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Abstract: Recently, environment-friendly microbial biopolymer has been widely applied as a new
construction material in geotechnical engineering practices including soil stabilization, slope protec-
tion, and ground injection. Biopolymer is known to exhibit substantial improvements in geotechnical
properties, such as shear strength enhancement and hydraulic conductivity reduction, through the
formation of direct ionic bonds with soil particles, especially clay particles. Moreover, the rheologi-
cal characteristics (e.g., pseudoplasticity, shear-rate dependent thixotropy) of biopolymers render
distinctive behaviors such as shear thinning and lubrication effect under a high strain condition,
while recovering their viscosities and shear stiffnesses when they are at rest. To ensure the practical
applicability of biopolymer-based soil treatment, it is important to understand the interfacial inter-
action (i.e., friction) between biopolymer-treated soil and adjoining structural members which can
be constructed in a biopolymer-treated ground. Thus, in this paper, interfacial shearing behavior of
biopolymer-treated soil along solid surfaces as well as internal shearing on biopolymer-soil matrix
were explored via direct and interface shear test. Experimental results show a predominant effect of
the soil moisture content on the interfacial shear behavior of biopolymer-treated soil which attributes
to the rheology transition of biopolymer hydrogels. At low moisture content, condensed biopolymer
biofilm mobilizes strong intergranular bonding, where the interfacial shear mainly depends on
the physical condition along the surface including the asperity angle. In contrast, the biopolymer
induced intergranular bonding weakens as moisture content increases, where most interfacial failures
occur in biopolymer-treated soil itself, regardless of the interface condition. In short, this study
provides an overall trend of the interfacial friction angle and adhesion variations of xanthan gum
biopolymer-treated sand which could be referred when considering a subsequent structural member
construction after a biopolymer-based ground improvement practice in field.

Keywords: interface; shear strength; biopolymer; xanthan gum; soil–structure; interface friction angle

1. Introduction

Studying the shear behavior at the interface between the exterior surface of solid
structures and the surrounding earth material is essential for understanding the soil–
structure interaction, which plays an important role in the geotechnical engineering design
of various structures including deep foundations, retaining wall structures (e.g., anchored,
reinforced, soil nailing), landfills, and slope stability [1]. Thus, interfacial shearing of soil
has been investigated by several researchers using various laboratory testing methods
such as the interface direct shear, ring shear, simple shear, and resonant-column torsional
shear tests [2–6]. The mechanical behavior of soil–solid structure interfaces depends on the
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physical properties of the soil as well as the structural surface characteristics. Among them,
the particle shape, which includes angularity and size distribution, surface roughness,
cementation, and normal stress, mainly influences the interfacial shearing behavior of
soil [7]. Moreover, these factors induce variations in the apparent adhesion and interface
friction angle (δ), which are considered as the main parameters for the design and analysis
of the actual soil–structure interaction. In the general design of geotechnical structures
having shear resistances or frictional behaviors between soil and solid materials, δ is
considered to be in the range of 1/2–2/3 times the internal friction angle (φ) of soil, and
the magnitude of interface adhesion (ca) is typically considered to be a fraction of the soil
cohesion (c) [8,9].

Biopolymers have been recently suggested as environment-friendly soil-stabilizing
materials owing to their origin and low greenhouse gas footprint [10–13]. Accordingly,
recent research has investigated the feasibility of biopolymer-based soil treatment (BPST)
for geotechnical ground improvement practices in terms of soil strengthening and per-
meability reduction [14–20]. Several studies have assessed the shear strength parameters
(i.e., internal friction angle and cohesion) and strengthening efficiency (e.g., unconfined
compressive strength) of biopolymer-treated sand through triaxial shear, direct shear, and
uniaxial compression test approaches [14,15,18,21–24]. Additionally, the shear parameters
of BPST exhibit moisture content-dependent characteristics, which are expected to be
associated with the rheological properties of biopolymer hydrogels inside the soil. As
most biopolymer hydrogels (e.g., xanthan gum, guar gum) are thixotropic, they exhibit a
shear thinning characteristic with decreasing viscosity and yield stress with a large strain
rate [25]. The rheological characteristics of biopolymer hydrogels could affect the inter-
face shearing behavior between biopolymer-treated soil and structures, when structural
members (e.g., piles, geosynthetics) are implemented into biopolymer-treated grounds.
Thus, understanding the interaction between biopolymer-treated soil matrix and adjacent
structure surfaces becomes crucial for stability analysis and BPST application. Previous
studies on BPST have mostly focused on the biopolymer-induced soil strengthening, while
there is no research considering the interfacial interaction behavior between biopolymer-
treated soil and adjoining structural (i.e., solid, non-geomaterial) members reported yet.
Hence, in this study, the effects of the moisture state and biopolymer concentration on
the internal and interfacial shearing behavior of xanthan gum-treated soil are reported.
For this purpose, the mobilization of shear strength and volume change response of both
internal and interfacial behaviors of xanthan gum-treated sand were studied via direct
(laboratory) and interfacial shear tests according to a wide range of normal stress, moisture
state, biopolymer concentration, and interface type conditions.

2. Materials and Experimental Process
2.1. Materials
2.1.1. Jumunjin Sand

Jumunjin sand is used in this study, which is standard cohesionless sand found in
Korea. According to the Unified soil classification system (USCS), it is classified as a poorly
graded sand (SP) with an average particle size (D50) of 0.47 mm (Figure 1). Detail soil
properties of jumunjin sand are listed in Table 1.

Table 1. Properties of sand used in this study.

Mean Grain Size
D50 [mm]

Specific
Gravity
Gs [-]

Coefficient of
Uniformity

Cu [-]

Coefficient of
Curvature

Cc [-]

Maximum Void
Ratio emax [-]

Minimum
Void Ratio

emin [-]
USCS

0.47 2.65 1.12 0.98 0.95 0.644 SP
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noses, and one glucuronic acid. It presents anionic characteristics owing to which it ad-
sorbs water molecules through hydrogen bonding easily, thereby mainly forming viscous 
fluids (hydrogel state) [26]. In addition, xanthan gum solution is known as a non-Newto-
nian fluid which shows shear thinning characteristic. The shear rate dependent viscosity 
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Figure 1. Particle size distribution of jumunjin sand.

2.1.2. Biopolymer: Xanthan Gum

In this study, xanthan gum, one of the representative viscous-type biopolymers, is
used as the main material. Xanthan gum is a biopolymer widely used in various industries
for viscosity thickening and is a polysaccharide created by the Xanthomonas campestris
bacterium. The molecular structure of xanthan gum consists of two glucoses, two mannoses,
and one glucuronic acid. It presents anionic characteristics owing to which it adsorbs
water molecules through hydrogen bonding easily, thereby mainly forming viscous fluids
(hydrogel state) [26]. In addition, xanthan gum solution is known as a non-Newtonian fluid
which shows shear thinning characteristic. The shear rate dependent viscosity response of
three different xanthan gum solutions (i.e., different xanthan gum to water ratio in mass;
Mxg/Mw) assessed by a rotational rheometer (Kinexus Pro, Malven Instruments) shows
reduction in viscosity with shear rate increase (Figure 2), which is anticipated to affect the
shearing behavior along the biopolymer-treated soil–structure interface.
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2.1.3. Interfacial Structure Model

To represent the structural member for laboratory testing, solid material blocks were
fabricated via 3D printing using a polylactide (PLA) filament. The PLA filament is often
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suggested as a geosynthetic bioplastic material that has the advantage of rapid manufac-
turing and sustainability. [27,28]. The interfacial structure model is composed of a single
structure without asperity and three other structures having single triangular asperities
with tilt angles of 10◦, 20◦, and 30◦ (Figure 3a). The interfacial structure was designed with
dimensions of 60 mm diameter and 12.5 mm height. A 20 mm-wide asperity was carved
along the middle axis of the disc, and the tilt angles of the asperity varied from 0◦ (no asper-
ity) to 30◦, as shown in Figure 3a [29]. The surface roughness of measuring length of 5000
µm for 3D-printed solid structure was evaluated by surface profiler equipment (Dektak-8,
Veeco) for 100 s. Uesugi and Kishida (1986) introduced the normalized relative roughness
(Rn), which expresses the ratio between the maximum peak-to-valley distance of asperities
along the solid surface and the average particle size (D50) of interacting particulate material
as [30]:

Rn =
Rmax (L = D50)

D50
. (1)

The Rn between the interfacial structure model (Figure 3b) and jumunjin sand used
in this study has been assessed as 0.12. Meanwhile, literatures report the normalized Rn
values of materials used in actual geotechnical practices as listed in Table 2 [31–34] and an
interface can be defined as smooth (Rn < 0.02), rough (Rn > 0.2), and intermediate (0.02 ≤
Rn ≤ 0.2) [35]. Generally, Rn exceeds 0.05 for a typical pile surface in practice, and Rn used
in this study (Rn = 0.12) is found competitively to represent common structural members
(e.g., medium concrete, Rn = 0.12; rough steel, Rn = 0.17) used in geotechnical engineering
practices [36]. As the Rn along the block surfaces is regarded to be constant (Rn = 0.12),
a single asperity was added at the middle of the block surface to investigate the asperity
effect on the geometric dilation and shear resistance which is an important consideration
along solid–solid anomalous interfaces [37].

Table 2. Normalized relative roughness (Rn) used in this study.

Interface Condition (Type) Rn in mm (D50) References

Rn in this study 0.12 (D50 = 0.47)

Very rough steel 0.43 (D50 = 0.65)

[31]
Rough steel 0.17 (D50 = 0.65)

Intermediate steel 0.08 (D50 = 0.65)
Smooth steel 0.03 (D50 = 0.65)

Brass 0.03 (D50 = 0.65)
[32]#120 Sand paper 0.26 (D50 = 0.65)

#50 Sand paper 1.14 (D50 = 0.65)

Smooth concrete 0.002 (D50 = 0.5)
[33]Medium concrete 0.12 (D50 = 0.5)

Rough concrete 0.2 (D50 = 0.5)

Smooth woven geotextile 0.03 (D50 = 0.65)
[34]Moderately rough woven geotextile 0.19 (D50 = 0.65)

Rougher woven geotextile 0.30 (D50 = 0.65)
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Figure 3. Structural materials: (a) schematic diagram; (b) typical surface profiles.

2.2. Experimental Process
2.2.1. Specimen Preparation

The moisture content and xanthan gum concentration (xanthan gum to soil ratio in
mass; MXG/MS) of the specimens used for direct and interface shear tests are listed in
Table 3. All the soil and soil–structure samples were first prepared using dry sand and
xanthan gum powder (Sigma-Aldrich®, CAS number 11138-66-2) with an initial water
content (in mass ratio) of 20%. The ratios of xanthan gum mass to that of sand were 0% (i.e.,
untreated), 0.5%, 1.0%, and 2.0% (corresponding to 2.5%, 5.0%, and 10% ratios to the mass of
water). Purified xanthan gum powder was dissolved in distilled water at room temperature
(21 ◦C), and the mixture was magnetically stirred to obtain a uniform xanthan gum solution
(i.e., hydrogel). Once done, the solution was mixed with dry sand, and cylindrical bulk
soil and cylindrical soil–structure specimens with dimensions of 60 mm diameter and
25 mm height were prepared using a specimen ring for direct shear tests (Figure 3a). The
initial dry density of specimens was controlled to fit within 1450 ± 10 kg/m3 where the
relative density (Dr) of soil showed a range of 36–44% (medium state), via tapping to
minimize the effect of different particle packing density on soil strengthening [38,39]. The
specimens were prepared for three representative moisture states (i.e., initial, dried, and
resubmerged). The initial state indicates when the specimens were tested immediately
after preparation (i.e., approximately having 20% of water content in mass ratio), while dry
condition samples were tested after oven-drying the specimens at 40 ◦C for 21 days where
specimen water content reached less than 3%. The resubmerged samples were prepared
by fully immersing the dried samples in deionized water (i.e., water level reached the top
of the sample) at room temperature for 24 h to achieve a condition close to saturation as
much as possible [40].

Table 3. Experimental conditions.

Variables Direct Shear Test Interface Shear Test

Shearing condition Soil–soil Soil–solid structure

Moisture state
Initial state
Dried state
Resubmerged state

Initial state
Dried state
Resubmerged state

Xanthan gum concentration
[MXG/MS,%] 0, 0.5, 1, 2 0, 0.5, 1, 2

Vertical confinement pressure
[kPa] 50, 100, 200, 400 50, 100, 200, 400
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2.2.2. Direct and Interface Shear Tests

In this study, direct shear box testing which provides pseudo-strain measurement
was used to investigate the internal and interfacial shearing behavior of xanthan gum-
treated sand. A series of interface direct shear tests were conducted and compared with
the ordinary soil direct shear test (soil-to-soil shearing) results under the same conditions
(Table 3). All samples were tested using a direct shear test apparatus (Humboldt HM-
5750D.3F), as shown in Figure 4. The samples were vertically confined with pressures
of 50, 100, 200, and 400 kPa by porous stones placed both on top and beneath until the
vertical strain reached a stable state before applying the horizontal shear displacement.
For each vertical confinement, the horizontal shear was applied with a constant shear
rate of 0.6 mm/min (1% per min) for 1000 s (final horizontal displacement is 10 mm)
according to the ASTM D3080/D3080M-11 [41]. The horizontal load, vertical displacement,
and horizontal displacements were obtained automatically every 10 s using a load cell
and LVDT apparatuses. Both tests were triplicated at all conditions to obtain reliable
average values.
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3. Results
3.1. Shearing Behavior of Xanthan Gum-Treated Sand (Soil-to-Soil Shearing) in Hydrogel State

The representative direct shear stress (τ)-horizontal displacement (δ) behavior of xan-
than gum-treated sand according to different normal stress, moisture state, and MXG/MS
values are presented in Figure 5. The τ values were calculated by dividing the measured
shear force by the effective area of specimens, which is found to decrease along the shearing
process, as shown in Figure 5a,c,e. The vertical strain (εv) values were calculated as the
ratios of vertical displacement in samples to the initial height of samples (25 mm). Positive
values indicate a volumetric dilation, whereas negative values indicate a volumetric con-
traction. The maximum dilation angle (ψmax) under shearing was derived from the largest
ratio (i.e., slope) of the vertical and horizontal displacement as shown in Figure 5b,d,f.

Figure 5a,b shows the shear behavior of xanthan gum-treated (1%) sand using vertical
confinement pressures of 50, 100, 200, and 400 kPa. Overall, the direct shear stress and
vertical strain were seen to vary depending on the normal stress. As the normal stress
increased, the direct shear stress also increased (Figure 5a), while the soil became less
dilative (Figure 5b) owing to the stronger interlocking among sand grains [21].

Figure 5c,d presents the shear behavior at three different moisture states (i.e., initial,
dried, and resubmerged) of xanthan gum-treated sand. The xanthan gum hydrogel occur-
ring in pore spaces in the sand showed different trends of its strengthening effect depending
on the hydraulic state. A phase change in xanthan gum solution from a hydrogel (initial
state) to the xanthan gum film occurred with dehydration (dried) [16], which generated ten-
sile strengths. Thus, an obvious peak of the shear strength exists prior to failure followed by
a residual strength with more dilation compared to other samples having presence of water.
Moreover, the condensed xanthan gum film becomes disturbed and reaches a swollen state
when it is exposed to water (resubmerged) and exhibits a more contractive behavior than
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that of uniform hydrogel at the initial state [40]. Figure 5e,f reveals that the direct shear
stress of xanthan gum-treated sand increases with the MXG/MS in dried state. Compared
to pure sand, xanthan gum-treated sand shows a remarkable strengthening effect and
dilation at dried conditions, and this effect is greater at higher MXG/MS conditions, which
increases the thickness of xanthan gum films in dried conditions.
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The Mohr–Coulomb failure envelopes for the peak and residual direct shear strengths
of xanthan gum-treated sand with varying moisture states are presented in Figure 6. The
shear parameters determined from the linear regression of the failure envelope are listed
in Table 4. Generally, both the peak and residual shear strengths linearly increase with
an increasing degree of normal stress. The strengthening effect of xanthan gum is rarely
observed in its initial state (Figure 6a); however, the cohesion (c) slightly increases the
pressure to 23.2 kPa with a decrease of the internal friction angle (φ = 39.0◦ to 34.6◦)
according to MXG/MS. The residual strength of xanthan gum-treated sand is found to be
lower than that of pure sand (Figure 6b).
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Meanwhile, xanthan gum treatment increases the strength of soil significantly in terms
of the internal friction angle and cohesion with MXG/MS increase in the dried state. c
is raised to 563.7 kPa with an increment of φ from 39.0◦ to 53.7◦ under a condition of
MXG/MS = 2% (Figure 6c). Increase in two shear parameters (φ and c) was also observed
in the residual behavior, although the increment efficiency with MXG/MS increase was
lower than the peak behavior, especially for c (Figure 6d).

When dried xanthan gum-treated sand is resubmerged, the shear strength tends to be
restored to its initial state (Figure 6e,f). However, a higher peak strength is still observed
at higher MXG/MS conditions as the swelling occurred was inadequate, while the dried
hydrogel with lower MXG/MS was fully swollen, which can be clearly observed under a
low confining stress condition.
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Table 4. Mohr–Coulomb failure parameters determined from linear regression (soil–soil shearing).

Hydrogel State Xanthan Gum
MXG/MS [%]

Peak Strength Residual Strength

Cohesion
[kPa] Friction Angle [◦] Cohesion

[kPa] Friction Angle [◦]

Initial

0.0 <1 39.0 <1 33.6
0.5 2.5 38.1 <1 31.1
1.0 8.5 36.9 <1 29.6
2.0 23.2 34.6 <1 31.7

Dried (Initial→ Dried)

0.0 <1 39.0 <1 33.6
0.5 117.1 45.4 28.2 36.8
1.0 307.7 51.6 34.9 39.5
2.0 563.7 53.7 45.1 46.3

Resubmerged (Initial→ Dried
→ Resubmerged)

0.0 <1 39.0 <1 33.6
0.5 11.4 38.6 3.6 30.7
1.0 23.3 37.9 12.8 30.3
2.0 41.1 35.3 21.7 29.4

3.2. Xanthan Gum-Treated Sand Shearing at Interface without Asperities (Interface I)

Results of the interfacial shearing (Interface I) of xanthan gum-treated sand without
asperities are presented in Figure 7. The interface shear stress (τi)-horizontal displacement
(δ) curve shows a vertical confinement-dependent behavior similar to the results of the
direct shear test with a quite less dilation being the only difference. On the other hand, the
shear behavior of initial condition of untreated and xanthan gum-treated sand on interface
I exhibits a sliding behavior in which τi maintains a constant value along displacement
(Figure 7a,b). Moreover, depending on the hydrated state of xanthan gum, a peak and
strain-softening behavior is observed when xanthan gum-treated sand is dried, while τi is
restored to be similar to that of the initial state after exposure to water (i.e., resubmerged
state in Figure 7c,d).

Xanthan gum treatment in initial state caused a slight decrease of τi, but the difference
was not remarkably observed depending on the MXG/MS (Figure 7e,f). Xanthan gum
in the hydrogel state retains enough moisture due to its hydrophilic property. A slight
lubrication effect is generated between the particles and the solid surface due to the
pseudoplasticity of xanthan gum hydrogel, resulting in the reduction of the frictional
resistance [42]. Meanwhile, dehydration of xanthan gum hydrogel showed increases in τi
and ψmax with brittle behavior in which τi rapidly decreased after reaching a clear peak
failure, and this behavior occurred distinctively with a sequential increase of MXG/MS
(Figure 7g,h).

The Mohr–Coulomb failure envelopes for peak and residual interfacial shear strengths
of xanthan gum-treated sand (Interface I) according to varying moisture states are presented
in Figure 8. The shear parameters determined from the linear regression of failure envelope
are listed in Table 5. As mentioned above, xanthan gum treatment in the initial state slightly
reduces the interface friction angle (δ) from 28.6◦ to 26.7◦ regardless of MXG/MS (Figure 8a).
Adhesion (ca) values were found to be less than 3 kPa, which indicates little contribution to
the peak strengths (Figure 8b) and even for residual strengths at interface I.
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Figure 8. Peak and residual strengths of xanthan gum-treated sand shearing at interface without asperities (Interface I): (a,b)
initial condition; (c,d) dry condition; (e,f) resubmerged condition.

Dehydrated xanthan gum-treated sand at interface I shows an increase in δ as well
as ca (i.e., 28.6◦ to 35.1◦ and 3.2 kPa to 21.5 kPa, respectively) with a sequential increase
of MXG/MS, which is consistent with the general behavior of shearing inside xanthan
gum-treated sand, but with a lower strengthening effect (Figure 8c). In the residual state
after the peak, a low ca value is reported, and δ is also reduced but still higher than
that of untreated sand (Figure 8d). The interfacial strength mobilized previously in the
dried xanthan gum-treated sand was dissipated after the subsequent wetting process and
returned to the initial state (Figure 8e,f).
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Table 5. Mohr–Coulomb failure parameters determined from linear regression (Interface I).

Hydrogel State MXG/MS [%]

Peak Strength Residual Strength

Adhesion
[kPa]

Interface Friction
Angle [◦]

Adhesion
[kPa]

Interface Friction
Angle [◦]

Initial

0.0 3.1 28.6 4.1 27.1
0.5 <1 26.610 <1 26.1
1.0 2.2 26.3 2.2 26.3
2.0 <1 26.7 1.2 26.6

Dried (1)

0.0 3.2 28.6 <1 28.3
0.5 7.1 30.1 <1 28.7
1.0 15.1 30.7 3.1 29.6
2.0 21.5 35.1 <1 32.8

Resubmerged (2)

0.0 3.1 28.6 4.1 27.1
0.5 <1 28.3 <1 26.6
1.0 2.8 26.9 2.3 27.0
2.0 2.0 27.6 <1 27.5

(1) Initial to dried (tested after oven-drying for 21 days at 40 ◦C), (2) Tested after resubmerging dried specimens for 24 h at room temperature.

3.3. Xanthan Gum-Treated Sand Shearing at Interface with Singular Asperity

For the shearing at interface having a singular asperity (Interfaces II, III, and IV),
both the sliding behavior along the flat surface (i.e., 2/3rd of the total interface length)
and shear failure inside the soil located in the asperity occur simultaneously. Inevitably,
the interface shear stress mobilized at the interface containing the asperity is higher than
that at the interface without any asperity. Figure 9 presents the interface shear results at
interfaces II, III, and IV, which include one triangular groove with slope angles of 10◦, 20◦,
and 30◦, respectively.

The τi–δ curve indicates that the peak τi increases with higher confinement pressures
due to the stronger interlocking among sand grains as well as between sand grains and
xanthan gum (Figure 9a). Moreover, εv–δ curves show that the xanthan gum-treated soil
turns out to be contractive (i.e., ψmax decrease from 13◦ to 4◦) as the vertical confinement
increases at interface IV. It was found that degree of dilation was distributed within the
range between interface I and direct shear test under equivalent MXG/MS and moisture
content conditions (Figure 9b).

As shown in Figure 9c,d, the change of the moisture state from initially wet to a
dehydrated state attributes a noticeable strain softening behavior with increase of the
dilation angle. Since the initial state of xanthan gum-treated sand does not show any
striking difference in strength according to the MXG/MS, the variation in peak τi according
to the geometry of asperity is also inconspicuous. However, as dehydration occurs, a
marked peak τi difference according to the asperity dimension was observed, and the
post-peak τi converged to the same level after failure occurred. Figure 9f shows the dilation
behavior of 1% xanthan gum-treated sand at all interfaces at the 400 kPa confinement
pressure. The difference in the ψmax according to asperity dimension becomes less sensitive
with higher confinement pressures, whereas it is more clearly observed at a low confining
pressure (50 kPa).

Figures 10 and 11 present the peak and residual interfacial shear strengths at all
interfaces, respectively, and compare them with corresponding shear strengths obtained
from soil–soil shearing tests. Figure 10 shows that the Mohr–Coulomb failure envelopes of
interfaces II, III, and IV lie below that of xanthan gum-treated soil–soil shearing, but above
the failure envelope of interface I. This indicates that the shear strength at the interface
with asperity (II, III, and IV) is weaker than the direct shear when failure occurs inside soil.
However, the shearing resistance is stronger than the slip-shear behavior of the interface (I)
without any influential asperity (i.e., relatively smooth considering the particle size).
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According to the moisture conditions of xanthan gum, the results of shear failure
according to the slope angle of asperity were different under all MXG/MS conditions. When
the xanthan gum remained in a hydrogel state, the effect of the asperity dimension did
not appear remarkably; in contrast, a distinct variation along the slope angle is seen in the
dried state.
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Xanthan gum-treated sand at both wet initial state and resubmerged state shows
low cohesion because of the low viscosity of xanthan gum hydrogels (i.e., low Mxg/Mw).
Thus, the interface interaction and failure between xanthan gum-treated sand and the
structural member are regarded to be mostly affected by the relatively weaker xanthan
gum–sand medium inside the asperity. Meanwhile, xanthan gum-treated sand at the
dried state has distinctively large cohesion due to the high elastic tensile strength of de-
hydrated (i.e., high Mxg/Mw) xanthan gum biofilms forming a continuous matrix among
granular particles [16,18]. Highly condensed xanthan gum biofilms can exist as remain-
ing particle coats or viscous fragments in intergranular pore spaces even after the shear
failure [18,21], where this can be the possible reason why dried cases show residual adhe-
sion with MXG/MS increase as listed in Table 6.

Under the resubmerged condition, the strength induced in the previously dried
state was not fully dissipated upon wetting at high MXG/MS conditions (1% and 2%).
Meanwhile, the strength dropped to its initial state at a low MXG/MS (0.5%) because
sufficient dissolution and diffusion of xanthan hydrogel occurred. On the contrary, the
shear failure envelopes of the residual state were similar to those of soil-to-soil shearing at
the initial and resubmerged states as seen from Figure 11. Moreover, there is little difference
caused by the asperity condition in the dried state.

Table 6. Mohr–Coulomb failure parameters determined from linear regression (interface II, III, and IV).

Interface Hydrogel State MXG/MS [%]

Peak Strength Residual Strength

Adhesion
[kPa]

Interface Friction
Angle [◦]

Adhesion
[kPa]

Interface Friction
Angle [◦]

Interface II

Initial

0.0 3.8 34.3 0.2 32.2
0.5 <1 33.4 <1 30.5
1.0 <1 31.9 4.0 28.7
2.0 3.0 31.9 1.7 28.5

Dried

0.0 2.6 34.3 <1 29.7
0.5 10.5 35.4 <1 35.7
1.0 17.6 38.0 7.4 35.3
2.0 28.7 45.9 7.1 39.4

Resubmerged

0.0 3.8 34.3 <1 32.2
0.5 <1 35.4 1.3 30.9
1.0 <1 35.7 <1 31.5
2.0 6.0 31.1 2.8 31.2

Interface III

Initial

0.0 6.5 35.5 1.6 32.4
0.5 2.3 33.6 <1 30.7
1.0 2.8 31.7 4.1 29.0
2.0 2.0 32.4 0.5 30.6

Dried

0.0 1.8 35.5 4.2 29.7
0.5 26.6 38.2 7.9 36.1
1.0 52.2 40.4 15.1 37.0
2.0 59.0 50.2 23.8 39.2

Resubmerged

0.0 6.5 35.5 1.6 32.4
0.5 6.6 34.6 <1 32.5
1.0 7.2 34.5 <1 31.2
2.0 6.9 36.8 <1 32.6

Interface IV

Initial

0.0 2.3 36.7 <1 32.8
0.5 4.0 32.6 <1 31.4
1.0 1.5 32.0 4.6 28.8
2.0 2.5 32.8 2.6 30.9

Dried

0.0 2.0 36.7 6.6 29.8
0.5 53.2 38.5 15.1 35.4
1.0 68.6 43.2 22.3 36.2
2.0 80.0 53.3 25.2 39.6

Resubmerged

0.0 2.3 36.7 <1 32.8
0.5 5.3 35.4 <1 31.8
1.0 4.5 36.6 2.0 31.2
2.0 10.1 35.9 4.7 31.5
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4. Discussion
4.1. Effect of Moisture Phase and Concentration of Hydrogel on the Interfacial
Shearing Performance

Generally, the shear behavior of cohesionless sand is dominantly governed by the
inter-particle friction [43]. In this study, a wide range of experimental laboratory results
showed that the effect of xanthan gum treatment on the internal and interfacial shearing
performances was positive. Xanthan gum hydrogel exists as a viscous fluid in the static
condition but exhibits a shear-thinning phenomenon where its viscosity decreases when a
strain occurs. Thus, xanthan gum treatment provides an artificial force for mitigating the
sand particle movement in the static state. However, its effect on the shearing behavior
varies depending on the moisture state and MXG/MS. Figure 12 presents the internal shear
parameters (φ and c) of xanthan gum-treated sand.

When xanthan gum treatment in the hydrogel state was performed (i.e., ‘initially
wet’ or ‘re-wetting after dried’), the cohesion was seen to enhance with MXG/MS increase
(Figure 12b); however, the friction angle was rather diminished owing to a decline in the
surface dilatancy of sand particles, which was interrupted by the viscous xanthan gum
hydrogel occupying the pores (Figure 12a) [18].

The phase of xanthan gum solution changes from the hydrogel to the film state at
the critical water content condition. After this phase transformation, xanthan gum gains
a tensile strength, which increases the friction angle as well as the cohesion in the dried
state. Thus, the effect of MXG/MS on strengthening is much greater in the dried state than
in other wet states. The result of internal shear parameters obtained in this study tends to
coincide with those of xanthan gum-treated Sydney sand performed in triaxial compression
tests [18]. However, the friction angle in the dried state in this study is higher owing to the
larger mean particle size and angularity.
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The effect of xanthan gum treatment on soil-to-soil shearing (direct shear test) also
plays a key role in the interfacial shear behavior of xanthan gum-treated sand. The interface
friction angle is found to be slightly diminished in the wet state (i.e., initial and resubmerged
condition) (Figure 13a,e) and decrease of φ in soil-to-soil shearing is responsible for the
reduction of δ at interfaces II, III, and IV containing asperity. At these interfaces, not only
the failure of soil, but also the sliding shear behavior of interface I is seen. At the sliding
occurring interface (I), the shear thinning of xanthan gum hydrogel provides a lubrication
effect at low confinement pressures. Therefore, each decrease of δ in interface II, III, and
IV is triggered by the aforementioned two factors. Meanwhile, δ at interface II, III, and IV
is less sensitive with regard to the inclined angle in asperity slope throughout the peak
and residual stages (Figures 13a and 14a). Because xanthan gum hydrogel in the initial
state and re-swollen xanthan gum in the resubmerged state have a similar shear failure
plane which approximates the boundary line regardless of the MXG/MS and asperity slope
angle. In addition, ca was not meaningfully affected by MXG/MS or asperity dimension
(Figure 13b,f), except in the dried state.

As explained above, φ inside soil increases when xanthan gum experiences a gel phase
transformation due to dehydration. In addition, an elastic tensile film bridge between
the sand–xanthan gum mixture and structural surface is formed, thereby providing an
additional adhesive force (Figure 13d). Thus, an increase in δ as well as ca is observed. This
strengthening effect increases the stiffness of the soil, and additional friction is generated
in the contact area with the asperity slope before failure occurs. Especially at low confine-
ment pressures, the up-shifting force into a direction parallel to the incline is generated,
which results in a different failure plane by inclined angle and MXG/MS. Hence, the shear
performance varies according to the asperity dimension. ca has similar trend to δ and, in
addition, a less remarkable difference according to the asperity dimension and MXG/MS in
residual state is seen except for the residual ca in the dried state (Figure 14).

The shear behavior at the interface between the xanthan gum-treated soil and the
solid surface shows a moisture content-dependent characteristic. From the viewpoint of
geotechnical engineering, reduction in the friction between treated soil and interface due to
the lubrication effect of xanthan gum hydrogel can potentially contribute a pressing effect
in construction of pile. Thus, xanthan gum treatment can impart a noticeable strength
and provide a stability enhancement of the surrounding ground when it loses moisture
after construction.

4.2. Relationship between Internal and Interface Friction Angle of Xanthan Gum-Treated Sand

In geotechnical engineering practice, it is common to express the interface friction
angle (δ) in terms of soil internal friction angle (φ), where the aspect ratios of δ/φ and tan
δ/tan φ are used to assess the interface shearing between sand and geotechnical interface
materials (i.e., steel, concrete, and geosynthetic). For instance, tan δ = (0.6~1.0) tan φ for
woven and non-woven geotextiles, tan δ = (0.8~1.0) tan φ for rough woven geotextiles, and
tan δ = 0.6 tan φ for granular soil–solid polymer sheet [9,44–47].

In this study, the interface friction angle of biopolymer-treated sand (D50 = 0.47 mm)
and solid surfaces with a relative roughness (Rn) of 0.12 was obtained under various
conditions. Figure 15 presents tan δ/tan φ aspect ratio of xanthan gum-treated sand
obtained from this study. For the interface without asperity, the ratios at peak and post-
peak are found to be 0.60 and 0.77, respectively, which is in accordant to the behavior of
geosynthetic reinforced sand. For the interface including asperity, these ratios were 0.84 and
0.93, respectively, which are both higher than the typical range due to the predominant soil–
soil failure inside the asperity. Thus, this study provides general trends of interface friction
angle variation of xanthan gum-treated sand from plane surface attachment (interface I) to
surface asperity embedded conditions (interfaces II~IV). However, further considerations
are required to adopt this result for quantitative analysis since the actual field material has
not been used in this study.
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5. Conclusions

In this study, the interface shear test results of xanthan gum-treated soil were compared
with those of direct shear (soil-to-soil) tests, and an idea for a geotechnical application
was presented by analyzing the relationship between the shear parameters. Xanthan
gum-treated sand, which existed in a hydrogel state, showed a slight reduction in the
interface friction angle due to the lubricating effect of xanthan gum hydrogel, which
exhibits a decrease in viscosity under large strains. However, the strengthening effect was
enhanced after the hydrogel phase changed to a film state by dehydration. The interfacial
shear strength between the soil particles and surface improved with interfacial shear
parameters as the xanthan gum content increased, unlike in the hydrogel state. Therefore,
it is expected that the implementation of xanthan gum treatment at the periphery of a
shallow foundation (i.e., concrete piles) or press-in type shaft can yield a potential increase
in the construction efficiency, considering different effects depending on the moisture
state. This may ultimately lead to the improvement in static stability by rendering the
near-ground stiff. Meanwhile, this experimental study intended to basically investigate the
moisture-dependent effect to the interface shear parameters of xanthan gum-treated sand
using a structural element which represents the relative roughness and different asperity
conditions. The structure element used in this study is difficult to compensate actual
surface friction and hardness of materials used practical implementations, where further
considerations are required to adopt obtained results from this study for quantitative
analysis and should be carefully compared with on the corresponding behavior of real field
materials. Moreover, it needs to be verified using realistic descriptions of the roughness
of the actual structural material having large sizes. In addition, further research on the
long-term durability of xanthan gum-treated sand as a construction material should also
be conducted.
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