
around the clock availability, automatic scaling and failure tolerance. The current article is
part of the SMART EVC project, being supported by a grant of the Romanian Ministry of
Education and Research, CCCDI-UEFISCDI, project number PN-III-P2-2.1-PTE-2019-0642,
within PNCDI III.

The present article is structured in six parts.
The first section consists of an introduction to the subject and a short state-of-the-art

review on design patterns, studies and advancements today.
The second part is an overview of existing software design patterns and their appropri-

ate use cases according to the literature, presenting both the advantages and the potential
disadvantages of their use. We also make a clear distinction between design patterns and
design principles.

The next section is related to our case study, where we implemented a software
concept for a EV charging platform, using the most suitable design patterns, and proposing
a cloud architecture based on cloud design pattern in order to ensure a reliable software
product. Moreover, for the purpose of ensuring a proper tenancy model for a multitenant
application as an EV charging management platform, we analyzed the use of multitenant
design patterns in the deployment process. The closing sections present the results and
conclusions reached during the study.

1.2. State of the Art

For reviewing the state of the art in matters of design patterns, we studied the
databases of IEEE, Web of Science and Scopus, ISI Manuscripts used the Web of Sci-
ence extensions in constructing our database. We proposed to build a qualitative collection
of materials filtered and selected one by one, to highlight their essence and to elaborate an
overview of current design patterns used in software as a service (SaaS) type of software
applications. We have chosen to make such a rigorous selection so we will be able to
provide a clear and revised solution.

Appl. Sci. 2021, 11, 140 3 of 24

Flora Amato and Francesco Moscato [1] present the importance of mapping frame-
works to Cloud Architecture due to the necessity of managing big data and large data sets
as quickly and as reliably as possible. New frameworks, algorithms and architectures are
being used to optimize and improve performance in various fields, for a wide range of
users, from big companies to small ones, or public utilities. The MapReduce framework
represents the base for many services on a variety of analyses. Nelio Cacho et al. [2] explore
the GoF design patterns using the scalability of AOP and studying its drawbacks and
benefits. The pattern composability is affected by the dominant factor, the category of the
pattern, and by the programming abstractions.

Rostislav Fojtik [3] updates the requirements on teaching programming and algorith-
mization in the software industry, presenting the way in which design patterns can be used
in teaching programming. The improvement in the teaching technique has been shown to
increase the students’ pee in programming.

The author describes the impact of programming languages on the education area.
He performed an analysis of the main programming languages that are proposed in
educational programs. In a separate section, the author suggests that programming courses
should be presented around the design patterns topic with relevant examples.

In the current paper, however, we present the design pattern topic through an applica-
tion that aims the Electric Vehicle domain, which is currently in the top electric engineering
industry research. We will perform an example of software design pattern applicability
from each category, as follows, creational, structural and behavioral.

Wouter van Diggelen and Maarten Overdijk [4] highlight the issues that may appear
on account of a detachment between practice and design, in the process of designing an
e-learning environment. They consider that theory development plays a crucial role in
development of design patterns. They rely on a systematic examination of the encountered
issues and on the establishment of conceptual models meant to determine the definition
and evaluation of design patterns. The research presents the way the proposed approach
has been applied in a classroom, for developing design patterns for networked learning.

Shahid Hussain, Jacky Keung and Arif Ali Khan [5] propose a method to automatically
select and classify design patterns for software developers. The approached technique
uses unsupervised learning Fuzzy c-means. They also introduce Ensemble-IG, a new
feature selection method, meant to overcome the drawbacks of the proposed approach. To
assess the effectiveness of the method they used an evaluation model on the design pattern
collection.

In the cited work, the authors exposed a method to classify the design patterns in
order to help developers to identify the suitable pattern to a specific issue. We consider
this subject an interesting approach. However, we maintained the value of study and
comprehended the design patterns concept and found correspondence in real problem
solving issues. With the aim to illustrate this technique, we provide examples that are
composed of an introduction, an issue that can be solved and the implementation in the EV
platform development.

Davide Arcelli and Daniele Di Pompeo [6] present a new path that applies design
patterns, centered on the refactoring software artifacts with the purpose of eliminating the
performance antipatterns. The research presents future research directions and the results
the applied method obtained.

In this previous paper, the authors highlight the significance of design patterns achieve-
ment in the software solutions development. We agreed that design pattern should rep-
resent the tone in a refactoring process. Moreover, we proposed design patterns as a
cornerstone in the platform architecture plan.

Neven A. M. ElSayed et al. [7] present the blended model view controller, which
enables common user interface controls to function alongside printed information by using
a semantic matrix. The combination of augmented reality and design pattern include
details-on-demand, menus, pinch zoom, etc. This research helps to provide a more accurate
environment in augmented reality.

Appl. Sci. 2021, 11, 140 4 of 24

This article demonstrated the design patterns applicability in the augmented reality
area. In the current work we present a complex platform with a design to provide a
software solution to EV charging platform management.

Omar Bonerge Pineda Lezama et al. [8] build their research on design patterns for the
development of an educational application with the purpose of solving the problems that
may arise within a team. The group’s ability to negotiate reduces the time it takes to find
solutions and to implement the designed scheme to analyze and promote teamwork skills.

A. Casteigts et al. [9] formulate multiple algorithms for degree computation, MIS
and coloring, using the design patterns such as: peripheral collision detection, adaptive
probability, exclusive beeps and multi-slot phases. They work to improve the complexities
of the algorithms and prove their convertibility.

Kevin Lano et al. [10] present the transformation applications for the design patterns
and the diverse categories of transformation. The research presents the advantages of
different patterns usages and it catalogues the new patterns.

In this article, we discuss the advantages and potential drawbacks in software systems
development. In order to deliver a clear picture of design patterns topic, we mentioned the
difference between the design principle and design pattern, terms that can be easily confused.

We completed the work with a DP classification up to the last updates from techni-
cal documentation.

Daniela Fogli, Claudio Greppi and Giovanni Guida [11] analyze the importance of
DSS—decision support system—for emergency management, in an extensive variety of
application domains. The proposed solution is built on a set of design patterns, the validity
of which has been assessed by setting in place an evaluation exercise carried out by expert
designers. Dae-Kyoo Kim, Lunjin Lu and Byunghun Lee [12] explore design patterns
in terms of consistency and conformance. The authors attempt to demonstrate their
perspective on transforming an application model by means of structural and behavioral
features of a design pattern, by applying the observer pattern to a graph application.

Figure 1 illustrates some of the issues to be considered while working with the design
pattern, as they have been identified in the consulted literature.

Huseyin Ergin, Eugene Syriani and Jeff Gray [13] explore the current literature and
highlight 14 existing model transformation design patterns. MODEL TRANSFORMATION
seems to be the answer for several problems in MDE—model-driven engineering. The
authors propose to employ the Delta language to ensure a comprehensive template meant
to represent model transformation design patterns. Irfan Šljivo et al. [14] analyze the role
played by design patterns in critical systems design, focusing on safety or security related
systems, which need a guarantee with respect to the system’s adequacy to perform in
a given environment. The authors propose a methodology developed for ensuring the
employment of design patterns in such domains.

B. Bafandeh Mayvana, A. Rasoolzadegan and Z. Ghavidel Yazdi [15] have performed a
systematic mapping study related to the design patterns, covering the trends, and the gaps in
the field that need to be further addressed. They identified six topics in the design patterns
field, among which, the most active ones are pattern mining and pattern development.

In the cited manuscript, the authors have carried out extensive research on design
pattern debates in technical publications. They have provided a statistic that indicates
that the DP subject is an active topic in the last decades through the software engineering
specialist. This outcome is not dependent on geographical affiliation, the exploration is
present all over the world. These being mentioned, we propose an article that presents a
complex overview of design patterns.

In addition, we investigate the Cloud design patterns to establish appropriate cloud
architecture to launch the platform in the marketplace. It is essential to remark that solid
software structure results are reflected in a stable cloud representation.

Moreover, one important aspect that is considered in this paper refers to ensuring a
scalable and configurable cloud application in terms of multi EV charging providers.

Appl. Sci. 2021, 11, 140 5 of 24
Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 26

Figure 1. Issues of the design patterns.

Huseyin Ergin, Eugene Syriani and Jeff Gray [13] explore the current literature and
highlight 14 existing model transformation design patterns. MODEL TRANSFOR-
MATION seems to be the answer for several problems in MDE—model-driven engineer-
ing. The authors propose to employ the Delta language to ensure a comprehensive tem-
plate meant to represent model transformation design patterns. Irfan Šljivo et al. [14] an-
alyze the role played by design patterns in critical systems design, focusing on safety or
security related systems, which need a guarantee with respect to the system’s adequacy
to perform in a given environment. The authors propose a methodology developed for
ensuring the employment of design patterns in such domains.

B. Bafandeh Mayvana, A. Rasoolzadegan and Z. Ghavidel Yazdi [15] have performed
a systematic mapping study related to the design patterns, covering the trends, and the
gaps in the field that need to be further addressed. They identified six topics in the design
patterns field, among which, the most active ones are pattern mining and pattern devel-
opment.

In the cited manuscript, the authors have carried out extensive research on design
pattern debates in technical publications. They have provided a statistic that indicates that
the DP subject is an active topic in the last decades through the software engineering spe-
cialist. This outcome is not dependent on geographical affiliation, the exploration is pre-
sent all over the world. These being mentioned, we propose an article that presents a com-
plex overview of design patterns.

In addition, we investigate the Cloud design patterns to establish appropriate cloud
architecture to launch the platform in the marketplace. It is essential to remark that solid
software structure results are reflected in a stable cloud representation.

Figure 1. Issues of the design patterns.

Thus, a multitenant cloud application is sketching the best possible tenant isolation
solution and reveals low-cost resources.

Apostolos Ampatzoglou, Olia Michou and Ioannis Stamelos [16] present a review
of the design patterns based on 141 open-source projects, having recorded more than
4500 pattern instances. The built repository has been subjected to an evaluation process,
from both an academy and a practical perspective. Zakaria Moudam and Noureddine
Chenfour [17] introduce the data management system meant to enable the selection of the
most suitable pattern among the ever-growing plethora of design patterns.

Imen Tounsi et al. [18] propose two transformation categories: M2M—standing for
model to model—and M2T—meaning model to text. The former enables the transformation
of SOA design patterns and the latter facilitates the transformation to Event-B specifications
of the compound pattern model, which will now include a formal description and a graphic
representation. J. Arm et al. [19] implement and describe a checking monitor based on a
runtime model. The monitor uses as a model the extended Petri net, which is implemented
with VHDL (VHSIC-HDL, Very High Speed Integrated Circuit Hardware Description
Language). The new added feature is runtime checking and it exploits the proposed
architecture concept. The aim of the research is to transform the monitor system so it can
be integrated in a control system. Angela PatriciaVillareal—Freire et al. [20] address the
absence of guidelines for designing therapeutic system interface for children’s attention
deficit treatment. The authors provide a methodology for extracting patterns through a
reverse engineering mechanism, used on Android applications. They identify three major
steps in accomplishing this, namely: the applications selection, the patterns selection and
the investigation of the patterns present in the chosen applications.

Appl. Sci. 2021, 11, 140 6 of 24

Jiang Li et al. [21] create a novel design pattern assigned to the industrial robot
engineering in order to assure their rapid development. The implementation of the user-
customized configuration design pattern is dictated by the role played by the various
stakeholders of this industry. After establishing the system dynamics models for this type
of design pattern and for the traditional one, they proceed to simulating these models
by using the Anylogic software. The results returned by the simulation indicate the
new proposed design pattern as being more efficient with reference to inventory, and to
order response time. Khalid Aljasser [22] highlight the fact that the language used on the
design patterns influences the implementation. In the research are compared three types
of patterns: decorator, observer and singleton. They use ParaAJ to make the patterns of
observer and singleton reusable, but it does not work with the decorator one. This research
is the base for future development in the area.

Jing Bai, Haonan Luo and Feiwei Qin [23] propose an innovative approach regarding
design pattern extraction in the CAD field. The novel solution consists of three stages:
the first one deals with the formation of a relative integrated function resulting from the
extraction of reusable regions having the following features: high cohesion, moderate
complexity and low coupling; the second step identifies prospect design patterns by means
of grouping reusable regions with the help of a specific clustering algorithm. During
the last step, patterns with sufficient information and high frequency are selected. This
approach proves its effectiveness through experimental results. Seyed Mohammad Hossein
Hasheminejad and Saeed Jalili [24] propose a new two-phased method for the selection
of the most suitable design pattern, a technique that has proven its efficiency after being
employed in several case studies and in real situations. This method relies upon a text
classification approach that seeks to indicate to software developers the proper design
pattern for dealing with particular problems. Stefan L. Pauwels et al. [25] describe how
they have built and verified interaction design patterns meant to function as a guideline
in redesigning an application, which would be extremely useful in complex business
environments. The above-mentioned patterns were integrated in a pattern language, as
a set of rules for human–computer interaction in order to facilitate the further extension
of the application. To reach this point, the authors have proficiently applied a series of
analytical methods, controlled experiments and user interviews.

Bahareh Bafandeh Mayvan and Abbas Rasoolzadegan [26] present a new two-phased
method for detecting design patterns. The first stage focuses on the structural signature of
the pattern in terms of semantics and syntax. Following the implementation of a matching
algorithm that leads to the identification of candidate instances, the second phase of the
method is initiated, and the final matches are established. The technique has proven to
be highly efficient and accurate after having been evaluated on various systems, with
relevance to precision and recall.

Figure 2 exemplifies the presented solutions for the problems identified in working
with design patterns. These solutions were identified in articles and research in the field.

Jae Hyun Lee et al. [27] examine the plug-in electric vehicles charging behavior for 7979
owners. The paper is analyzing the charging location and level of charging to determine
their preferences, travel pattern and the charging behavior. The research provides a
database with workplace charging availability, commute behavior, vehicle characteristics
and sociodemographic information.

Yongxiu He, Qi Zhang and Yuexia Paang [28] project the pattern design of the Chinese
electric vehicles depending on the fuel costs, operating costs, initial investment cost and
other costs. This paper design three promotion models, which depend on the risk sharing,
risk reduction and risk transfer.

Hongqiang Guo et al. [29] are developing a new driving pattern. They verify if the
applicability, robustness and reasonability of the method using the Monte Carlo Simulation.
The results are showing an improvement of 34.36% on the fuel economy.

Wanying Wan et al. [30] provide a comparative pattern between the private vehicles
and the shared ones. The research is presenting from three dimensions the pattern of BEVs

Appl. Sci. 2021, 11, 140 7 of 24

(battery electric vehicles) usage pattern. They are the decision-making dimension, travel
spatial and travel temporal one. The differences between the patterns are easily observed
by the indicator system and they can be analyzed from multiple perspectives.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 26

To reach this point, the authors have proficiently applied a series of analytical methods,
controlled experiments and user interviews.

Bahareh Bafandeh Mayvan and Abbas Rasoolzadegan [26] present a new two-phased
method for detecting design patterns. The first stage focuses on the structural signature
of the pattern in terms of semantics and syntax. Following the implementation of a match-
ing algorithm that leads to the identification of candidate instances, the second phase of
the method is initiated, and the final matches are established. The technique has proven
to be highly efficient and accurate after having been evaluated on various systems, with
relevance to precision and recall.

Figure 2 exemplifies the presented solutions for the problems identified in working
with design patterns. These solutions were identified in articles and research in the field.

Figure 2. Solutions to the design patterns issues.

Jae Hyun Lee et al. [27] examine the plug-in electric vehicles charging behavior for
7979 owners. The paper is analyzing the charging location and level of charging to deter-
mine their preferences, travel pattern and the charging behavior. The research provides a
database with workplace charging availability, commute behavior, vehicle characteristics
and sociodemographic information.

Yongxiu He, Qi Zhang and Yuexia Paang [28] project the pattern design of the Chi-
nese electric vehicles depending on the fuel costs, operating costs, initial investment cost
and other costs. This paper design three promotion models, which depend on the risk
sharing, risk reduction and risk transfer.

Hongqiang Guo et al. [29] are developing a new driving pattern. They verify if the
applicability, robustness and reasonability of the method using the Monte Carlo Simula-
tion. The results are showing an improvement of 34.36% on the fuel economy.

Wanying Wan et al. [30] provide a comparative pattern between the private vehicles
and the shared ones. The research is presenting from three dimensions the pattern of BEVs
(battery electric vehicles) usage pattern. They are the decision-making dimension, travel
spatial and travel temporal one. The differences between the patterns are easily observed
by the indicator system and they can be analyzed from multiple perspectives.

Figure 2. Solutions to the design patterns issues.

Ian Miller, Maryam Arbabzadeh and Emre Gençer [31] present the emissions impact
using information from 2018 and 2019. The temperature data, driving and hourly charging
creates the charging patterns distributed per region. There are calculated errors and
provided emissions approximations in future scenarios.

The previous four manuscripts that are cited in the section above, represent an incur-
sion in the electric vehicle domain. This data will constitute the input in decisions towards
the EV platform features and in elaborating the optimal algorithms in charging prediction.
Another novel application field for design patterns is related to charging stations, a topical
subject for the current evolution of electric vehicles, discussed in detail in [32,33]. Finding
the optimal placement for charging stations taking into account the demand and number
of electric vehicles was addressed by Raboaca et al. in [34,35]. Similarly, design patterns
for a mobile charging station were taken into account by Fodorean et al. in [36].

The AI module is not described in this work but will represent the central point in the
future research.

2. Incursion in the Design Patterns Field

Section 2 is an overview of existing software design patterns and their appropriate
use cases according to the literature, presenting both the advantages and the potential
disadvantages of their use. We also made a clear distinction between design patterns and
design principles.

Applying design patterns to software design was first attempted in 1987, by authors
Kent Beck and Ward Cunningham. Later, in 1994, four authors released the book Design
Patterns: Elements of Reusable Object-Oriented Software (aka Gang of Four, aka GoF) [37],
which has proven to be essential in the promotion and adoption of the notion in this domain.

To render the above definition less abstract, we proposed to examine the decorator
pattern. A decorator “allows behavior to be added to an individual object, either statically

Appl. Sci. 2021, 11, 140 8 of 24

(i.e., at compile time) or dynamically (i.e., at run-time), without affecting the behavior of
other objects from the same class” [38]. This is performed by subclassing the original object
and at the same time holding a reference to it.

2.1. Design Patterns—Benefits and Potential Drawbacks

We must underline the fact that design patterns are not algorithms. They are arrange-
ments of objects and classes, which smoothly stabilize the clashing forces prone to engender
design issues. Software requirements are constantly updated and modified and managing
a poorly designed system would represent a real burden for developers. As the system
becomes more intricate, the implementation of design patterns proves ever-more useful,
becoming an indicator of the system’s long-term survival. Moreover, a system made up of
objects with tight co-dependencies is harder to navigate and the alteration of any segment
is prone to create a snowball effect, generating problems in totally unpredicted areas of
the code. Performing tasks such as ensuring modularity and separation of concerns will
translate in a considerable decrease of maintenance issues, ensuring, at the same time
opportunities for code reuse. Therefore, the success of a software application relies upon
its flexibility and resilience to change, so as to meet the constantly evolving expectations
and needs, without suffering degradation.

However, according to how and when they are employed, design patterns can repre-
sent a real asset in developing software products or they can have significant drawbacks.
There are instances when a software designer must trade off the advantages of particular
design patterns against the entailed disadvantages, in terms of flexibility and performance.

We could conclude that that there are two main benefits of design patterns that cannot
be argued. Firstly, they supply proven solutions that have stood the test of time for
recurring design problems. This helps to isolate certain system sectors that are susceptible
to frequent modifications by promoting architectural principles such as loose coupling or
other system properties bearing attributes of resilience, such as modularity. This finally
translates into a more understandable, manageable and extendable system.

The second advantage resides in the fact that design patterns ensure a common language,
which enables programmers to communicate with ease by referring to a design solution
by simply naming a standard pattern, such as decorator, for instance. This makes more
sense and is much easier to pinpoint, rather than other lengthy descriptions that might even
engender misunderstandings, like: “a wrapper around a base type” or something like “a type
that relates to the base type through both a HAS-A and a IS-A relationship”. The following
statement perfectly illustrates this benefit design patterns bring to the software development
community: we will apply decorators for our Streams and then employ builders to smoothly
bypass the constructor chaining issue. This is sufficient information for developers to
immediately comprehend the necessary steps. Moreover, based on their prior experience
with design patterns, developers can easily identify potential failure scenarios.

However, it is a known fact that applying design patterns can increase the complexity
of a system and, unfortunately decrease performance, due to their tendency to include ad-
ditional objects, classes or layers to the design these are applied to. Therefore, the incorrect,
unsuitable or at times unnecessary use of design patterns could lead to an excessively com-
plicated code, which would prove difficult to maintain and debug. Moreover, beginners
are likely to misunderstand and misuse these extremely abstract construct.

2.2. Distinction between Design Patterns and Design Principles

Before advancing any further, we should make a clear distinction between design
patterns and design principles. The latter are more general and high-level than the former,
which could be regarded as condensations of principle recipes for the resolution of context-
bound design problems. As part of the adaptive programming strategy, a couple of design
patterns were proposed for creating a software system that would be easy to extend and
maintain over time. These principles are rules created for programmers that need to be

Appl. Sci. 2021, 11, 140 9 of 24

applied while working on software by refactoring the code until it is extensible and eligible.
We have provided below some examples of design principles:

(a) Single-responsibility principle: a class should be appointed only one job to handle,
one single reason to change.

(b) Open-closed principle: object or entities are closed for modifications but opened
for extensions.

(c) Liskov substitution principle: “Let q(x) be a property provable about objects of x of
type T. Then q(y) should be provable for objects y of type S where S is a subtype of
T.” [39]. This statement implies that all subclasses should be interchangeable with
their parent class.

(d) Interface segregation principle: this principle requires that the software programs
should be independent from the interfaces that they do not use.

(e) KISS (keep it simple stupid): the principle states that the majority of systems work at
their best when kept simple, rather than intricate.

Bearing in mind the fact that design principles are high level rules, we proposed
to continue with a more in-depth analysis of design patterns. For the purposes of the
current paper, we identified three large categories of patterns that could be successfully
employed in the development of an EV charging platform: software, cloud and multitenant
database design patterns. The following subchapter is dedicated to a thorough analysis of
software design patterns, some of which will be further explored in Section 3, along with
the other two major types mentioned above, as components of the solution envisaged for
the construction of the management platform.

2.3. Software Design Patterns Classification

Design patterns vary in terms of complexity, level of detail and applicability and from
these features we can draw up three categories of patterns:

• Creational design patterns deal with the mechanisms of object creation. Their purpose
is “to separate a system from how its objects are created, composed and represented.
They increase the system’s flexibility in terms of the what, who, how and when of
object creation” [40].

• Structural patterns deal with identifying simple ways of establishing relationships
among objects.

• Behavioral patterns identify and realize common communication patterns between objects.

3. Design Patterns and EV Charging Software

To begin with, Section 3, along with the other two major types mentioned above, as
compone provides a brief description of the design patterns categories that will be further
discussed in the manuscript.

During our study, we identified three main categories of design patterns used in the
development of complex software solutions, namely:

• Software design patterns, which constitute the optimal solutions employed by skilled
object-oriented developers to general issues that software developers face during
development process.

• Cloud design patterns that have proven valuable for constructing scalable, dependable
and secure applications in the cloud.

• Multitenancy model, which assures a stable, isolated, low cost, customizable and
scalable cloud architecture for the application’s multiple tenants.

These categories are thoroughly explored below in terms of the role they play in the
construction of an EV charging management platform.

3.1. Software Design Patterns

Section 3.1 focuses on the main design patterns categories and outlines the base role
of DP in a complex software solution development process.

Appl. Sci. 2021, 11, 140 10 of 24

Moreover, the paper proposes a suite of experiments for each DP category. The ex-
amples describe the applicability between the communication services, data access layer
and in sketching a high-quality coding style. The section ends with an overview of the
experiments that have been performed and illustrated.

Design patterns are a general solution to specific scenarios that is commonly met
in software design. It can be described as a rule that indicates the interaction between
a context, a problem and a solution. This definition has been presented by the software
community as a template that provides the necessary information to understand the essence
of the structure and the potential flaws of the proposed solution. [37]

A design pattern provides a solution that can be employed in different situations, to
address different problems. Each pattern has been designed, implemented and tested in
particular circumstances and their reusability has been confirmed; in the development
process, when applying DP, we create unit modules that ensure decoupled architecture.

With the advancement of electric vehicles in innovation and industry, and the gov-
ernment’s financial motivations and the related policies background, the current electric
vehicle effervescence is constantly rising. Increasingly, people choose electric vehicles as a
travel option.

This paper focused on building a management platform to facilitate the management
process in the EV charging infrastructure.

In the active e-mobility market development, it is imperative to handle the charging
process of electric vehicles. The project architecture design has an important role in deliver-
ing qualitative software systems. These principles are met in the software communities
that produce open-source software application as it is illustrated in Michael Hahsler’s arti-
cle [41]. We cannot envision a development process for an EV charging platform without
considering the DP base role. Building project architecture through DP influence, help us
to create a software solution based on a solid structure that will easily admit changes or
updates in the project flow. It will also allow the unit tests implementation, which is a
considerable element in thriving a complex project.

In this solution we considered the microservice implementation and we used DP in
building the services instance, in order to assure the services dependencies. Thus, we
ensure an efficient allocation of resources and maintain the components decoupled.

In the following sections, we illustrated some design patterns implementations
through a brief introduction for each category of software design patterns adopted and
we accomplished the presentation with an example from the EV platform project defined
through Microservices architecture model. Design patterns vary in terms of complexity,
level of detail and applicability and from these features we could draw up three categories
of patterns: creational, structural and behavioral. From each category, the design patterns
that best answer the needs for creating an EV charging platform have been presented.

3.1.1. Singleton Pattern

This pattern ensures that a single class has only one instance, being at the same time
responsible for providing a global point of access to that instance. In the EV charging
application development, the microservices communicate using HTTP requests. The service
that handles the connection is registered as singleton lifetime and is created the first time
they are called upon. Hence, every request will use the same instance.

An example of microservices communication that leans on HTTP calls can be identified
between the charging station microservice and the connectors microservice.

The responsibility of the charging station microservice is to provide support in man-
aging the charging points within a network. This microservice will validate the user input
in the charging station enrolment and will offer support for managing a charge point
network business.

The role of the connectors microservice is to support the registration process and the
administration of the EV charging points connectors.

Appl. Sci. 2021, 11, 140 11 of 24

The diagram below further illustrates the communication model between the charg-
ing station microservice and the connectors microservice using asynchronous HTTP
request/response protocol.

The architectural model for the microservices is based on the Representational state
transfer (REST) approach in creating the Web API services. The diagram in Figure 3
presents the charging station microservice communication with the connectors microser-
vices through the Http protocol.

.NET Core framework provides support for the lifetime services registration, once for
each client connection. The singleton lifetime is created with the AddSingleton method
that requires a specified object type and service implementation (see Figure 4).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 26

Figure 3. Microservices example using Http request/response communication (synchronous or asynchronous).

.NET Core framework provides support for the lifetime services registration, once
for each client connection. The singleton lifetime is created with the AddSingleton method
that requires a specified object type and service implementation (see Figure 4).

Figure 4. Singleton lifetime services registration.

3.1.2. Dependency Injection Design Pattern
In software engineering, dependency injection (DI) is an object-oriented design pat-

tern whereby one component is independent of its dependencies. It represents the IoC
(Inversion of control) principle implementation and it enables the creation and binding of
the dependent objects separately from the services that use them. DI is a programming
technique that allows us to implement loosely coupled software components.

In the electric vehicle charging platform, a case where we use DI patterns is the user
microservice, which attends to platform users’ management.

The user API controller will define and handle the endpoints to capture or update
the user profile information. In this pattern implementation we used interfaces and we
did not depend on a concrete usage of a service dependency. Instead of instantiating col-
laborators directly into the constructor, the dependencies are isolated into interfaces and
provided as parameters in the constructor.

Figure 3. Microservices example using Http request/response communication (synchronous or asynchronous).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 26

Figure 3. Microservices example using Http request/response communication (synchronous or asynchronous).

.NET Core framework provides support for the lifetime services registration, once
for each client connection. The singleton lifetime is created with the AddSingleton method
that requires a specified object type and service implementation (see Figure 4).

Figure 4. Singleton lifetime services registration.

3.1.2. Dependency Injection Design Pattern
In software engineering, dependency injection (DI) is an object-oriented design pat-

tern whereby one component is independent of its dependencies. It represents the IoC
(Inversion of control) principle implementation and it enables the creation and binding of
the dependent objects separately from the services that use them. DI is a programming
technique that allows us to implement loosely coupled software components.

In the electric vehicle charging platform, a case where we use DI patterns is the user
microservice, which attends to platform users’ management.

The user API controller will define and handle the endpoints to capture or update
the user profile information. In this pattern implementation we used interfaces and we
did not depend on a concrete usage of a service dependency. Instead of instantiating col-
laborators directly into the constructor, the dependencies are isolated into interfaces and
provided as parameters in the constructor.

Figure 4. Singleton lifetime services registration.

3.1.2. Dependency Injection Design Pattern

In software engineering, dependency injection (DI) is an object-oriented design pat-
tern whereby one component is independent of its dependencies. It represents the IoC

Appl. Sci. 2021, 11, 140 12 of 24

(Inversion of control) principle implementation and it enables the creation and binding of
the dependent objects separately from the services that use them. DI is a programming
technique that allows us to implement loosely coupled software components.

In the electric vehicle charging platform, a case where we use DI patterns is the user
microservice, which attends to platform users’ management.

The user API controller will define and handle the endpoints to capture or update the
user profile information. In this pattern implementation we used interfaces and we did not
depend on a concrete usage of a service dependency. Instead of instantiating collaborators
directly into the constructor, the dependencies are isolated into interfaces and provided as
parameters in the constructor.

At the controller level the services that are requested are UserService and logging that
contain the business logic and the link to the data access layer.

The capture in Figure 5 represents the dependency injection pattern implementa-
tion through a UserProfile controller with user profile and logging services injected in
the constructor.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 26

At the controller level the services that are requested are UserService and logging
that contain the business logic and the link to the data access layer.

The capture in Figure 5 represents the dependency injection pattern implementation
through a UserProfile controller with user profile and logging services injected in the con-
structor.

Figure 5. Dependency injection example.

3.1.3. Façade Pattern
The facade structural design pattern delivers a way to decrease the overall complex-

ity of the application by moving the unwanted dependencies to one place. The facade can
be easily identified in classes that have simple functionality implemented and delegate a
part of the work to other classes. The objective of the facade pattern is to follow the full
life cycle of the objects used.

In the next example in Figure 6, the “LogService” class acts as a facade because during
the “SaveAsync” method, we built the model to be saved in the cloud and then delegate
another microservice to the operation of uploading the information to the external con-
tainer. Thus, the upload operation can be treated as a separate step, and the implemented
functionality can also be used to push binary files into the cloud.

Figure 5. Dependency injection example.

3.1.3. Façade Pattern

The facade structural design pattern delivers a way to decrease the overall complexity
of the application by moving the unwanted dependencies to one place. The facade can be
easily identified in classes that have simple functionality implemented and delegate a part
of the work to other classes. The objective of the facade pattern is to follow the full life
cycle of the objects used.

Appl. Sci. 2021, 11, 140 13 of 24

In the next example in Figure 6, the “LogService” class acts as a facade because during
the “SaveAsync” method, we built the model to be saved in the cloud and then delegate
another microservice to the operation of uploading the information to the external con-
tainer. Thus, the upload operation can be treated as a separate step, and the implemented
functionality can also be used to push binary files into the cloud.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 26

Figure 6. Facade example though LogService implementation.

3.1.4. Repository Pattern

The repository pattern proves useful by creating an “abstraction layer between the
data access and the business layer of an application” [42]. Among the advantages of this
pattern, we can mention the fact that it ensures code maintainability and reusability. Data
access is maintained through specific classes called repositories and the communication
with the database is established through a middleware. At its core, it represents a generic
repository that will serve us all the CRUD functions, which can be called upon by any of
the repository classes in our microservices projects. (CRUD stands for create, read, update
and delete)

The scheme in Figure 7 illustrates a repository pattern implementation from the ab-
stract layer to the services usage.

Figure 6. Facade example though LogService implementation.

3.1.4. Repository Pattern

The repository pattern proves useful by creating an “abstraction layer between the data
access and the business layer of an application” [42]. Among the advantages of this pattern,
we can mention the fact that it ensures code maintainability and reusability. Data access
is maintained through specific classes called repositories and the communication with the
database is established through a middleware. At its core, it represents a generic repository
that will serve us all the CRUD functions, which can be called upon by any of the repository
classes in our microservices projects. (CRUD stands for create, read, update and delete)

The scheme in Figure 7 illustrates a repository pattern implementation from the
abstract layer to the services usage.

Building the generic repository and repository classes using the respective generic
repository does not constitute the final step. We will continue with the creation of a wrapper
around the repository classes, called “ChargingStationService”, for instance, and inject it as
a service. In this way, the wrapper can be instantiated once and then we call upon any of
the repository classes we need within our microservice controllers [42].

The capture in Figure 8 below presents the structure of the abstract layer in the
repository pattern practice.

Appl. Sci. 2021, 11, 140 14 of 24
Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 26

Figure 7. Repository pattern diagram for Electric Vehicle charging platform.

Building the generic repository and repository classes using the respective generic
repository does not constitute the final step. We will continue with the creation of a wrap-
per around the repository classes, called “ChargingStationService”, for instance, and in-
ject it as a service. In this way, the wrapper can be instantiated once and then we call upon
any of the repository classes we need within our microservice controllers. [42]

The capture in Figure 8 below presents the structure of the abstract layer in the re-
pository pattern practice.

Figure 8. The implementation of the repository pattern.

Figure 7. Repository pattern diagram for Electric Vehicle charging platform.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 26

Figure 7. Repository pattern diagram for Electric Vehicle charging platform.

Building the generic repository and repository classes using the respective generic
repository does not constitute the final step. We will continue with the creation of a wrap-
per around the repository classes, called “ChargingStationService”, for instance, and in-
ject it as a service. In this way, the wrapper can be instantiated once and then we call upon
any of the repository classes we need within our microservice controllers. [42]

The capture in Figure 8 below presents the structure of the abstract layer in the re-
pository pattern practice.

Figure 8. The implementation of the repository pattern. Figure 8. The implementation of the repository pattern.

Appl. Sci. 2021, 11, 140 15 of 24

3.1.5. Template Method Pattern

The template method is a part of the behavioral design pattern category that defines
basic algorithm structure in the superclass, which is usually an abstract one and allows
the subclasses that use it to overrule certain steps of the algorithm, keeping its original
structure intact.

The idea behind this pattern is to split the algorithm structure into simple steps,
which are then turned into methods that are part of the template method. Usually, the
steps may have a default implementation or can just be abstract. To be able to use the
algorithm, the client needs to provide its own subclass, which implements the abstract
methods and overrides some, where needed. So, the template method allows us to break
down a monolithic algorithm into a series of specific subclasses and to keep the common
functionality into a superclass, eliminating code duplication.

In our case, the template method pattern provides a “skeleton” for various entities of
the electrical vehicle platform that needs to be managed by clients via a web portal.

Captured in Figure 9 there is an example of template method pattern applicability
through the repository pattern implementation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 26

3.1.5. Template Method Pattern
The template method is a part of the behavioral design pattern category that defines

basic algorithm structure in the superclass, which is usually an abstract one and allows
the subclasses that use it to overrule certain steps of the algorithm, keeping its original
structure intact.

The idea behind this pattern is to split the algorithm structure into simple steps,
which are then turned into methods that are part of the template method. Usually, the
steps may have a default implementation or can just be abstract. To be able to use the
algorithm, the client needs to provide its own subclass, which implements the abstract
methods and overrides some, where needed. So, the template method allows us to break
down a monolithic algorithm into a series of specific subclasses and to keep the common
functionality into a superclass, eliminating code duplication.

In our case, the template method pattern provides a “skeleton” for various entities of
the electrical vehicle platform that needs to be managed by clients via a web portal.

Captured in Figure 9 there is an example of template method pattern applicability
through the repository pattern implementation.

Figure 9. Template method implementation in the EV charging platform.

3.1.6. Overview

As we presented in the coding captions in this chapter, design patterns provide meth-
ods that can be applied in all the stages of building a software solution.

Thus, among the creational design patterns, we selected the generic repository pat-
tern to define the CRUD functions with respect to the main entities involved, and we com-
pleted the services registration using the singleton design pattern. Moreover, in order to
ensure that any future requirements will be implemented with ease, we employed the
dependency injection technique.

Figure 9. Template method implementation in the EV charging platform.

3.1.6. Overview

As we presented in the coding captions in this chapter, design patterns provide
methods that can be applied in all the stages of building a software solution.

Thus, among the creational design patterns, we selected the generic repository pattern
to define the CRUD functions with respect to the main entities involved, and we completed
the services registration using the singleton design pattern. Moreover, in order to ensure
that any future requirements will be implemented with ease, we employed the dependency
injection technique.

Appl. Sci. 2021, 11, 140 16 of 24

From the category of structural design patterns, we experimented with facade in the
development of the logging module, which has the role to ensure an overall view whenever
a functionality problem occurs in the application. In line with this practice, we introduced
an abstraction layer to isolate the logging methods from its consumers.

For the behavioral component, we explored the template method pattern to define a
basic model for other services that confer a high complexity to the algorithm. This way,
we ensure the increase of the entire solution complexity throughout a safety approach, in
terms of code reusability and organization.

We could confirm that the design patterns concept is placed at the top of best practice
within software engineering disciplines.

It brings a major improvement in the development process, especially, in the way that
developers are not required to draw up new implementation methods. Design patterns
represent templates that cover a technical issue in a specific context and the created design
models constitute basic elements in software implementation. Another important aspect is that
the design patterns implementation is neutral when transposed to a programming language.

3.2. Cloud Design Patterns

In Section 3.2 we proposed Cloud design patterns as a solution in the software de-
ployment field. After briefly introducing the concept, the study was continued with a
presentation of the Cloud DP applicability for hosting the application. The experiments are
described through one of the most familiar and structured cloud platforms.

Cloud design patterns differ from the software design patterns and are applied for
creating cloud applications, which are defined by reliability, scalability and security. The
challenges that must be overcome in cloud development are related to features such as
accessibility, data management, messaging, design and implementation, management and
monitoring, effectiveness and flexibility, security and resilience.

3.2.1. Publisher/Subscriber Pattern

The publisher/subscriber design pattern impacts the resilience of a system because
it allows better communication over the internet in cloud-based and distributed systems,
between their components when events occur.

The message must be sent asynchronously, and senders must be decoupled from the
consumers. Additionally, a global message queue with a filtering capability must be added.
A message is just a data pack, while an event represents a message that informs other
constituents about changes or actions that have occurred.

Publisher/subscriber messaging has the following benefits:

• Publishers are loosely coupled to subscribers and can remain oblivious to their exis-
tence. Publishers and a subscriber can even be temporarily decoupled.

• Provides scalability and improves responsiveness of the sender.
• Improves reliability.
• It ensures a cleaner integration between systems that employ different platforms,

programming languages and communication protocols.

The publish–subscriber model is supported by a series of messaging products and
services, among which we recall ServiceBus and EventGrid in Azure.

Figure 10 exemplifies the publish/subscribe diagram [43]. Multiple subscribers receive
messages from the publisher using a message broker as a message queue.

Applicability:
For the EV charging station platform, the mobile app user can subscribe, when creating

an itinerary, to multiple charging station situated along the way. The user will see in the
mobile application or web application if any charging station changed its state and became
unavailable with the option to choose another available station close by.

Appl. Sci. 2021, 11, 140 17 of 24
Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 26

Figure 10. Publisher/subscriber diagram.

Applicability:
For the EV charging station platform, the mobile app user can subscribe, when creat-

ing an itinerary, to multiple charging station situated along the way. The user will see in
the mobile application or web application if any charging station changed its state and
became unavailable with the option to choose another available station close by.

3.2.2. Sharding Pattern
Sharding means dividing a data store into a set of horizontal partitions or shards.

Shards feature the same schema and hold their own separate subset of the data. A shard
is generally comprised of items that fit within a certain range, established by one or more
of the characteristics the data possess. These attributes of the data form what is called the
shard key or partition key.

Figure 11 Explains a lookup strategy, a sharding logic that implements a map that
routes requests for data to the shard that contains the sharding key [44].

Figure 11. Tenant isolation using shards.

Applicability:
For the EV charging station each tenant will correspond to a shard. Mapping a shar-

ding key to a specific tenant ID must be mapped usually using a complementary database
catalog or table.

3.2.3. Static Content Hosting pattern
Using this type of design patterns ensures the deployment of static content to a cloud-

based storage service, which can distribute them directly to the customer. In this way, we
can experience a decreasing need for expensive compute instances [45].

Figure 10. Publisher/subscriber diagram.

3.2.2. Sharding Pattern

Sharding means dividing a data store into a set of horizontal partitions or shards.
Shards feature the same schema and hold their own separate subset of the data. A shard is
generally comprised of items that fit within a certain range, established by one or more
of the characteristics the data possess. These attributes of the data form what is called the
shard key or partition key.

Figure 11 Explains a lookup strategy, a sharding logic that implements a map that
routes requests for data to the shard that contains the sharding key [44].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 26

Figure 10. Publisher/subscriber diagram.

Applicability:
For the EV charging station platform, the mobile app user can subscribe, when creat-

ing an itinerary, to multiple charging station situated along the way. The user will see in
the mobile application or web application if any charging station changed its state and
became unavailable with the option to choose another available station close by.

3.2.2. Sharding Pattern
Sharding means dividing a data store into a set of horizontal partitions or shards.

Shards feature the same schema and hold their own separate subset of the data. A shard
is generally comprised of items that fit within a certain range, established by one or more
of the characteristics the data possess. These attributes of the data form what is called the
shard key or partition key.

Figure 11 Explains a lookup strategy, a sharding logic that implements a map that
routes requests for data to the shard that contains the sharding key [44].

Figure 11. Tenant isolation using shards.

Applicability:
For the EV charging station each tenant will correspond to a shard. Mapping a shar-

ding key to a specific tenant ID must be mapped usually using a complementary database
catalog or table.

3.2.3. Static Content Hosting pattern
Using this type of design patterns ensures the deployment of static content to a cloud-

based storage service, which can distribute them directly to the customer. In this way, we
can experience a decreasing need for expensive compute instances [45].

Figure 11. Tenant isolation using shards.

Applicability:
For the EV charging station each tenant will correspond to a shard. Mapping a

sharding key to a specific tenant ID must be mapped usually using a complementary
database catalog or table.

3.2.3. Static Content Hosting pattern

Using this type of design patterns ensures the deployment of static content to a cloud-
based storage service, which can distribute them directly to the customer. In this way, we
can experience a decreasing need for expensive compute instances [45].

Applications usually include some static elements like html pages, documents, images
that are available to the client and, to be rendered, it uses processing cycles that could
often be employed more appropriately. The “storage service can serve requests for these
resources, reducing load on the compute resources that handle other web requests. The
cost for cloud-hosted storage is typically much less than for compute instances” [46].

This pattern can be employed to:

Appl. Sci. 2021, 11, 140 18 of 24

• Minimize hosting costs for static resources; contingent upon the capabilities of the
hosting/cloud provider, entire static websites can be hosted.

• Minimize bandwidth usage. Low bandwidth usage can be achieved using content
delivery network, by presenting the cached content from multiple geographical areas
datacenter around the world.

Applicability:
EV charging software cloud keep the predefined template for generating reports on

the cloud-based storage. The user could generate reports for one or more stations using
the web application or mobile phone. The request goes from web app or mobile app to
the backend service that will compute the date and use the predefined template from the
cloud-based storage to generate the report.

Another way EV charging station could benefit using this pattern is putting the front-
end application in a storage account and enabling a content delivery network for the
storage account.

This way the front end can get loads of traffic with low cost and without the need of
cost or subscription management.

3.2.4. Retry Pattern

The retry pattern allows an application to address passing failures while connecting to
a service or to a network resource. This is accomplished by performing a transparent retrial
of the operation, presuming that the malfunction is merely transitory. This translates into
improved application stability. Therefore, the retry pattern is a resilience category pattern.

An application communicating with elements that run in the cloud need to be fault
tolerant for network connectivity issues, temporary service unavailability and timeout that
may arise when service is busy.

The application should handle the transient fault elegantly and transparently, mini-
mizing the effects on applications business task.

This pattern should be used only when the application is expected to incur temporary
failures, due to that fact it has interactions with remote services or resources. These faults
are most likely brief and renewing the request could be successful.

The illustration in Figure 12 on the retry pattern works is explained below:

1. The application calls upon an operation on hosted service and the internal server
error is returned (code 500).

2. The application then waits for a short while, before trying again. The failure message
is returned once more (code 500).

3. Then, the waiting time increases, before trying once again. The HTTP response is now
code 200 (OK) and the request is successful.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 26

Figure 12. Invoking an operation in a hosted service using the retry pattern [46].

Applicability:
EV charging software could benefit from this pattern when it connects the front-end

app or the mobile apps to the back end applications.
The retry procedure should be adjusted to meet the business requirements and the

nature of the failure:
 Non-critical operations are preferred to fail faster rather than repeating the request

several times and affecting the input of the application.
 Aggressive retry policy should have large delays and small number of retries.
 If a request has several failures, maybe it is best to prevent further requests
 Some of the retries may be idempotent (retry logic should handle errors from incom-

plete requests)
 All retry codes should be fully tested against a wide range of failures conditions.
 All failures should be logged, so that underlying problems can be identified.

3.3. Multitenant Database Design Patterns
A tenancy model establishes the way each tenant data is mapped to storage. It im-

pacts the application design and management. The best suited design pattern for EV
charging station system cloud deployment would be a SaaS multitenant application with
tenant isolation at database shard or even row level.

There are several design patterns for the cloud, among which we will mention only
three that are of particular interest to our study:
 Multitenant app with multitenant databases;
 Multitenant app with database-per-tenant;
 Multitenant app with sharded multitenant databases.

Software as a service (SaaS) is a software distribution model, where a third-party
provider hosts applications, rendering them available over the internet. The appropriate
tenancy model must be selected to comply with the needs related to:
 Tenant isolation;
 Scalability;
 Cost per tenant;
 Development complexity;
 Operation complexity;
 Customizability.

3.3.1. Multi-Tenant App with Sharded Multitenant Databases
This pattern enables tenant data to be distributed across multiple shards, each shard

containing all the data corresponding to one tenant alone.
A sharded model admits almost an unlimited scale.

Figure 12. Invoking an operation in a hosted service using the retry pattern [46].

Applicability:
EV charging software could benefit from this pattern when it connects the front-end

app or the mobile apps to the back end applications.

Appl. Sci. 2021, 11, 140 19 of 24

The retry procedure should be adjusted to meet the business requirements and the
nature of the failure:

• Non-critical operations are preferred to fail faster rather than repeating the request
several times and affecting the input of the application.

• Aggressive retry policy should have large delays and small number of retries.
• If a request has several failures, maybe it is best to prevent further requests
• Some of the retries may be idempotent (retry logic should handle errors from incom-

plete requests)
• All retry codes should be fully tested against a wide range of failures conditions.
• All failures should be logged, so that underlying problems can be identified.

3.3. Multitenant Database Design Patterns

A tenancy model establishes the way each tenant data is mapped to storage. It impacts
the application design and management. The best suited design pattern for EV charging
station system cloud deployment would be a SaaS multitenant application with tenant
isolation at database shard or even row level.

There are several design patterns for the cloud, among which we will mention only
three that are of particular interest to our study:

• Multitenant app with multitenant databases;
• Multitenant app with database-per-tenant;
• Multitenant app with sharded multitenant databases.

Software as a service (SaaS) is a software distribution model, where a third-party
provider hosts applications, rendering them available over the internet. The appropriate
tenancy model must be selected to comply with the needs related to:

• Tenant isolation;
• Scalability;
• Cost per tenant;
• Development complexity;
• Operation complexity;
• Customizability.

3.3.1. Multi-Tenant App with Sharded Multitenant Databases

This pattern enables tenant data to be distributed across multiple shards, each shard
containing all the data corresponding to one tenant alone.

A sharded model admits almost an unlimited scale.
Figure 13 explains how different tenants are placed in the same database and the

isolation between them is done using shards [47]. The catalog database stores the mapping
between tenant IDs and the corresponding shards.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 26

Figure 13 explains how different tenants are placed in the same database and the
isolation between them is done using shards [47]. The catalog database stores the mapping
between tenant IDs and the corresponding shards.

Figure 13. Cloud architecture multitenant schema.

3.3.2. Shards Management
Sharding means increased complexity, in terms of both design and operational man-

agement. The mapping between tenants and databases needs to be registered in a catalog.
Furthermore, the tenants and the shards have to be managed through the implementation
of management procedures. For instance, procedures must be established for adding and
removing shards, and for transferring the tenant data between shards.

3.3.3. Shards Management Tools
Elastic database tools for .Net is capable of managing all the tenant and database

operations:

1. Managing shards and shard maps;
2. Data-dependent routing;
3. Querying over multiple shards;
4. Adding empty shards;
5. Splitting existing shards;
6. Merging existing shards.

3.3.4. Scaling
Scaling is done through the addition of new shards and their populating with tenants

or by splitting a crowded shard into two uncondensed shards.
As described in Figure 14, the shard map manager can be used to easily scale out the

database on the Azure SQL Database. The shard map manager is a special type of database
having the purpose to store global mapping information in a shard set. The connection of
an application to the correct database, contingent upon the sharding key, is ensured by
the metadata. In addition, maps tracking local shard data (shardlets) are enclosed in every
shard in the set.

Figure 13. Cloud architecture multitenant schema.

Appl. Sci. 2021, 11, 140 20 of 24

3.3.2. Shards Management

Sharding means increased complexity, in terms of both design and operational man-
agement. The mapping between tenants and databases needs to be registered in a catalog.
Furthermore, the tenants and the shards have to be managed through the implementation
of management procedures. For instance, procedures must be established for adding and
removing shards, and for transferring the tenant data between shards.

3.3.3. Shards Management Tools

Elastic database tools for .Net is capable of managing all the tenant and database operations:

1. Managing shards and shard maps;
2. Data-dependent routing;
3. Querying over multiple shards;
4. Adding empty shards;
5. Splitting existing shards;
6. Merging existing shards.

3.3.4. Scaling

Scaling is done through the addition of new shards and their populating with tenants
or by splitting a crowded shard into two uncondensed shards.

As described in Figure 14, the shard map manager can be used to easily scale out the
database on the Azure SQL Database. The shard map manager is a special type of database
having the purpose to store global mapping information in a shard set. The connection
of an application to the correct database, contingent upon the sharding key, is ensured by
the metadata. In addition, maps tracking local shard data (shardlets) are enclosed in every
shard in the set.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 26

Figure 14. Global mapping information using the shard map manager.

3.3.5. Data-Dependent Routing
The purpose is to employ the elastic database client library data-dependent routing

APIs to ensure the automatic connection of each tenant to their assigned shard database.
One shard alone holds the TenantId value appointed to a particular tenant, the TenantID
representing the sharding key. Once the connection is achieved, an RLS security policy
guarantees that any given tenant cannot gain access to any other data rows, other than the
ones containing their TenantID.

3.3.6. Row Level Security
RLS (row level security) allows for the safe storage of data for multiple tenants in the

same database table. Using security policies, it can add tenant isolation because it filters
out rows belonging to other tenants using a database query. Row level security may be
useful when there is only a small amount of data related to a tenant and sharding might
not be a viable option. Row level security is a viable option instead of using code to enforce
security.

Figure 15 illustrates the data dependent routing APIs connection to the database [48].
In the same shards we could place different tenant data that can be isolated using row
level security.

Figure 15. Cloud multitenant architecture isolation at the shard and row level.

Figure 14. Global mapping information using the shard map manager.

3.3.5. Data-Dependent Routing

The purpose is to employ the elastic database client library data-dependent routing
APIs to ensure the automatic connection of each tenant to their assigned shard database.
One shard alone holds the TenantId value appointed to a particular tenant, the TenantID
representing the sharding key. Once the connection is achieved, an RLS security policy
guarantees that any given tenant cannot gain access to any other data rows, other than the
ones containing their TenantID.

Appl. Sci. 2021, 11, 140 21 of 24

3.3.6. Row Level Security

RLS (row level security) allows for the safe storage of data for multiple tenants in the
same database table. Using security policies, it can add tenant isolation because it filters out
rows belonging to other tenants using a database query. Row level security may be useful
when there is only a small amount of data related to a tenant and sharding might not be a
viable option. Row level security is a viable option instead of using code to enforce security.

Figure 15 illustrates the data dependent routing APIs connection to the database [48].
In the same shards we could place different tenant data that can be isolated using row
level security.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 26

Figure 14. Global mapping information using the shard map manager.

3.3.5. Data-Dependent Routing
The purpose is to employ the elastic database client library data-dependent routing

APIs to ensure the automatic connection of each tenant to their assigned shard database.
One shard alone holds the TenantId value appointed to a particular tenant, the TenantID
representing the sharding key. Once the connection is achieved, an RLS security policy
guarantees that any given tenant cannot gain access to any other data rows, other than the
ones containing their TenantID.

3.3.6. Row Level Security
RLS (row level security) allows for the safe storage of data for multiple tenants in the

same database table. Using security policies, it can add tenant isolation because it filters
out rows belonging to other tenants using a database query. Row level security may be
useful when there is only a small amount of data related to a tenant and sharding might
not be a viable option. Row level security is a viable option instead of using code to enforce
security.

Figure 15 illustrates the data dependent routing APIs connection to the database [48].
In the same shards we could place different tenant data that can be isolated using row
level security.

Figure 15. Cloud multitenant architecture isolation at the shard and row level.

Figure 15. Cloud multitenant architecture isolation at the shard and row level.

4. Results and Discussion

Section 4 contains the results of this work and highlights the benefits of using design
patterns as a key in the software development strategy.

These methods still represent a major place in the software industry by influencing
project development from team communication to important aspects of software delivery.

Furthermore, this section makes references to the future work regarding the open
charge point protocol.

Design patterns, in general, could speed up the software product time to market with
proven solutions to a well-known architectural or software problem by shortening the
implementation, integration and approval time and facilitating communication between
development teams.

Using the multitenant database design pattern, we can achieve a scalable, secure,
multitenant, cost effective cloud application with medium development complexity due
to sharding. Integrating it with continuous integration/continuous delivery DevOps
pipelines will speed up the delivery and deployment of the software product providing a
fully automated workflow.

Using the cloud design patterns we can architect a great distributed application that
implies security, resiliency, performance and scalability and availability.

Software design patterns exemplified in the previous chapters provide a clearer picture
of the implemented design, low coupling, a better coding standard, easier to be tested and
code reusability.

The articles that we studied debate a specific category of design patterns and the
applicability has been proven in different domains, such as educational applications [8]
or emergency management systems [11]. The current manuscript describes the design
patterns in every step of platform development and mentions the role for each category
of software, cloud and tenancy model design patterns. Thus, it illustrates the harmony
and the collaboration of the design patterns category as an important direction in software
solution development. More precisely, in building the software architecture, software
design patterns have represented the foundation for optimal solution elaboration. We

Appl. Sci. 2021, 11, 140 22 of 24

completed the study in this field, and we provided in Section 3, examples from the project
that we were currently working on. The experiments were implemented according to the
articles that were mentioned in the “State of the art” section and were validated with the
technical documentation from Microsoft, which is constantly updated.

In the case of EV charging software, the cloud design pattern helped to achieve a fast
and automatic tenant management. Every new client or tenant receives its own database
shard and cloud resources already prepared, on registration, along with cost-effective cloud
architecture, with almost limitless scaling providing good isolation between tenants.

Cloud design patterns have represented the main point in creating Cloud architecture
for the platform publishing plan. In Section 3 we elaborated those design patterns with
direct reference to the EV charging stations platform. The handling of Cloud design
patterns applicability in the Cloud structure of this application was strongly emphasized
with a description, diagrams and with an applicability segment.

The multitenancy model found its applicability harmoniously in the EV platform
when we considered multiple charging stations providers. In this case, each provider will
have its own resources in the cloud. Thus, this cloud pattern assured a stable, isolated, low
cost, customizable and scalable cloud architecture for the application’s multiple tenants.

Software design patterns fill the need for a robust code base, enforcing a better coding
standard and seamless integration with the OCPP, JSON over web sockets technology,
which represents the core part of the EV charging software.

For the EV charging cloud application the architecture is really important because the
requests start from the front end or mobile apps to the back end microservices and from
here it will access the charging station. For this application monitoring, resilience, fault
tolerance, scalability and availability in the production environment is mandatory.

5. Future Research Directions

Section 5 presents future research on the electric vehicle charging management platform.
In future work, we will consider design patterns for enabling a high level of main-

tainability of blockchain based applications such as utility or security tokens, wallets and
interfaces for decentralized networks.

We will maintain the use of design patterns as a model in the EV charging platform
and other complex projects, as an important pencil in the art of software development.
They are a well-documented field in the software industry and are flexible and compatible
with any type of software architecture style.

Moreover, we will continue the discussion about the electric vehicle charging manage-
ment with impact towards the communication protocol and designing a prediction model
for EV charging during a journey.

6. Conclusions

Section 6 contains the conclusions and policy implications.
In this work, we discussed and summarized the design patterns applicability in the

Smart EVC project architectural model.
Smart EVC solution is a low-cost SaaS (software as a service) solution, providing

an easy way to enroll as a business or as a tenant and start using the platform service
with your own charging stations and clients or users. Single database for multiple clients
or tenants, together with sharing the same software, using containers for deployment
provides reliability, scalability and availability at the lowest cost possible and we found this
as a limitation to the previous works. The entire system is capable of autoscaling, updating
without down-time and being reliable and resilient on a heavy workload.

We started with a formal introduction in the DP area and a review of earlier studies
on the use of design patterns in software development. We went on to provide a brief
classification, highlighting the pros and cons of each design pattern taken into consideration
for the purpose of this paper.

Appl. Sci. 2021, 11, 140 23 of 24

Despite the disadvantages of design patterns presented in previous chapters, the
benefits their use provides in the development process, in terms of team communication
and final product quality overcome limitations.

We then proposed to continue the research of design patterns implementation in
software design by carrying out a case study related to the electric vehicle charging soft-
ware platform.

The integration of a series of design patterns, namely singleton, factory, repository,
observer and factory method template patterns yielded promising results in constructing a
solid base structure for the API. The system’s functionality will be further evaluated and
validated in the course of time.

The examples are written in the .NET Core 3.1 framework and this describes the
services communication over the EV charging microservices system.

Towards the end of the research, we explored the multitenant design patterns in the
deployment process to ensure a proper tenancy model for a multitenant application.

Author Contributions: Conceptualization, C.F. and A.O. Methodology, A.O., M.M.; Software, M.M.,
A.M., Validation, A.O., M.M. and A.T.; Formal Analysis, M.M., A.O., A.M., A.V.; Investigation, M.M.,
A.O., A.M., A.V.; Resources, M.M., A.M., A.T., A.V.; Data Curation, M.M., A.T., A.V.; Writing—Original
Draft Preparation, M.M., M.S.R. and A.M.; Writing—Review and Editing, M.M. and M.S.R.; Visual-
ization, A.O., M.M., A.V., A.T.; Supervision, A.O., M.M.; Project Administration, A.O. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by a grant of the Romanian Ministry of Education and Research,
CCCDI—UEFISCDI, project number 40PTE of 01.06.2020, within PNCDI III.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amato, F.; Moscato, F. Model transformations of MapReduce Design Patterns for automatic development and verification.

J. Parallel Distrib. Comput. 2017, 110, 52–59. [CrossRef]
2. Cacho, N.; Sant’anna, C.; Figueiredo, E.; Dantas, F.; Garcia, A.; Batista, T. Blending design patterns with aspects: A quantitative

study. J. Syst. Softw. 2014, 98, 117–139. [CrossRef]
3. Fojtik, R. Design patterns in the teaching of programming. J. Procedia Soc. Behav. Sci. 2014, 143, 352–357. [CrossRef]
4. Van Diggelen, W.; Overdijk, M. Grounded design: Design patterns as the link between theory and practice. Comput. Hum. Behav.

2009, 25, 1056–1066. [CrossRef]
5. Hussain, S.; Keung, J.; Khan, A.A. Software design patterns classification and selection using text categorization approach.

Appl. Soft Comput. 2017, 58, 225–244. [CrossRef]
6. Arcelli, D.; Di Pompeo, D. Applying Design Patterns to Remove Software Performance Antipatterns: A Preliminary Approach.

Procedia Comput. Sci. 2017, 109, 521–528. [CrossRef]
7. ElSayed, N.A.; Smith, R.T.; Marriott, K.; Thomas, B.H. Context-aware design pattern for situated analytics: Blended Model View

Controller. J. Vis. Lang. Comput. 2018, 44, 1–12. [CrossRef]
8. Lezama, O.B.; Manotas, E.N.; Mercado-Caruzo, N. Analysis of design patterns for educational application development: Serious

Games. Procedia Comput. Sci. 2020, 175, 641–646. [CrossRef]
9. Casteigts, A.; Métivier, Y.; Robson, J.M.; Zemmari, A. Design patterns in beeping algorithms: Examples, emulation, and analysis.

Inf. Comput. 2019, 264, 32–51. [CrossRef]
10. Lano, K.; Kolahdouz-Rahimi, S.; Yassipour-Tehrani, S.; Sharbaf, M. A survey of model transformation design patterns in practice.

J. Syst. Softw. 2018, 140, 48–73. [CrossRef]
11. Fogli, D.; Greppi, C.; Guida, G. Design patterns for emergency management: An exercise in reflective practice. Inf. Manag. 2017,

54, 971–986. [CrossRef]
12. Kim, D.-K.; Lu, L.; Lee, B. Design pattern-based model transformation supported by QVT. J. Syst. Softw. 2017, 125, 289–308. [CrossRef]
13. Ergin, H.; Syriani, E.; Gray, J. Design pattern oriented development of model transformations. Comput. Lang. Syst. Struct. 2016,

46, 106–139. [CrossRef]
14. Šljivo, I.; Uriagereka, G.J.; Puri, S.; Gallina, B. Guiding assurance of architectural design patterns for critical applications.

J. Syst. Archit. 2020, 110, 101765. [CrossRef]
15. Mayvan, B.B.; Rasoolzadegan, A.; Yazdi, Z.G. The state of the art on design patterns: A systematic mapping of the literature.

J. Syst. Softw. 2017, 125, 93–118. [CrossRef]
16. Ampatzoglou, A.; Michou, O.; Stamelos, I. Building and mining a repository of design pattern instances: Practical and research

benefits. Entertain. Comput. 2013, 4, 131–142. [CrossRef]

http://dx.doi.org/10.1016/j.jpdc.2016.12.017
http://dx.doi.org/10.1016/j.jss.2014.08.041
http://dx.doi.org/10.1016/j.sbspro.2014.07.493
http://dx.doi.org/10.1016/j.chb.2009.01.005
http://dx.doi.org/10.1016/j.asoc.2017.04.043
http://dx.doi.org/10.1016/j.procs.2017.05.330
http://dx.doi.org/10.1016/j.jvlc.2017.11.001
http://dx.doi.org/10.1016/j.procs.2020.07.093
http://dx.doi.org/10.1016/j.ic.2018.10.001
http://dx.doi.org/10.1016/j.jss.2018.03.001
http://dx.doi.org/10.1016/j.im.2017.02.002
http://dx.doi.org/10.1016/j.jss.2016.12.019
http://dx.doi.org/10.1016/j.cl.2016.07.004
http://dx.doi.org/10.1016/j.sysarc.2020.101765
http://dx.doi.org/10.1016/j.jss.2016.11.030
http://dx.doi.org/10.1016/j.entcom.2012.10.002

Appl. Sci. 2021, 11, 140 24 of 24

17. Moudam, Z.; Chenfour, N. Design Pattern Support System: Help Making Decision in the Choice of Appropriate Pattern. Procedia
Technol. 2012, 4, 355–359. [CrossRef]

18. Tounsi, I.; Kacem, M.H.; Kacem, A.H.; Drira, K. Transformation of compound SOA Design Patterns. Procedia Comput. Sci. 2017,
109, 408–415. [CrossRef]

19. Arm, J.; Bradac, Z.; Bastan, O.; Streit, J.; Misik, S. Design pattern for the runtime model-based checking of a real-time embedded
system. Ifac Pap. 2019, 52, 127–132. [CrossRef]

20. Villareal-Freire, A.P.; Aguirre, A.F.A.; Ordoñez, C.A.C. Reverse engineering for the design patterns extraction of android mobile
applications for attention deficit disorder. Comput. Stand. Interfaces 2019, 61, 147–153. [CrossRef]

21. Li, J.; Daaboul, J.; Tong, S.; Bosch-Mauchand, M.; Eynard, B. A design pattern for industrial robot: User-customized configuration
engineering. Robot. Comput. Integr. Manuf. 2015, 31, 30–39. [CrossRef]

22. Aljasser, K. Implementing design patterns as parametric aspects using ParaAJ: The case of the singleton, observer, and decorator
design patterns. Comput. Lang. Syst. Struct. 2016, 45, 1–15. [CrossRef]

23. Bai, J.; Luo, H.; Qin, F. Design pattern modeling and extraction for CAD models. Adv. Eng. Softw. 2016, 93, 30–43. [CrossRef]
24. Hasheminejad, S.M.H.; Jalili, S. Design patterns selection: An automatic two-phase method. J. Syst. Softw. 2012, 85, 408–424.

[CrossRef]
25. Pauwels, S.L.; Hübscher, C.; Bargas-Avila, J.A.; Opwis, K. Building an interaction design pattern language: A case study. Comput.

Hum. Behav. 2010, 26, 452–463. [CrossRef]
26. Mayvan, B.B.; Rasoolzadegan, A. Design pattern detection based on the graph theory. Knowl. Based Syst. 2017, 120, 211–225. [CrossRef]
27. Lee, J.H.; Chakraborty, D.; Hardman, S.J.; Tal, G. Exploring electric vehicle charging patterns: Mixed usage of charging

infrastructure. Transp. Res. Part D Transp. Environ. 2020, 79, 102249. [CrossRef]
28. He, Y.; Zhang, Q.; Pang, Y. The development pattern design of Chinese electric vehicles based on the analysis of the critical price

of the life cycle cost. Energy Policy 2017, 109, 382–388. [CrossRef]
29. Guo, H.; Hou, D.; Du, S.; Zhao, L.; Wu, J.; Yan, N. A driving pattern recognition-based energy management for plug-in hybrid

electric bus to counter the noise of stochastic vehicle mass. Energy 2020, 198, 117289. [CrossRef]
30. Miller, I.; Arbabzadeh, M.; Gencer, E. Hourly Power grid variation, electric vehicle charging patterns and operating emission,

ACS Publication. Environ. Sci. Technol. 2020. [CrossRef]
31. Hilton, G.; Bryden, T.; de Leon, C.P.; Cruden, A. Dynamic charging algorithm for energy storage devices at high rate EV chargers

for integration of solar energy. Energy Procedia 2018, 151, 2–6. [CrossRef]
32. Rata, M.; Rata, G.; Filote, C.; Raboaca, M.S.; Graur, A.; Afanasov, C.; Felseghi, A.R. The Electrical Vehicle Simulator for Charging

Station in Mode 3 of IEC 61851-1 Standard. Energies 2020, 13, 176. [CrossRef]
33. Badea, G.; Felseghi, R.-A.; Varlam, M.; Filote, C.; Culcer, M.; Iliescu, M.; Răboacă, M.S. Design and Simulation of Romanian Solar

Energy Charging Station for Electric Vehicles. Energies 2019, 12, 74. [CrossRef]
34. Raboaca, M.S.; Filote, C.; Bancescu, I.; Iliescu, M.; Culcer, M.; Carlea, F.; Lavric, A.; Manta, I.; Lungu, F.; Bisoc, A.L. Simulation of a

Mobile Charging Station Operational Mode Based on Ramnicu Valcea Area. J. Prog. Cryog. Isot. Sep. 2019, 22, 45–54.
35. Fodorean, D.; Cirlea, F.; Raboaca, M.S.; Filote, C. New mobile charging station for urban and resort areas. In Proceedings of the

2019 Electric Vehicles International Conference (EV), Bucharest, Romania, 3–4 October 2019; pp. 1–6.
36. Răboacă, M.S.; Băncescu, I.; Preda, V.; Bizon, N. Optimization Model for the Temporary Locations of Mobile Charging Stations.

Mathematics 2020, 8, 453. [CrossRef]
37. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.; Patterns, D. Design Patterns—Elements of Reusable Object-Oriented Software;

Addison-Wesley: Boston, MA, USA, 1994.
38. Wikipedia. Available online: https://en.wikipedia.org/wiki/Decorator_pattern (accessed on 21 October 2020).
39. Wikipedia. Available online: https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-

of-object-oriented-design#dependency-inversion-principle (accessed on 22 October 2020).
40. Wikipedia. Available online: https://en.wikipedia.org/wiki/Creational_pattern (accessed on 21 October 2020).
41. Available online: https://michael.hahsler.net/research/patterns_oss2004/OSS_patterns_preprint.pdf (accessed on 27 October 2020).
42. Available online: https://code-maze.com/net-core-web-development-part4/ (accessed on 3 November 2020).
43. Available online: https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber (accessed on 3 November 2020).
44. Available online: https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding (accessed on 3 November 2020).
45. Available online: https://docs.microsoft.com/en-us/azure/architecture/patterns/static-content-hosting (accessed on 3

November 2020).
46. Available online: https://docs.microsoft.com/en-us/azure/architecture/patterns/retry (accessed on 4 November 2020).
47. Available online: https://docs.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-app-design-patterns (accessed on

4 November 2020).
48. Available online: https://docs.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-elastic-tools-multi-tenant-row-

level-security (accessed on 4 November 2020).

http://dx.doi.org/10.1016/j.protcy.2012.05.054
http://dx.doi.org/10.1016/j.procs.2017.05.410
http://dx.doi.org/10.1016/j.ifacol.2019.12.744
http://dx.doi.org/10.1016/j.csi.2018.07.001
http://dx.doi.org/10.1016/j.rcim.2014.06.005
http://dx.doi.org/10.1016/j.cl.2015.11.002
http://dx.doi.org/10.1016/j.advengsoft.2015.12.005
http://dx.doi.org/10.1016/j.jss.2011.08.031
http://dx.doi.org/10.1016/j.chb.2009.12.004
http://dx.doi.org/10.1016/j.knosys.2017.01.007
http://dx.doi.org/10.1016/j.trd.2020.102249
http://dx.doi.org/10.1016/j.enpol.2017.07.015
http://dx.doi.org/10.1016/j.energy.2020.117289
http://dx.doi.org/10.1021/acs.est.0c02312
http://dx.doi.org/10.1016/j.egypro.2018.09.018
http://dx.doi.org/10.3390/en13010176
http://dx.doi.org/10.3390/en12010074
http://dx.doi.org/10.3390/math8030453
https://en.wikipedia.org/wiki/Decorator_pattern
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design#dependency-inversion-principle
https://www.digitalocean.com/community/conceptual_articles/s-o-l-i-d-the-first-five-principles-of-object-oriented-design#dependency-inversion-principle
https://en.wikipedia.org/wiki/Creational_pattern
https://michael.hahsler.net/research/patterns_oss2004/OSS_patterns_preprint.pdf
https://code-maze.com/net-core-web-development-part4/
https://docs.microsoft.com/en-us/azure/architecture/patterns/publisher-subscriber
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding
https://docs.microsoft.com/en-us/azure/architecture/patterns/static-content-hosting
https://docs.microsoft.com/en-us/azure/architecture/patterns/retry
https://docs.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-app-design-patterns
https://docs.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-elastic-tools-multi-tenant-row-level-security
https://docs.microsoft.com/en-us/azure/azure-sql/database/saas-tenancy-elastic-tools-multi-tenant-row-level-security

	Introduction
	Design Patterns in Software Development
	State of the Art

	Incursion in the Design Patterns Field
	Design Patterns—Benefits and Potential Drawbacks
	Distinction between Design Patterns and Design Principles
	Software Design Patterns Classification

	Design Patterns and EV Charging Software
	Software Design Patterns
	Singleton Pattern
	Dependency Injection Design Pattern
	Façade Pattern
	Repository Pattern
	Template Method Pattern
	Overview

	Cloud Design Patterns
	Publisher/Subscriber Pattern
	Sharding Pattern
	Static Content Hosting pattern
	Retry Pattern

	Multitenant Database Design Patterns
	Multi-Tenant App with Sharded Multitenant Databases
	Shards Management
	Shards Management Tools
	Scaling
	Data-Dependent Routing
	Row Level Security

	Results and Discussion
	Future Research Directions
	Conclusions
	References

