
applied
sciences

Article

Integration of Ordinal Optimization with Ant Lion
Optimization for Solving the Computationally Expensive
Simulation Optimization Problems

Shih-Cheng Horng 1,* and Chin-Tan Lee 2

����������
�������

Citation: Horng, S.-C.; Lee, C.-T.

Integration of Ordinal Optimization

with Ant Lion Optimization for

Solving the Computationally

Expensive Simulation Optimization

Problems. Appl. Sci. 2021, 11, 136.

https://dx.doi.org/10.3390/

app11010136

Received: 15 November 2020

Accepted: 23 December 2020

Published: 25 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Department of Computer Science & Information Engineering, Chaoyang University of Technology,
Taichung 413310, Taiwan

2 Department of Electronic Engineering, National Quemoy University, Kinmen 892009, Taiwan;
ktlee@nqu.edu.tw

* Correspondence: schong@cyut.edu.tw; Tel.: +886-4-23323000 (ext. 7801)

Abstract: The optimization of several practical large-scale engineering systems is computationally
expensive. The computationally expensive simulation optimization problems (CESOP) are concerned
about the limited budget being effectively allocated to meet a stochastic objective function which
required running computationally expensive simulation. Although computing devices continue
to increase in power, the complexity of evaluating a solution continues to keep pace. Ordinal
optimization (OO) is developed as an efficient framework for solving CESOP. In this work, a heuristic
algorithm integrating ordinal optimization with ant lion optimization (OALO) is proposed to solve
the CESOP within a short period of time. The OALO algorithm comprises three parts: approximation
model, global exploration, and local exploitation. Firstly, the multivariate adaptive regression splines
(MARS) is adopted as a fitness estimation of a design. Next, a reformed ant lion optimization (RALO)
is proposed to find N exceptional designs from the solution space. Finally, a ranking and selection
procedure is used to decide a quasi-optimal design from the N exceptional designs. The OALO
algorithm is applied to optimal queuing design in a communication system, which is formulated as a
CESOP. The OALO algorithm is compared with three competing approaches. Test results reveal that
the OALO algorithm identifies solutions with better solution quality and better computing efficiency
than three competing algorithms.

Keywords: expensive simulation optimization; ordinal optimization; ant lion optimization; multi-
variate adaptive regression splines; ranking and selection; queuing design; communication system

1. Introduction

The optimization of several practical large-scale engineering systems is computation-
ally expensive. The computationally expensive simulation optimization problems (CESOP)
are concerned about the limited budget being effectively allocated to meet a stochastic
objective function which required running computationally expensive simulation [1,2].
The CESOP occur in various fields of automatic manufacturing process, such as the buffer
resource allocation, machine allocation of multi-function product center, flow line manufac-
turing system, as well as numerous industrial managements, including the periodic review
inventory system, pull-type production system, and facility-sizing of factory. Although
computing devices continue to increase in power, the complexity of evaluating a solution
continues to keep pace.

Several methods are adopted to resolve CESOP, such as the gradient descent ap-
proaches [3], metaheuristic algorithms [4], evolutionary algorithms (EA) [5], and swarm
intelligence (SI) [6]. The gradient descent approaches [3], including steepest descent
method and conjugated gradient approach, maybe get stuck in a local optimum and fail
to obtain the global optimum The metaheuristic algorithms [4], including Tabu search

Appl. Sci. 2021, 11, 136. https://dx.doi.org/10.3390/app11010136 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4026-8864
https://dx.doi.org/10.3390/app11010136
https://dx.doi.org/10.3390/app11010136
https://dx.doi.org/10.3390/app11010136
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.3390/app11010136
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/1/136?type=check_update&version=4

Appl. Sci. 2021, 11, 136 2 of 18

(TS) and simulated annealing (SA), are developed to find the global optimum. However,
the performance of the metaheuristics is extremely dependent on the suitable selection of
user dependent parameters. EA [5] are stochastic search optimization techniques inspired
by the biological principle of evolution, survival of the fittest. There are five major types
of EA: genetic algorithm (GA), genetic programming (GP), differential evolution (DE),
evolutionary strategies (ES), and evolutionary programming (EP). However, EAs are very
computationally intensive and require longer computation times to find an acceptable
solution. SI [6] is inspired by collective behaviors of social animals, which is observed in
nature such as ants and bees, fish schools and bird flocks. Some of the novel SI methods are
grey wolf optimizer (GWO), manta ray foraging optimization (MRFO), sailfish optimizer
(SFO), fireworks algorithm (FWA), and ant lion optimization (ALO) [7–10]. In essence, SI
approaches are stochastic search techniques, where heuristic information is shared to lead
the search in the process. Although SI methods have been applied in different domains [11],
the identification of barriers and limitations have been found [12].

It is hard to solve the CESOP, because (i) fitness evaluation is computationally ex-
pensive, (ii) objective function is usually intractable, and (iii) sensitivity information is
frequently unavailable. Under such difficulties, traditional optimization and gradient-
based methods may perform poorly. This motivates the application of swarm computing,
computational intelligence and machine learning methods, which often perform well in
such settings [13]. For example, Sergeyev et al. proposed a geometric method using
adaptive estimates of local Lipschitz constants to solve the global optimization problems
with partially defined constraints, where the estimates were calculated by a local tuning
technique [14]. Kvasov proposed a diagonal adaptive partition strategy for constructing
fast algorithms to solve the global optimization problem of a multidimensional “black-box”
function, satisfying the Lipschitz condition [15]. Gillard and Kvasov presented that the
Lipschitz-based methods behaved better than existing deterministic methods for global
optimization problems under a limited computing budget [16]. Sergeyev et al. developed
a visual technique for a systematic comparison of the nature-inspired metaheuristics and
deterministic Lipschitz algorithms for expensive global optimization problems with limited
budget [17]. Kvasov and Mukhametzhanov presented popular black-box global optimiza-
tion methods and compared nature-inspired metaheuristic algorithms with deterministic
Lipschitz-based methods [18]. Paulavicius et al. proposed a DIRECT-type global optimiza-
tion algorithm to accelerate the search process for expensive black-box global optimization
problems [19].

Furthermore, structural optimization problems are also CESOP. Structural optimiza-
tion problems are characterized by various objective functions and constraints, which are
generally non-linear functions of the design variables. Optimization of complex structures
using traditional optimization approaches is known to be computationally expensive,
because a very large number of finite element analysis must be conducted for each possible
structural design during the optimization [20]. Saka et al. presented successful applications
of metaheuristics in structural optimization [21]. Zavala et al. reviewed the multi-objective
metaheuristics for structural optimization of the topology, shape, and sizing of civil engi-
neering structures [22]. Wein et al. reviewed feature-mapping methods for implementing
and solving structural optimization problems [23]. However, the huge solution space
makes the CESOP hard to solve by existing optimization approaches to find quasi-optimal
solutions within a reasonable period of time.

To solve items (i) to (iii) simultaneously, an ordinal optimization (OO) theory [24] has
been developed as an efficient framework for simulation optimization. The core concept of
OO is that the relative order in the performance of designs is robust to estimated noise. The
goal of the OO theory is to accelerate the simulation optimization procedure by gradually
narrowing down the solution space. The OO theory consists of three stages. First of all, a
representative subset is constructed using a rough model to evaluate all designs. A rough
model can quickly estimate the performance of a design. OO theory indicates that order
of performances of all designs is preserved even using a rough model [24]. Secondly, a

Appl. Sci. 2021, 11, 136 3 of 18

selected subset containing N designs is chosen from the representative subset. Even if a
rough model is utilized to rank N designs, some excellent designs will be kept within the
selected subset with a high probability. Finally, critical designs in the selected subset are
evaluated by an exact model. An exact model can accurately evaluate the performance
of a design. The one with the optimum performance in the selected subset is the good
enough design. We have successfully applied OO framework for simulation optimization
problems, such as one-period multi-skill call center [25], pull-type production system [26],
and facility-sizing optimization in factory [27].

For reducing the computing time of CESOP, a heuristic algorithm integrating ordinal
optimization with ant lion optimization, abbreviated as OALO, is proposed to find a quasi-
optimal design within an acceptable computing time. The OALO algorithm comprises
three parts: approximation model, global exploration and local exploitation. Firstly, the
multivariate adaptive regression splines (MARS) [28,29] is adopted as an approximation
model to evaluate the fitness of a design. Next, we proceed with a reformed ant lion
optimization (RALO) to look for N exceptional designs from the solution space. Finally, a
ranking and selection (R&S) procedure is utilized to decide a quasi-optimal design from
the N exceptional designs. The above three parts substantially decrease the computation
time which is required for solving CESOP.

Subsequently, the OALO method is employed to minimize the operating cost of
routing percentages in a communication system. The goal of queuing design optimization
in a communication system is to look for the optimal routing percentages such that the
expected total cost is minimal. The queuing design optimization in a communication
system can be formulated as a CESOP. There are two contributions of this paper. The first
one is to propose an OALO algorithm for CESOP to find a quasi-optimal design in an
acceptable time. The second one is to apply the OALO algorithm to the queuing design
optimization in a communication system.

The paper is organized as follows. Section 2 states the OALO algorithm to find a
quasi-optimal design of CESOP. Section 3 formulates the queuing design optimization in
a communication system as a CESOP. Then, the OALO is applied to resolve this CESOP.
Section 4 discusses the experimental results, comparison and relevant analysis. Section 5
draws the conclusion and provides an outline on future works.

2. Integration of Ordinal Optimization with Ant Lion Optimizer
2.1. Computationally Expensive Simulation Optimization Problems

A typical CESOP can be formally stated as follows [1].

min f (x)= E[G(r(t; x, ε))] (1)

V ≤ x ≤ U (2)

where x = [x1, . . . , xm]
T denotes a m-dimensional system parameters, f (x) is the objec-

tive function, G(r(t; x, ε)) is the performance of a simulation model, r(t; x, ε) denotes the
trajectory of system when the simulation evolves over time, G is a function of r(t; x, ε)
which states the performance metric of system, ε denotes all the randomness when it
evolves during a specified sample trajectory, V = [V1, . . . , Vm]

T represents the lower bound,
and U = [U1, . . . , Um]

T denotes the upper bound. Generally, multiple replications are
performed to obtain the objective value of f (x). However, it is impossible to carry out a
very long simulation run. A standard approach is using the sample mean to approximate
the objective function, which is formally stated as follows.

f (x) =
1
L

L

∑
`=1

G`(r(t; x, ε)) (3)

where L is the number of replications, and G`(r(t; x, ε)) represents the objective value of
the `th replication. The sample mean f (x) approximates to f (x), and f (x) reaches a better

Appl. Sci. 2021, 11, 136 4 of 18

result of f (x) when the value of L is increased. There is a major issue when the simulation
problem is stochastic. Ignoring the noise in the outcomes may not only lead to an imprecise
estimation, but also to potential errors in identifying the optimal solutions among those
sampled. Thus, we define the precise estimation of Equation (3) when L = La, where La
denotes a sufficiently large of L. In addition, we define f a(x) as the sample mean for a
given x obtained by precise estimation.

The benefit of the OO theory is the ability to separate the good designs from bad
designs even with a rough model [24]. Namely, the order of performance is relatively
immune to large approximation errors. Thus, an approximation model can be treated as
a rough model to evaluate a design quickly. Then, an efficient optimization technique
assisted by this approximation model is utilized to find N exceptional designs from solution
space within an accepted computation time. The approximation model is based on the
MARS [28], and the optimization technique is the RALO.

2.2. Multivariate Adaptive Regression Splines

There have been many uses of approximation models in various applications, such as
the radial basis function (RBF) [30], support vector regression (SVR) [31], kriging [32], artificial
neural network (ANN) [33], and multivariate adaptive regression splines (MARS) [28,29].
Among them, MARS approximates the relationship between outputs and inputs as well
as interprets the relationship between the various parameters. MARS has been applied
to many real-world problems, such as function approximation, curve fitting, time series
forecasting, prediction and classification [29]. The main advantages of MARS include work-
ing well with a large amounts of predictor variables, automatically detecting interactions
between variables, and robust to outliers. Thus, an approximation model based on the
MARS is utilized to evaluate the fitness in this work.

The MARS creates flexible nonlinear regression models by using separate regression
slopes in distinct intervals of the independent variables. The end points of the intervals for
each variable and the used variables are obtained by a very intensive searching process.
The framework of MARS is demonstrated in Figure 1. The typical model of MARS is
formulated as follows.

F(x) = ω0 +
K

∑
i=1

ωi ×Φi(x) (4)

where x represents an input variable, ω0 is an intercept coefficient, ωi denotes the weight
of basis functions, K indicates the amount of knots, and Φi(·) denotes the basis functions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 19

all performance in order to fit to the training data. In this process, the basis functions with-
out appreciably increasing the residual sum of squares are deleted from the overfitting
model.

MARS is trained off-line, which can be further simplified to reduce significantly the
computing time for on-line. After training the MARS, the target output ()F x can be cal-
culated using simple arithmetic operations for any x .

...

1

2

3

1()Φ x

1[, ,]T
mx x=x

0ω

2ω

3ω

Kω

2()Φ x

3 ()Φ x

K()Φ x

0
1

() ()
K

i i
i

F ω ω
=

= + Φx x

K

1ω

Figure 1. Framework of MARS.

2.3. Reformed Ant Lion Optimization
With the aid of the MARS approximation model, existing search approaches can be

adopted to determine N exceptional designs from the solution space. ALO is a biologi-
cally approach inspired by the hunting behavior of antlions and ants getting trapped in
the trap set by the antlion [7]. The ALO has a high exploration capability with the help of
random walk and roulette wheel to build traps. The time-varying boundary shrinking
mechanism and elitism are used to increase exploitation efficiency of the ALO. There are
many advantages of ALO, such as avoidance of local optima, ease of implementation, re-
duced need for parameter adjustment, and high precision. ALO has been successfully em-
ployed to solve the multi-robot path planning problem with obstacles [34], prediction of
soil shear strength [35], and structural damage assessment [36]. Heidari et al. presented a
comprehensive literature review on well-established researches of ALO from 2015 to 2018
[37]. The comparative results revealed the dominance of ALO over other SI approaches
including artificial bee colony (ABC), firefly algorithm (FA), ant colony optimization
(ACO), cuckoo search (CS), bat algorithm (BA), and biogeography-based optimization
(BBO). With the help of random walks and roulette wheel for building traps, ALO has a
high exploration capability. The shrinking of trap boundaries and elitism provide the ALO
with a high exploitation efficiency. These merits make ALO to avoid immature conver-
gence shortcomings. Accordingly, it is particularly well suited to meet the requirements
in global exploration.

However, there are some issues of the original ALO, such as the local optima stagna-
tion and occurrence of premature convergence for some problems. Therefore, the RALO
is designed to enhance the convergent speed of the original ALO. The RALO has two self-
adaptive control parameters, which are sliding factor and composition factor. The sliding
factor determines the ants which are shifted toward the antlion using a given rate of slip-
page. The RALO uses a small value of sliding factor to increase diversification. When the
sliding factor is small, the RALO intends to perform the global search. On the contrary,
the RALO uses a large value of sliding factor to improve intensification. As the sliding
factor is increased, the RALO intends to carry out the local search around the local opti-
mum. The composition factor determines the degree of the elite antlion which affects the
movements of all ants. The balance between exploitation and exploration of the RALO is

Figure 1. Framework of MARS.

The training data patterns are (xi, fa(xi)), where xi and fa(xi) denote a design and
their objective value obtained by precise estimation, respectively. The purpose of MARS
is to make the target output F(x) closer to the actual output fa(x). The optimal MARS
approximation model can be obtained by two-stage process: a forward stepwise selection

Appl. Sci. 2021, 11, 136 5 of 18

and a backward prune. In the selection process, MARS selects basis functions which
are added to the approximation model using a fast search scheme and builds a likely
large model which is overfitting the training data. The selection process terminates when
the model exceeds the maximum number of basis functions. In the prune process, the
overfitting model is pruned for decreasing the complexity while maintaining the overall
performance in order to fit to the training data. In this process, the basis functions without
appreciably increasing the residual sum of squares are deleted from the overfitting model.

MARS is trained off-line, which can be further simplified to reduce significantly
the computing time for on-line. After training the MARS, the target output F(x) can be
calculated using simple arithmetic operations for any x.

2.3. Reformed Ant Lion Optimization

With the aid of the MARS approximation model, existing search approaches can be
adopted to determine N exceptional designs from the solution space. ALO is a biologically
approach inspired by the hunting behavior of antlions and ants getting trapped in the
trap set by the antlion [7]. The ALO has a high exploration capability with the help of
random walk and roulette wheel to build traps. The time-varying boundary shrinking
mechanism and elitism are used to increase exploitation efficiency of the ALO. There are
many advantages of ALO, such as avoidance of local optima, ease of implementation,
reduced need for parameter adjustment, and high precision. ALO has been successfully
employed to solve the multi-robot path planning problem with obstacles [34], prediction of
soil shear strength [35], and structural damage assessment [36]. Heidari et al. presented
a comprehensive literature review on well-established researches of ALO from 2015 to
2018 [37]. The comparative results revealed the dominance of ALO over other SI approaches
including artificial bee colony (ABC), firefly algorithm (FA), ant colony optimization (ACO),
cuckoo search (CS), bat algorithm (BA), and biogeography-based optimization (BBO).
With the help of random walks and roulette wheel for building traps, ALO has a high
exploration capability. The shrinking of trap boundaries and elitism provide the ALO with
a high exploitation efficiency. These merits make ALO to avoid immature convergence
shortcomings. Accordingly, it is particularly well suited to meet the requirements in
global exploration.

However, there are some issues of the original ALO, such as the local optima stagnation
and occurrence of premature convergence for some problems. Therefore, the RALO is
designed to enhance the convergent speed of the original ALO. The RALO has two self-
adaptive control parameters, which are sliding factor and composition factor. The sliding
factor determines the ants which are shifted toward the antlion using a given rate of
slippage. The RALO uses a small value of sliding factor to increase diversification. When
the sliding factor is small, the RALO intends to perform the global search. On the contrary,
the RALO uses a large value of sliding factor to improve intensification. As the sliding factor
is increased, the RALO intends to carry out the local search around the local optimum. The
composition factor determines the degree of the elite antlion which affects the movements
of all ants. The balance between exploitation and exploration of the RALO is mainly
controlled by the composition factor. Large value of composition factor generates new
positions of ants far from the elite antlion which will result in high exploration ability.
Therefore, a large value of composition factor intends to perform exploration, while a small
value leads to perform exploitation.

There are six steps of hunting prey in ALO: (i) using roulette wheel to construct
antlion’s traps, (ii) random walk of ants, (iii) enter the ants to traps, (iv) adaptive shrinking
boundaries of antlion’s trap, (v) catching ants and re-building traps, and (vi) performing
elitism. The notations shown below are used in RALO. Ψ indicates the amount of ants and
antlions, kmax is the maximum number of iterations. The position of the ith ant at iteration
k is denoted by ak

i = [ak
i,1, . . . , ak

i,m]. The position of the ith antlion at iteration k is denoted
by xk

i = [xk
i,1, . . . , xk

i,m]. The position of the elite antlion is denoted by x∗ = [x∗1 , . . . , x∗m].
wk is a sliding factor at iteration k, wk ∈ [wmin, wmax], where wmin and wmax indicate

Appl. Sci. 2021, 11, 136 6 of 18

the minimum and maximum value, respectively. αk is a composition factor at iteration
k, αk ∈ [αmin, αmax], where αmin and αmax represent the minimum and maximum value,
respectively. The pseudo-code of RALO is represented in Algorithm 1.

Algorithm 1: Pseudo-code of the R ALO algorithm.

Input: Amount of ants and antlions, range of two control parameters and maximum number of
iterations (kmax).

Output: The best antlion.
Initialize the positions of all ants a0

i and antlions x0
i inside V and U bounds.

Evaluate the fitness of all antlions by MARS.
Determine the elite antlion x∗.

while k ≤ kmax do
for an ant ak

i do
Choose an antlion xk

i using the roulette wheel.
Random walk of ak

i nearby antlion xk
i to generate Rk+1

S
Random walk of ak

i nearby elite antlion x∗ to generate Rk+1
E

Update the minimum and maximum of each design variable.
Update the position of ak+1

i based on Rk+1
S and Rk+1

E
End for

Evaluate the fitness of all ants and antlions by MARS.
Replace an antlion with it corresponding ant.
Update sliding factor and composition factor.
Update the elite antlion.

End while

The steps involved in the RALO Algorithm 2 are briefly explained below.

Algorithm 2: The RALO

Step 1: Configuring basic parameters

(a) Setting the values of Ψ, wmin,wmax, αmin, αmax and kmax.
(b) Set u0

j = Uj, v0
j = Vj, j = 1, . . . , m. Let k = 0, where k indicates the iteration index.

Step 2: Initializing a population

(a) A population containing Ψ ants and Ψ antlions are generated.

a0
i,j = Vj +

⌊
rand[0, 1]× (Uj −Vj)

⌋
, i = 1, . . . , Ψ, j = 1, . . . , m (5)

x0
i,j = Vj +

⌊
rand[0, 1]× (Uj −Vj)

⌋
, i = 1, . . . , Ψ, j = 1, . . . , m (6)

where rand[0, 1] indicates a random number in range from 0 to 1, and Vj and Uj
express the lower and upper bound, respectively.

(b) Calculate the fitness F(x0
i) of antlion assisted by MARS, i = 1, . . . , Ψ.

Step 3: Ranking Rank the Ψ antlions based on the fitness from the smallest to the largest, and
determine the elite antlion x∗ = [x∗1 , . . . , x∗m].

Step 4: Random walk of ants Generate new position of each ant.

ak+1
i,j =

(
ak

i,j −minRi,j

)
× (uk

j − vk
j)

maxRi,j −minRi,j
+ vk

j , i = 1, . . . , Ψ, j = 1, . . . , m (7)

where Ri,j= [0, cusum(binrnd1), . . . , cusum(binrndk), . . . , cusum(binrndkmax)], cusum refers
to the cumulative sum, binrndk denotes the random number at iteration k, either 1 or −1,
maxRi,j and minRi,j denote the minimum and maximum random walk of the j-th variable
for the i-th ant, respectively, uk

j and vk
j express the minimum and maximum of the j-th

variable at iteration k.

Appl. Sci. 2021, 11, 136 7 of 18

Algorithm 2: cont.

Step 5: Slide ants in a trap

(a) Update the minimum and maximum of the j-th variable.

vk+1
j =

 xk
j +

vk
j

10wk×(k/kmax)
, rand[0, 1] > 0.5

xk
j −

vk
j

10wk×(k/kmax)
, rand[0, 1] ≤ 0.5

, j = 1, . . . , m (8)

uk+1
j =

 xk
j +

uk
j

10wk×(k/kmax)
, rand[0, 1] > 0.5

xk
j −

uk
j

10wk×(k/kmax)
, rand[0, 1] ≤ 0.5

, j = 1, . . . , m (9)

where wk denotes the sliding factor at iteration k, uk
j and vk

j express the minimum

and maximum of the j-th variable at iteration k, xk
j is the j-th antlion position at

iteration k, which can be either antlion xsk
j selected by the roulette wheel or the elite

antlion x∗j determined by the following equation.

xk
j =

{
xsk

j , rand[0, 1] > 0.5
x∗j , rand[0, 1] ≤ 0.5

, j = 1, . . . , m (10)

(b) Update positions of all ants.

ak+1
i = αk ×Rk+1

S +
(

1− αk)×Rk+1
E , i = 1, . . . , Ψ (11)

where αk denotes the composition factor at iteration k, Rk+1
S denotes the random

walk around an antlion which is selected by the roulette wheel at iteration k + 1,
Rk+1

E denotes the random walk around the elite antlion at iteration k + 1.

Step 6: Calculate the fitness Calculate the fitness F(ak+1
i) of ant ak+1

i and the fitness F(xk+1
i) of

antlion xk+1
i assisted by MARS, i = 1, . . . , Ψ.

Step 7: Replace an antlion with it corresponding ant Apply the greedy selection between ak+1
i

and xk+1
i . If F(ak+1

i) < F(xk+1
i), then set xk+1

i = ak+1
i , i = 1, . . . , Ψ.

Step 8: Update sliding factor and composition factor.

wk+1 = wmin + (wmax − wmin)×
(

1− exp
(
−wmax

wmin
× k + 1

kmax

))
(12)

αk+1 = αmin + (αmax − αmin)× exp

(
ln
(

αmin
αmax

)2
× k + 1

kmax

)
(13)

Step 9: Elitism Apply the greedy selection between xk+1
i and x∗. If F(xk+1

i) < F(x∗), then set
x∗ = xk+1

i , i = 1, . . . , Ψ.
Step 10: Stop criteria If k ≥ kmax, then stop; else, let k = k + 1 and return to Step 4.

The RALO terminates when it reaches a specified maximum number of iterations kmax.
When the RALO has stopped, the final Ψ antlions are ranked according to the fitness. Then,
the former N antlions are selected as the exceptional designs.

2.4. Ranking and Selection

We continue to determine the quasi-optimal design from the N exceptional designs
using the R&S procedure. The main idea of the R&S procedure is spending more computing
efforts on few critical designs and less on most non-critical designs. The proposed R&S
procedure composes of multiple stages, which select and allocate the most computational
budget to critical designs that has a high probability to be the quasi-optimal design. The
number of critical designs in each stage is decreased gradually. Remaining designs are
continuing to perform simulation and some of them are eliminated in each stage, and

Appl. Sci. 2021, 11, 136 8 of 18

the best one obtained in the last stage is the quasi-optimal design. The computational
complexity can be gradually reduced, because the number of the critical designs had been
greatly decreased when the evaluations are more refined.

The more refined evaluations used in those stages are simulation with various numbers
of replications ranging from tiny to large. First, we choose an initial amount of replications
as L0. The amount of replications and the amount of critical designs in the ith stage are
denoted as Li and Ni, respectively. We set Li = eLi−1 (or Li = eiL0) for i = 1, 2,,
and Ni = Ni−1/e (or Ni = N1/ei−1) for i = 2, 3, . . ., where N1 = N. The Monte Carlo
simulation with exponential rate provides a substantial computational speed-up without
noticeable overshoot of the Probability of Correct Selection (PCS). The value of the Ni is
rounded to the nearest integer. The number of stages, denoted as ns, is obtained by

ns = arg
{

min
ns

(L0 × ens−1 ≤ La < L0 × ens , 1 ≤ N/ens−1 < Nmin)

}
(14)

where La denotes the amount of replications in precise estimation, and Nmin denotes the
specified minimum size of selected subset. Equation (14) determines ns by satisfying at
least one of the following two conditions: (i) the value of Lns in the last stage exceeds
the value of precise estimation, i.e., Lns > La, and (ii) the size of selected subset in the last
stage is smaller than the specified minimum size, i.e., Nns < Nmin. When the value of
ns is obtained, a simulation with Li = ei × L0 replications is adopted to calculate f (x) in
the i-th stage. Next, these N/ei−1 critical designs are ranked based on the value of f (x)
and the former N/ei critical designs are selected into the selected subset for the (i + 1)-th
stage. A simulation with La replications is adopted to calculate f a(x) of all Nns critical
designs in the last stage. The critical design with the smallest f a(x) in the last stage is the
quasi-optimal design.

2.5. The OALO Algorithm

The OALO algorithm can be expressed by the flow diagram as shown in Figure 2.
Described below are the step-wise procedures of the OALO Algorithm 3.

Algorithm 3: The OALO.

Step 0: Set the values of M, Ψ, wmin, wmax, αmin, αmax, kmax, N, L0, La and Nmin
Step 1: Randomly choose M x’s from solution space and calculate fa(x), then train the MARS

off-line using these M designs.
Step 2: Randomly yield Ψ ants a’s and antlions x’s as the initial population and adopt Algorithm

2. After Algorithm 2 terminates, rank all the final Ψ x’s based on their approximate fitness
from the lowest to the highest and choose the prior N x’s to be the N exceptional designs.

Step 3. Decide the number of stages, ns, of the R&S procedure.
Step 4. For i = 1 to ns − 1, perform the simulation with replications Li = ei L0 to estimate f (x) of

the Ni = N/ei−1 designs in the i-th stage. Rank these N/ei−1 designs based on their f (x)
and select the former N/ei designs as the critical designs for the (i + 1)-th stage.

Step 5. Perform the simulation with replications La to calculate f a(x) of the N/ens−1 designs.
The design with the smallest f a(x) is the quasi-optimal design.

Appl. Sci. 2021, 11, 136 9 of 18Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 19

Solution space

Random walk of ants

Evaluate fitness of each ant
and antlion by the MARS

approximation model

Update two factors
and the elitist antlion

Select top N designs to be
exceptional designs

Determine the number of stages

Rank and select the
critical designs

A near-optimal design

Randomly select M designs
from as training data

Evaluate sample mean
using precise estimation

Off-line trained
the MARS

Construct the MARS based
approximation model

Terminated?

Terminated?

Randomly generate ants
and antlions as initial population

Θ

Θ
Ψ

Yes

No

Yes

No

Slide ants in a trap
and replace antlion

Ranking and Selection

Approximation modelRALO approach

Evaluate sample mean
of critical designs

Exponential growth of replications
and exponential decay of number

of critical designs

Figure 2. Flow diagram of the proposed OALO algorithm.

3. Optimization of a Communication System
3.1. Problem Statement

Queueing designs play an important role in managing communication system be-
tween different components of a large-scale distributed system [38]. The optimal routing
optimization in design of queueing networks is a challenging problem that arises in many
real-life situations. Such questions are arising in management of computer systems and
data networks. In the last few decades, there has been an upsurge of interest in the system
modeling methods, such as discrete-event simulation and queueing theory. In general, the
discrete-event simulation can enable the modeling of system operation control [39]. Un-
like discrete-event simulation, queueing theory requires very little data and obtains the
relatively simple formula to predict various performance measures. In designing queue-

Figure 2. Flow diagram of the proposed OALO algorithm.

3. Optimization of a Communication System
3.1. Problem Statement

Queueing designs play an important role in managing communication system be-
tween different components of a large-scale distributed system [38]. The optimal routing
optimization in design of queueing networks is a challenging problem that arises in many
real-life situations. Such questions are arising in management of computer systems and
data networks. In the last few decades, there has been an upsurge of interest in the system
modeling methods, such as discrete-event simulation and queueing theory. In general,
the discrete-event simulation can enable the modeling of system operation control [39].
Unlike discrete-event simulation, queueing theory requires very little data and obtains the
relatively simple formula to predict various performance measures. In designing queueing
systems, it is important to have a good balance between service to messages and economic
considerations. Queues happen when there are limited resources for providing a service. In

Appl. Sci. 2021, 11, 136 10 of 18

essence, all queuing systems are broken down into the entities queuing for an activity, e.g.,
dispensing and counseling. The goal of queuing design optimization in a communication
system is to look for the optimal routing percentages for minimizing the expected total cost.

Consider a queueing network design situation consisting of a communication system,
one should determine the routing percentages to route randomly arriving messages to
a particular destination [40]. There are n arrived random messages that need to go to
a particular destination and there are J networks available to process these messages.
Figure 3 shows an example of queueing network design with J networks. The per message
processing cost is c1, c2, . . . , cJ depending on which network the message is routed through.
It also takes time for a message to go through a network. This transit time is denoted by tj
for each network j, where tj follows a triangular distribution with a mean uj, lower limit
uj − 0.5 and upper limit uj + 0.5. There is a cost for the length of time a message spends in
a network measured by K per unit time. The decision variables are the routing percentages
P1, P2, . . . , PJ−1 ∈ [0, 100] which are the probabilities that a message will go through a
particular network. When a message is in front of network j, there is a Pj% chance that
it will be processed by network j. If the message is not processed by that network, then
it will go to network j + 1, and will be processed with probability Pj+1%, and so on. All
messages arrive at network 1 with an exponentially distributed interarrival time with a
mean of 1/λ time unit. The average transit time on the network j is E[tj

]
in steady state.

The goal is to minimize the expected total cost, which is the sum of processing cost and
average transit cost.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19

ing systems, it is important to have a good balance between service to messages and eco-
nomic considerations. Queues happen when there are limited resources for providing a
service. In essence, all queuing systems are broken down into the entities queuing for an
activity, e.g., dispensing and counseling. The goal of queuing design optimization in a
communication system is to look for the optimal routing percentages for minimizing the
expected total cost.

Consider a queueing network design situation consisting of a communication system,
one should determine the routing percentages to route randomly arriving messages to a
particular destination [40]. There are n arrived random messages that need to go to a par-
ticular destination and there are J networks available to process these messages. Figure 3
shows an example of queueing network design with J networks. The per message pro-
cessing cost is 1 2 J, , ,c c c depending on which network the message is routed through.
It also takes time for a message to go through a network. This transit time is denoted by

jt for each network j, where jt follows a triangular distribution with a mean ju , lower
limit 0.5ju − and upper limit +0.5ju . There is a cost for the length of time a message
spends in a network measured by K per unit time. The decision variables are the routing
percentages 1 2 J 1P , P , , P − ∈ [0, 100] which are the probabilities that a message will go
through a particular network. When a message is in front of network j, there is a Pj %
chance that it will be processed by network j. If the message is not processed by that net-
work, then it will go to network j + 1, and will be processed with probability +1P j %, and
so on. All messages arrive at network 1 with an exponentially distributed interarrival time
with a mean of 1/λ time unit. The average transit time on the network j is E[]jt in steady
state. The goal is to minimize the expected total cost, which is the sum of processing cost
and average transit cost.

Arriving
Messages

YesP1% enters
Network 1

No

Network 1

Network 2

Network 3

Network J

P2% enters
Network 2

Yes

No P3% enters
Network 3

Yes

.

.

.

PJ-1% enters
Network J-1

Yes

No

Network J-1

.

.

.

No

Arrival at
Destination

p1

p2

p3

1Jp −

Jp

Figure 3. Queueing network design of J networks.

3.2. Mathematical Formulation
The optimization of queueing network design can be formulated as a CESOP.

J

1
min () (K E[])j j j

j
f n p c t

∈Θ =

= × × + ×x
x (15)

Subject to

1 1P 100p = (16)

Figure 3. Queueing network design of J networks.

3.2. Mathematical Formulation

The optimization of queueing network design can be formulated as a CESOP.

min
x∈Θ

f (x) =
J

∑
j=1

n× pj × (cj + K× E[tj
]
) (15)

Subject to
p1 = P1/100 (16)

pj =
(
Pj/100

)
×
(
1− pj−1

)
, j = 2, . . . , J− 1 (17)

pN = 1−
J−1

∑
j=1

pj (18)

Appl. Sci. 2021, 11, 136 11 of 18

where x = [P1, . . . , PJ−1]
T denotes a J−1 dimensional design vector, f (x) is the expected

total cost, Pj ∈ [0, 100] denotes the routing percentage, Θ = [0, 100]J−1 denotes the feasible
region, n is the number of messages, cj denotes per message processing cost of network
j, K denotes transit cost, and E[tj

]
denotes the average transit time on the network j in

steady state.
The goal of the CESOP is to find the optimal routing percentages, x∗, such that the

expected total cost is minimum. Generally, multiple simulation replications are performed
to obtain the objective value. Thus, the sample mean is utilized to approximate the
objective value.

f (x) =
1
L

L

∑
`=1

f`(x) (19)

f`(x) =
J

∑
j=1

n× pi × (ci + K× t`j) (20)

where L denotes the amount of replications, f`(x) represents the objective value of the
`th replication, and t`j denotes the transit time on the network j of the `th replication. For

simplicity, we let f a(x) indicate the sample mean for a given x using precise estimation.
Figure 4 shows the relationship between inputs and output in queueing network

design, where x expresses the design vector, λ denotes the arrival rate of messages, L
indicates the number of replications, and f (x) is the sample mean.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 19

() ()1P 100 1j j jp p −= × − , 2, , J 1j = − (17)

1

1
1

J

N j
j

p p
−

=

= − (18)

where 1 J 1[, ,]TP P−=x denotes a J−1 dimensional design vector, ()f x is the expected
total cost, [0,100]jP ∈ denotes the routing percentage, J 1=[0,100] −Θ denotes the feasi-

ble region, n is the number of messages, jc denotes per message processing cost of net-

work j, K denotes transit cost, and E[]jt denotes the average transit time on the network
j in steady state.

The goal of the CESOP is to find the optimal routing percentages, ∗x , such that the
expected total cost is minimum. Generally, multiple simulation replications are performed
to obtain the objective value. Thus, the sample mean is utilized to approximate the objec-
tive value.

1

1() ()
L

f f
L =

= x x

 (19)

J

1
() ()i i j

j
f n p c K t

=

= × × + ×x
 (20)

where L denotes the amount of replications, ()f x represents the objective value of the

 th replication, and jt denotes the transit time on the network j of the th replication.
For simplicity, we let ()af x indicate the sample mean for a given x using precise esti-
mation.

Figure 4 shows the relationship between inputs and output in queueing network de-
sign, where x expresses the design vector, λ denotes the arrival rate of messages, L in-
dicates the number of replications, and ()f x is the sample mean.

, λx ()f x

Figure 4. Input output relationship in queueing network design.

3.3. Apply the OALO Algorithm
3.3.1. Establish the Approximation Model

Various basis functions in different intervals of the input variables space are used to
build the MARS approximation model. The output of MARS ()F x is predicted by a lin-
ear function, which is composed of an intercept constant and weighted basis functions. To
obtain the optimal MARS approximation model, we need to determine the intercept con-
stant and expansion coefficients of basis functions. There are four steps to establish the
MARS approximation model for roughly estimating a design vector. (i) Randomly select
M x ’s from solution space and calculate ()af x by precise estimation. (ii) Express the M

design vectors and the corresponding sample means as ()ix and ()()i
af x , respectively. (iii)

The optimal MARS approximation model is constructed using a two-stage process. (iv)
The ordinary least squares method is utilized to calculate the coefficient of each term.

The following hinge function is adopted as the basis function in the MARS approxi-
mation model.

Figure 4. Input output relationship in queueing network design.

3.3. Apply the OALO Algorithm
3.3.1. Establish the Approximation Model

Various basis functions in different intervals of the input variables space are used
to build the MARS approximation model. The output of MARS F(x) is predicted by a
linear function, which is composed of an intercept constant and weighted basis functions.
To obtain the optimal MARS approximation model, we need to determine the intercept
constant and expansion coefficients of basis functions. There are four steps to establish the
MARS approximation model for roughly estimating a design vector. (i) Randomly select
M x’s from solution space and calculate f a(x) by precise estimation. (ii) Express the M
design vectors and the corresponding sample means as x(i) and f a(x

(i)), respectively. (iii)
The optimal MARS approximation model is constructed using a two-stage process. (iv)
The ordinary least squares method is utilized to calculate the coefficient of each term.

The following hinge function is adopted as the basis function in the MARS approxi-
mation model.

Bm(x) =
Km

∏
k=1

[
sk,m ×

(
xv(k,m) − lk,m

)]
+

(21)

where km denotes the amount of splits corresponding to the mth basis function, sk,m = ±1,
v(k, m) is the v-th variable, 1 ≤ v ≤ n, n indicates the dimension of x, xv(k,m) is the variable
split, and lk,m denotes a knot. The ‘+’ subscript indicates that a truncated function is used
in the associated bracketed term.[

sk,m ×
(

xv(k,m) − lk,m

)]
+
=

{
sk,m ×

(
xv(k,m) − lk,m

)
, i f sk,m ×

(
xv(k,m) − lk,m

)
> 0

0, otherwise
(22)

Appl. Sci. 2021, 11, 136 12 of 18

MARS finds possible univariate candidate knots and across interactions among all
variables. The selected input variables and knot locations are obtained using an exhaus-
tive search algorithm. A “loss of fit” (LOF) criterion is utilized to optimize predictors,
knots and interactions simultaneously. MARS chooses the LOF which most improves the
approximation model at each search process.

3.3.2. Apply the RALO

With the assistance of MARS approximation model, N exceptional designs can be
quickly chosen from solution space using the RALO. At first, Ψ ants and antlions are
arbitrarily created as the initial population. Since the decision variables are the routing
percentages with a range of 0–100%, the positions of ants and antlions in initial population
are randomly generated by U[0, 100], where U[0, 100] is a uniformly distributed random
variable that ranges between 0 and 100. The fitness of each ant and antlion is obtained
by the MARS approximation model. After the RALO executed kmax iterations, the final Ψ
antlions are sorted based on their fitness. When a real value of the optimal design variable
is obtained, we can round this real value to the nearest integer using the rounding function
zi

j,k =
⌊

xi
j,k

⌋
, where xi

j,k ∈ < and zi
j,k ∈ Z. Finally, we choose the former N antlions to

construct the candidate subset. The value of N may not be large to save computational
effort; however, some critical designs may be lost when the value of N is small.

3.3.3. Obtain the Quasi-Optimal Design

Finally, the R&S technique is utilized to find a quasi-optimal design from the N
exceptional designs. First, we define the values of L0, La, Nmin and calculate the value of ns
by Equation (14). For i = 1 to ns − 1, a stochastic simulation with Li = ei × L0 replications
is performed to compute f (x) of the Ni = N/ei−1 critical designs. Then, we rank these
N/ei−1 critical designs based on their f (x) and select the former N/ei critical designs as the
selected subset for the (i + 1)-th stage. Finally, a stochastic simulation with La replications
is performed to calculate f a(x) of all N/ens−1 critical designs in the last stage. The critical
design with the smallest f a(x) is the quasi-optimal design.

4. Experimental Results
4.1. Test Examples and Simulation Results

Two problems presented in [41] are utilized to test the performance of the OALO
algorithm. The first problem is a small example with 3 networks as shown in Figure 5.
The number of messages is n = 1000. The cost per unit time in system is K = $0.005. The
processing costs per service are $0.03 for network 1, $0.01 for network 2 and $0.005 for
network 3. The message interarrival times have an exponential distribution with mean
1/λ = 1 time unit. The means of transit time are µj = 1, 2, and 3 for networks 1, 2, and 3,
respectively. The second problem is a large example with 10 networks. The number of
messages is n = 1000. The cost per unit time in system is K = $0.005. The processing cost
per service for network j is cj = 1/j, j = 1, . . . , 10. The interarrival rate of messages is λ = 1.
The mean of transit time through network j is µj = j, j = 1, . . . , 10.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 19

cessing costs per service are $0.03 for network 1, $0.01 for network 2 and $0.005 for net-
work 3. The message interarrival times have an exponential distribution with mean 1 λ
= 1 time unit. The means of transit time are

jμ = 1, 2, and 3 for networks 1, 2, and 3,
respectively. The second problem is a large example with 10 networks. The number of
messages is n = 1000. The cost per unit time in system is K = $0.005. The processing cost
per service for network j is 1 , 1, ,10jc j j= = . The interarrival rate of messages is λ =

1. The mean of transit time through network j is , 1, ,10j j jμ = = .

Arriving
Messages

YesP1% enters
Network 1

No

Network 1

Network 2

Network 3

P2% enters
Network 2

Yes

No

Arrival at
Destination

p1

p2

p3

Figure 5. Queueing network design of 3 networks.

In small example, the MARS was trained by randomly sampling M = 384 designs.
The amount M = 384 was produced using the sample size formula for a 95% confidence
level and a 5% confidence interval [42]. The number of sampling designs depends on the
parameters and complexity of the trained MARS model. For MARS, the performance is
expected to reach a maximum threshold no matter how much more data is included in
the training. In other words, there is a point where more data may not improve the model.
Accordingly, the additional samples become redundant when the value is larger than 384.
The objective value of each design was estimated using precise estimation.

Due to the random nature of stochastic simulation process, 30 trials (complete repe-
titions of the entire experiment) were carried out to check the consistency. After running
multiple experimental trials with different settings, the parameter settings in RALO for
small example were max 0.8α = , min 0.2α = , max =6w m in =1.5w , 20Ψ = and max 100k = .
There is no existing systematic way to determine the preferable ranges of the two control
parameters, min max[,]α α , min max[,]w w and the value of N . Although a proper parameter
setting can obtain a good performance, however such setting is problem dependent. Thus,
the preferable ranges of min max[,]α α , min max[,]w w and the value of N were determined
using a series of hand-tuning experiments after analyzing the influence on solution accu-
racy and convergence rate.

The values of α and w were dynamically adjusted to strengthen exploration in early
iterations and exploitation in later iterations. Figure 6 displays the variations of α and w
over iterations. The function of α is an exponentially decreasing function. A large value of
α tends to favor and promote exploration at the beginning, however, a small value of α
increases the local search tendency which leads to fast convergence speed. The function
of w is an exponentially increasing function. A small value of w achieves diversity more
efficiently or effectively. When the optimization processes proceed, the value of w is ex-
ponentially increased to gradually improve local exploitation. Figure 7 presents the slid-
ing ratio between original ALO and RALO. The value of exceptional designs was N = 10.
The parameter settings in R&S for small example were 0L = 50, minN = 2, 310aL = , and

sn = 3. Table 1 shows the quasi-optimal design *x , cost and the central processing unit
(CPU) times of the best run among the 30 trials in small example.

Figure 5. Queueing network design of 3 networks.

Appl. Sci. 2021, 11, 136 13 of 18

In small example, the MARS was trained by randomly sampling M = 384 designs.
The amount M = 384 was produced using the sample size formula for a 95% confidence
level and a 5% confidence interval [42]. The number of sampling designs depends on the
parameters and complexity of the trained MARS model. For MARS, the performance is
expected to reach a maximum threshold no matter how much more data is included in the
training. In other words, there is a point where more data may not improve the model.
Accordingly, the additional samples become redundant when the value is larger than 384.
The objective value of each design was estimated using precise estimation.

Due to the random nature of stochastic simulation process, 30 trials (complete repeti-
tions of the entire experiment) were carried out to check the consistency. After running
multiple experimental trials with different settings, the parameter settings in RALO for
small example were αmax = 0.8, αmin = 0.2, wmax = 6 wmin= 1.5, Ψ = 20 and kmax = 100.
There is no existing systematic way to determine the preferable ranges of the two control
parameters, [αmin, αmax], [wmin, wmax] and the value of N. Although a proper parameter
setting can obtain a good performance, however such setting is problem dependent. Thus,
the preferable ranges of [αmin, αmax], [wmin, wmax] and the value of N were determined us-
ing a series of hand-tuning experiments after analyzing the influence on solution accuracy
and convergence rate.

The values of α and w were dynamically adjusted to strengthen exploration in early
iterations and exploitation in later iterations. Figure 6 displays the variations of α and
w over iterations. The function of α is an exponentially decreasing function. A large
value of α tends to favor and promote exploration at the beginning, however, a small
value of α increases the local search tendency which leads to fast convergence speed. The
function of w is an exponentially increasing function. A small value of w achieves diversity
more efficiently or effectively. When the optimization processes proceed, the value of
w is exponentially increased to gradually improve local exploitation. Figure 7 presents
the sliding ratio between original ALO and RALO. The value of exceptional designs was
N = 10. The parameter settings in R&S for small example were L0 = 50, Nmin = 2, La = 103,
and ns = 3. Table 1 shows the quasi-optimal design x∗, cost and the central processing unit
(CPU) times of the best run among the 30 trials in small example.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19

Figure 6. Cuves of α and w along with iterations.

Figure 7. Comparison of sliding ratio between original ALO and RALO.

Table 1. The quasi-optimal design *x , cost and the CPU times of the best run in small example.

*x Cost CPU Times (s)
[54, 64]T 32.59 18.52

In large example, the MARS was trained by randomly sampling M = 9604 designs.
The amount M = 9604 was produced using the sample size formula for a 95% confidence
level and a 1% confidence interval. The sample mean of each design was estimated using
precise estimation. After running multiple experimental trials with different settings, the
parameter settings in RALO for large example were max 0.9α = , min 0.1α = , max =6w

Figure 6. Cuves of α and w along with iterations.

Appl. Sci. 2021, 11, 136 14 of 18

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 19

Figure 6. Cuves of α and w along with iterations.

Figure 7. Comparison of sliding ratio between original ALO and RALO.

Table 1. The quasi-optimal design *x , cost and the CPU times of the best run in small example.

*x Cost CPU Times (s)
[54, 64]T 32.59 18.52

In large example, the MARS was trained by randomly sampling M = 9604 designs.
The amount M = 9604 was produced using the sample size formula for a 95% confidence
level and a 1% confidence interval. The sample mean of each design was estimated using
precise estimation. After running multiple experimental trials with different settings, the
parameter settings in RALO for large example were max 0.9α = , min 0.1α = , max =6w

Figure 7. Comparison of sliding ratio between original ALO and RALO.

Table 1. The quasi-optimal design x∗, cost and the CPU times of the best run in small example.

x* Cost CPU Times (s)

[54, 64]T 32.59 18.52

In large example, the MARS was trained by randomly sampling M = 9604 designs.
The amount M = 9604 was produced using the sample size formula for a 95% confidence
level and a 1% confidence interval. The sample mean of each design was estimated using
precise estimation. After running multiple experimental trials with different settings, the
parameter settings in RALO for large example were αmax = 0.9, αmin = 0.1, wmax = 6
wmin= 1, Ψ = 200 and kmax = 1000. The value of exceptional designs was N = 100. The
parameter settings in R&S for large example were L0 = 10, Nmin = 2, La = 103, and ns = 5.
Table 2 demonstrates the amount of critical designs and replications in each stage. Since
the parameter settings in R&S are irrelevant to the random nature of stochastic simulation
process, the values listed in Table 2 are applied to the 30 trials. Table 3 shows the quasi-
optimal design x∗, cost and the CPU times of the best run among the 30 trials in large
example. Since the MARS is trained off-line, its training time is not included in the CPU
time consumed by the OALO in Tables 1 and 3. The CPU time contains the computing
effort consumed by the RALO and R&S procedure. The CPU time was less than 100 s for
all trials which were fast enough to meet the specification for real time applications. The
stochastic simulation process can be used in optimal queuing design of a communication
system with any distribution of arrival rates, even for high-dimension problems.

Table 2. Number of critical designs and replications in each stage.

Stage i 1 2 3 4 5

Ni 100 37 14 5 2
Li 27 74 201 546 1000

Table 3. The quasi-optimal design x∗, cost and the consumed CPU time of the best run in large example.

x∗ Cost CPU Times (s)

[2, 2, 2, 16, 26, 16, 19, 17, 10]T 270.75 98.27

Appl. Sci. 2021, 11, 136 15 of 18

Based the large deviation theory, the OALO can achieve an exponential convergence
rate in stochastic simulation models. Detail convergence analysis can refer to Chap 2.4
in [24] for detailed proof. The proposed OALO method can be applied to more complex
simulation-based optimization problems, such as optimal reinsurance-investment prob-
lems, multiskill call center with preference lists, flow lines with multiple-products, and
portfolio optimization problems with real-world constraints. The benefit of the OALO
method is to reduce the required simulation time significantly by determining quasi-
optimal design instead of finding the best design. Nevertheless, yielding a candidate
subset of designs may not be very satisfactory in some cases. The drawback of the OALO
method is that it does not provide an absolute guarantee of the global optimality.

4.2. Comparisons

To test the quality and efficiency of the OALO algorithm, three competing approaches,
GA, ES and particle swarm optimization (PSO), were adopted to solve the large example.
In the employed GA [43], the size of population was 200. An integer-valued solution was
represented by a real-valued coding. A crossover rate of 0.9 and a mutation rate of 0.05
were employed. In the applied ES [44], the self-adaptation rate was 1/

√
9. The size of

population was 200 and the size of offspring was 400. In the applied PSO [45], the size of
population was 200. Both cognitive and social factors were 2.05. The allowed maximum
velocity was 0.5 and the inertia weight was 1. The precise estimation was used to calculate
the sample mean of thee competing methods.

Due to the uncertainty of the large example, 30 trials were simulated. For a type of
statistical analysis, the modern standard is 30 trials to give an acceptable statistical precision.
Since three competing approaches should consume a long time to yield the optimum,
the iterative optimization procedures were terminated when they had spent 60 min of
computing time. Table 4 lists the average best-so-far sample means obtained using GA, ES
and PSO, whose values were 9.53, 8.82, and 5.69% more than that computed using OALO,
respectively. Test results reveal that the OALO algorithm can obtain the quasi-optimal
designs within a reasonable time as well as outperforms three competing approaches.

Table 4. Comparison of four approaches over 30 simulation trials.

Methods ABSM † ABSM−∗§
∗ × 100%

OALO 270.75 0
GA using precise estimation 296.55 9.53%
ES using precise estimation 294.63 8.82%

PSO using precise estimation 286.16 5.69%
†ABSM: average best-so-far sample mean; § *: ABSM of OALO.

Furthermore, the solution quality of the proposed OALO is of interest. To verify the
global optimality, the ranks of the solutions obtained from four methods were analyzed.
Since it is difficult to analyze the ranks of all solutions, a representative subset, Ω, is
selected to accurately reflect the characteristics of the large solution space. Because the
solution space is large, 16,641 samples were randomly selected from entire solution space
to build the representative subset. Then, the precise estimation was employed to calculate
the corresponding sample means. The size of the representative subset, |Ω| = 16,641, was
produced using the sample size formula for a 99% confidence level and a 1% confidence
interval [42].

An analytic process concerning ranking percentage was executed to reveal the rank
of a quasi-optimal solution in the representative subset. The ranking percentage of a
quasi-optimal solution in Ω is defined by rk

|Ω| × 100%, where rk denotes the rank of a quasi-
optimal solution. Table 5 lists the statistics related to the average best-so-far sample means
and average ranking percentages over 30 trials using four methods. The standard deviation
(S.D.) and standard error of mean (S.E.M.) concerning the average best-so-far sample means
obtained by OALO over 30 trials were 0.3 and 0.0548, respectively. These small values

Appl. Sci. 2021, 11, 136 16 of 18

indicate that most of the sample means of the OALO are very close to the optimum over 30
trials. In other words, the OALO algorithm can usually reach near-optimum even though
no guarantee of actually obtaining the global optimum.

Table 5. Statistics obtained by four methods over 30 simulation trials.

Methods Min. Max. Mean S.D. S.E.M. Average Ranking Percentage

OALO 270.01 271.59 270.75 0.3 0.0548 0.002%
GA using precise estimation 289.78 303.11 296.55 2.7 0.493 0.975%
ES using precise estimation 291.29 299.44 294.63 1.8 0.3286 0.637%

PSO using precise estimation 283.94 289.13 286.16 1.2 0.2191 0.592%

5. Conclusions

To solve the CESOP within a reasonable time, a heuristic algorithm integrating OO
with ALO was developed. The OALO algorithm comprises three parts including approxi-
mation model, global exploration and local exploitation. The MARS approximation model
was used to evaluate a design quickly. The OALO algorithm adopted the RALO for global
exploration with the R&S procedure for local exploitation. The OALO algorithm was
applied to minimize the expected cost of optimal queuing design in a communication
system, which was formulated as a CESOP. The OALO algorithm was compared with three
competing methods—GA, ES and PSO, using precise estimation. The quasi-optimal design
that was determined by the OALO algorithm has a high solution quality with beneficial
computational efficiency. Simulation results reveal that most of the objective values for the
OALO algorithm are close to the optimum over 30 trials. The OALO algorithm usually
reach near-optimum even though no guarantee of actually obtaining the global optimum.
Future research direction should be applying the OO theory to solve more complex stochas-
tic simulation optimization problems, such as optimal reinsurance-investment problems
and portfolio optimization problems with real-world constraints.

Author Contributions: S.-C.H. designed and conceived the experiments; S.-C.H. performed the
experiments; C.-T.L. analyzed the data; C.-T.L. contributed reagents and analysis tools; S.-C.H. wrote
the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research work is supported in part by the Ministry of Science and Technology in
Taiwan, R.O.C., under Grant MOST109-2221-E-324-026.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, M.; Sadoughi, M.; Hu, C.; Hu, Z.; Eshghi, A.T.; Lee, S. High-Dimensional Reliability-Based Design Optimization Involving

Highly Nonlinear Constraints and Computationally Expensive Simulations. J. Mech. Des. 2019, 141, 051402. [CrossRef]
2. Jiang, P.; Cheng, J.; Zhou, Q.; Shu, L.S.; Hu, J.X. Variable-fidelity lower confidence bounding approach for engi-neering

optimization problems with expensive simulations. AIAA J. 2019, 57, 5416–5430. [CrossRef]
3. Yuan, G.L.; Wei, Z.X.; Yang, Y.N. The global convergence of the Polak-Ribiere-Polyak conjugate gradient algo-rithm under inexact

line search for nonconvex functions. J. Comput. Appl. Math. 2019, 362, 262–275. [CrossRef]
4. Hussain, K.; Salleh, M.N.M.; Cheng, S.; Shi, Y. On the exploration and exploitation in popular swarm-based metaheuristic

algorithms. Neural Comput. Appl. 2019, 31, 7665–7683. [CrossRef]
5. Ryerkerk, M.; Averill, R.; Deb, K.; Goodman, E. A survey of evolutionary algorithms using metameric represen-tations. Genet.

Program. Evolvable Mach. 2019, 20, 441–478. [CrossRef]
6. Yang, X.-S.; Deb, S.; Zhao, Y.-X.; Fong, S.; He, X. Swarm intelligence: Past, present and future. Soft Comput. 2018, 22, 5923–5933.

[CrossRef]
7. Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [CrossRef]

http://dx.doi.org/10.1115/1.4041917
http://dx.doi.org/10.2514/1.J058283
http://dx.doi.org/10.1016/j.cam.2018.10.057
http://dx.doi.org/10.1007/s00521-018-3592-0
http://dx.doi.org/10.1007/s10710-019-09356-2
http://dx.doi.org/10.1007/s00500-017-2810-5
http://dx.doi.org/10.1016/j.advengsoft.2015.01.010

Appl. Sci. 2021, 11, 136 17 of 18

8. Assiri, A.S.; Hussien, A.; Amin, M. Ant Lion Optimization: Variants, Hybrids, and Applications. IEEE Access 2020, 8, 77746–77764.
[CrossRef]

9. Toz, M. An improved form of the ant lion optimization algorithm for image clustering problems. Turk. J. Electr. Eng. Comput. Sci.
2019, 27, 1445–1460. [CrossRef]

10. Das, A.; Mandal, D.; Ghoshal, S.P.; Kar, R. An optimal mutually coupled concentric circular antenna array syn-thesis using ant
lion optimization. Ann. Telecommun. 2019, 74, 687–696. [CrossRef]

11. Peška, L.; Tashu, T.M.; Horváth, T. Swarm intelligence techniques in recommender systems-A review of recent research. Swarm
Evol. Comput. 2019, 48, 201–219. [CrossRef]

12. Ertenlice, O.; Kalayci, C.B. A survey of swarm intelligence for portfolio optimization: Algorithms and applications. Swarm Evol.
Comput. 2018, 39, 36–52. [CrossRef]

13. Chugh, T.; Sindhya, K.; Hakanen, J.; Miettinen, K. A survey on handling computationally expensive multiobjec-tive optimization
problems with evolutionary algorithms. Soft Comput. 2019, 23, 3137–3166. [CrossRef]

14. Sergeyev, Y.D.; Kvasov, D.E.; Khalaf, F.M.H. A one-dimensional local tuning algorithm for solving GO problems with partially
defined constraints. Optim. Lett. 2006, 1, 85–99. [CrossRef]

15. Kvasov, D.E. Multidimensional Lipschitz global optimization based on efficient diagonal partitions. 4OR 2007, 6, 403–406.
[CrossRef]

16. Gillard, J.W.; Kvasov, D.E. Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat.
Its Interface 2017, 10, 59–70. [CrossRef]

17. Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. On the efficiency of nature-inspired metaheuristics in expensive global
optimization with limited budget. Sci. Rep. 2018, 8, 1–9. [CrossRef]

18. Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms: The univariate case. Appl.
Math. Comput. 2018, 318, 245–259. [CrossRef]

19. Paulavicius, R.; Sergeyev, Y.D.; Kvasov, D.E.; Zilinskas, J. Globally-biased BIRECT algorithm with local acceler-ators for expensive
global optimization. Expert Syst. Appl. 2020, 144, 113052. [CrossRef]

20. Kaveh, A. Advances in Metaheuristic Algorithms for Optimal Design of Structures, 3rd ed.; Springer: Cham, Switzerland, 2021.
21. Saka, M.P.; Hasançebi, O.; Geem, Z.W. Metaheuristics in structural optimization and discussions on harmony search algorithm.

Swarm Evol. Comput. 2016, 28, 88–97. [CrossRef]
22. Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello, C.A.C. A survey of multi-objective metaheuristics applied to structur-al optimization.

Struct. Multidiscip. Optim. 2014, 49, 537–558. [CrossRef]
23. Wein, F.; Dunning, P.D.; Norato, J.A. A review on feature-mapping methods for structural optimization. Struct. Multidiscip. Optim.

2020, 62, 1597–1638. [CrossRef]
24. Ho, Y.C.; Zhao, Q.C.; Jia, Q.S. Ordinal Optimization: Soft Optimization for Hard Problems; Springer: New York, NY, USA, 2007.
25. Horng, S.-C.; Lin, S.-S. Coupling Elephant Herding with Ordinal Optimization for Solving the Stochastic Inequality Constrained

Optimization Problems. Appl. Sci. 2020, 10, 2075. [CrossRef]
26. Horng, S.-C.; Lin, S.-S. Embedding Ordinal Optimization into Tree–Seed Algorithm for Solving the Probabilistic Constrained

Simulation Optimization Problems. Appl. Sci. 2018, 8, 2153. [CrossRef]
27. Horng, S.-C.; Lin, S.-S. Bat algorithm assisted by ordinal optimization for solving discrete probabilistic bicriteria optimization

problems. Math. Comput. Simul. 2019, 166, 346–364. [CrossRef]
28. Arthur, C.K.; Temeng, V.A.; Yevenyo, Y.Z. Multivariate Adaptive Regression Splines (MARS) approach to blast-induced ground

vibration prediction. Int. J. Mining Reclam. Environ. 2019, 34, 198–222. [CrossRef]
29. Sengul, T.; Celik, S.; Sengul, O. Use of multivariate adaptive regression splines (MARS) for predicting parameters of breast meat

in quails. J. Anim. Plant Sci. 2020, 30, 786–793.
30. Que, Q.; Belkin, M. Back to the Future: Radial Basis Function Network Revisited. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 42,

1856–1867. [CrossRef]
31. Balasundaram, S.; Prasad, S.C. Robust twin support vector regression based on Huber loss function. Neural Comput. Appl. 2020,

32, 11285–11309. [CrossRef]
32. Hesamian, G.; Akbari, M.G. A kriging method for fuzzy spatial data. Int. J. Syst. Sci. 2020, 51, 1945–1958. [CrossRef]
33. Qu, Y.; Pang, K. State estimation for a class of artificial neural networks subject to mixed attacks: A set-membership method.

Neurocomputing 2020, 411, 239–246. [CrossRef]
34. Dewangan, R.K.; Shukla, A.; Godfrey, W.W. A solution for priority-based multi-robot path planning problem with obstacles using

ant lion optimization. Mod. Phys. Lett. B 2020, 34, 2050137. [CrossRef]
35. Moayedi, H.; Bui, D.T.; Anastasios, D.; Kalantar, B. Spotted hyena optimizer and ant lion optimization in predicting the shear

strength of soil. Appl. Sci. 2019, 9, 4738. [CrossRef]
36. Mishra, M.; Barman, S.K.; Maity, D.; Maiti, D.K. Ant lion optimisation algorithm for structural damage detection using vibration

data. J. Civ. Struct. Heal. Monit. 2018, 9, 117–136. [CrossRef]
37. Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M. Ant lion optimizer: Theory, literature review, and ap-plication in

multi-layer perceptron neural networks. In Nature-Inspired Optimizers. Studies in Computational Intelligence; Mirjalili, S., Song
Dong, J., Lewis, A., Eds.; Springer: Cham, Switzerland, 2020.

38. Márton, L. Switching control analysis and design in queue networks. J. Frankl. Inst. 2020, 357, 19–38. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.2990338
http://dx.doi.org/10.3906/elk-1703-240
http://dx.doi.org/10.1007/s12243-019-00729-3
http://dx.doi.org/10.1016/j.swevo.2019.04.003
http://dx.doi.org/10.1016/j.swevo.2018.01.009
http://dx.doi.org/10.1007/s00500-017-2965-0
http://dx.doi.org/10.1007/s11590-006-0015-4
http://dx.doi.org/10.1007/s10288-007-0065-1
http://dx.doi.org/10.4310/SII.2017.v10.n1.a6
http://dx.doi.org/10.1038/s41598-017-18940-4
http://dx.doi.org/10.1016/j.amc.2017.05.014
http://dx.doi.org/10.1016/j.eswa.2019.113052
http://dx.doi.org/10.1016/j.swevo.2016.01.005
http://dx.doi.org/10.1007/s00158-013-0996-4
http://dx.doi.org/10.1007/s00158-020-02649-6
http://dx.doi.org/10.3390/app10062075
http://dx.doi.org/10.3390/app8112153
http://dx.doi.org/10.1016/j.matcom.2019.06.003
http://dx.doi.org/10.1080/17480930.2019.1577940
http://dx.doi.org/10.1109/TPAMI.2019.2906594
http://dx.doi.org/10.1007/s00521-019-04625-8
http://dx.doi.org/10.1080/00207721.2020.1781288
http://dx.doi.org/10.1016/j.neucom.2020.06.020
http://dx.doi.org/10.1142/S0217984920501377
http://dx.doi.org/10.3390/app9224738
http://dx.doi.org/10.1007/s13349-018-0318-z
http://dx.doi.org/10.1016/j.jfranklin.2019.09.027

Appl. Sci. 2021, 11, 136 18 of 18

39. Thomdapu, S.T.; Rajawat, K. Optimal Design of Queuing Systems via Compositional Stochastic Programming. IEEE Trans.
Commun. 2019, 67, 8460–8474. [CrossRef]

40. Barton, R.R.; Meckesheimer, M. Chapter 18 Metamodel-Based Simulation Optimization. Financ. Eng. 2006, 13, 535–574. [CrossRef]
41. SimOpt.org. Queueing System Design. 2016. Available online: http://simopt.org/wiki/index.php?title=Queueing_System_

Design (accessed on 15 April 2020).
42. Ryan, T.P. Sample Size Determination and Power; John Wiley and Sons: New Jersey, NJ, USA, 2013.
43. Mu, L.; Sugumaran, V.; Wang, F. A Hybrid Genetic Algorithm for Software Architecture Re-Modularization. Inf. Syst. Front. 2019,

22, 1133–1161. [CrossRef]
44. Akimoto, Y.; Auger, A.; Hansen, N. Quality gain analysis of the weighted recombination evolution strategy on general convex

quadratic functions. Theor. Comput. Sci. 2020, 832, 42–67. [CrossRef]
45. Sedighizadeh, D.; Masehian, E.; Sedighizadeh, M.; Akbaripour, H. GEPSO: A new generalized particle swarm optimization

algorithm. Math. Comput. Simul. 2021, 179, 194–212. [CrossRef]

http://dx.doi.org/10.1109/TCOMM.2019.2939468
http://dx.doi.org/10.1016/s0927-0507(06)13018-2
http://simopt.org/wiki/index.php?title=Queueing_System_Design
http://simopt.org/wiki/index.php?title=Queueing_System_Design
http://dx.doi.org/10.1007/s10796-019-09906-0
http://dx.doi.org/10.1016/j.tcs.2018.05.015
http://dx.doi.org/10.1016/j.matcom.2020.08.013

	Introduction
	Integration of Ordinal Optimization with Ant Lion Optimizer
	Computationally Expensive Simulation Optimization Problems
	Multivariate Adaptive Regression Splines
	Reformed Ant Lion Optimization
	Ranking and Selection
	The OALO Algorithm

	Optimization of a Communication System
	Problem Statement
	Mathematical Formulation
	Apply the OALO Algorithm
	Establish the Approximation Model
	Apply the RALO
	Obtain the Quasi-Optimal Design

	Experimental Results
	Test Examples and Simulation Results
	Comparisons

	Conclusions
	References

