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Abstract: Unmanned aerial vehicles (UAVs) play a key role in modern surveillance-related missions.
A major task for performing these missions is to find the precise location of a moving target in real-
time, for which the main challenge is to estimate the target position to high precision using the noisy
measurements from the airborne sensors. In this paper, we present a closed-form on-line simultaneous
target localization and UAV trajectory optimization method based on the visual platform, which can
effectively minimize the localization uncertainty to the target. The proposed method can be elucidated
explicitly using two phases, of which, in the target localization phase, the expended information
filtering (EIF) is exploited, which can express the predicted Fisher information matrix (FIM) of the
target explicitly and iteratively, and in the UAV trajectory optimization phase, the property of the
predicted FIM is exploited to establish the UAV waypoint optimization objective by taking account of
the UAV motion limit. Compared with existing methods of the same class, the proposed method not
only estimates the next target position more correctly, but also takes the error of the target motion into
consideration, thus improving the effectiveness of the optimized UAV trajectory. Both simulations
and field experiments were conducted, which show that the proposed method outperformed the
existing methods.

Keywords: unmanned aerial vehicle; target localization; coordinate frame transformation

1. Introduction

Target localization based on unmanned aerial vehicles (UAVs) has played an important
role in many modern applications such as intelligence, reconnaissance, and surveillance
missions (ISR) [1,2]. Equipped with onboard infrared and optical cameras as well as com-
munication and navigation hardware, modern UAVs are capable of tracking an anonymous
target, surveying the environment and providing the operator with real-time visual in-
formation. A common ISR mission for UAV is to track and localize a target detected by
airborne sensors. Exploiting the image data of the target from different observation stations
of the UAV and the knowledge of the UAV position and orientation, the target position
can be estimated by establishing the collinear equation of the optical center, imaged point,
and the true position of the target. However, due to the noisy measurements, the obtained
estimates always deviate from the true positions. In order to position the target with a
high accuracy given the fixed noise levels, a feasible and effective solution is to choose the
observation stations so that the optimal sensor-target geometry can be formed, which can
minimize the estimate uncertainty. As the task is to localize a moving target, the optimized
sequential UAV observation stations form a desired UAV trajectory through which the
target can be observed with the minimized uncertainty.
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An off-line planned trajectory cannot well predict the behavior of the target, and it
is also difficult for a human operator to fly the vehicle so that the target position can
be estimated with the minimized error. Hence, an autonomous and on-line UAV path
generation is important to target localization. The purpose of this paper was to provide a
method for UAV trajectory generation that enables the optimized localization performance.

Relevant works on target localization are primarily about the localization of a sta-
tionary target [3–5], for instance, Kutluyil Doğançay [6] developed a total least square
algorithm for two-dimensional localization of a stationary target using a bearing only
measurement; Bishop [7] exploited the geometric constraint method to implement target
position estimation, which can obtain a geometrically consistent estimation; Barber [3]
used the recursive least square (RLS) filtering and wind velocity estimation method to im-
prove the target localization performance, showing that the target localization bias caused
by measurement biases can be eliminated using an on-line learning algorithm; Sohn [4]
studied how to improve localization performance using wind velocity estimation and pitch
estimation method; Redding [5] presented a method for localizing a stationary target using
the pixel location of the target in the aerial image, with the measurement of UAV position
and attitude, and camera pose angles. The obtained estimate of target position in the world
coordinate has been demonstrated with an error less than 11 m. Wang [8] studied the use of
electro-optical stabilized imaging systems to localize multiple targets in real time, and the
RLS method was used to estimate the positions of targets. However, the above works
mainly focused on methods on the estimation or bias elimination. Apart from establishing
a proper estimation method that can improve the target localization accuracy, another
important factor that plays an important role in the localization performance should also
be taken into account, namely, the UAV-target geometry.

There have been many works on optimizing the target localization geometry. Kut-
luyil Doğançay [9] established the angular separation requirement for the angle of arrival
(AOA) sensors to achieve the best mean-squared-error (MSE) localization performance
for arbitrary but fixed sensor ranges. Bishop [10] studied the influence of the geometric
configuration between the multiple stationary observation stations and the stationary
target on target localization performance; Xu sheng [11] investigated the optimal sensor
placement strategies for AOA localization in 3-dimensional space by using a resistor net-
work analogy to determine the sensor–target geometry. The metric for optimizing the
sensor–target geometry in the above work is mainly the Fisher information matrix (FIM).
Furthermore, Bai [12] proposed a two-UAV intersection target localization system for which
the UAVs were equipped with airborne optoelectronic platforms. The optimal positions for
the two UAVs were considered by changing the baseline between them. Compared with
the sensor–target optimization problem for a stationary target as above, the counterpart
problem for the moving target is a different situation, which is a problem on the UAV trajec-
tory optimization. Ref. [13] presented an early study that tried to optimize the observer’s
path to increase the localization accuracy for a moving target. Afterward, the problem
on the localization of moving targets with measurements from different mobile sensors
has attracted many researchers such as [14], who used using time differences of arrival
(TDOA) and frequency differences of arrival (FDOA). In [15], the moving observer was
illustrated to make a spiral motion around the moving target. Ref. [16] studied the vehicle
planning problem for optimal target localization with range measurement by simultane-
ously considering the collision avoidance and vehicle maneuvering constraints. Ref. [17]
proposed a non-causal trajectory optimization method for optimally localizing a moving
target, which could achieve a better localization performance in some external constraint
conditions than the causal trajectory optimization strategy, for example, the UAV travel
length or the total travel time is restricted. Optimal vehicle trajectory that maximizes the
observability for maneuvering target is also generated in [18]. The authors dealt with range
observability for the target with a bearing-only measurement, which is also equivalent to
the localization observability of the target as together with the bearing measurement, the
target can be localized with the observable range. Ref. [19] utilized a geometry metric to
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measure the target localization performance, with which a 2-dimensional constrained robot
trajectory optimization problem was addressed to increase the localization performance
using bearing-only measurement.

Furthermore, trajectory optimization also involves the stationary target localization
problem. In [20], the problem of trajectory optimization for multiple UAVs with investi-
gated with heterogeneous sensors, which can cooperatively localize a target to achieve
a better performance. Ref. [21] investigated the UAV path planning problem to increase
the localization performance to a signal emitter. The optimal observer trajectory that
maximizes the observability of the target of interest was also studied in [22–25].

However, the above work mainly deals with the stationary target or the moving target
with an ideal motion model such as the constant velocity. In practical applications, the target
motion model is not exactly known, and this can usually be modeled by the process noises
of the dynamic model. If the error from the motion model is neglected, the resultant
optimized trajectory will become unstable. Under the vehicle constraints, this will result in a
different trajectory, which will degenerate the target localization performance. In this paper,
we present a closed-form solution for simultaneous target localization and UAV trajectory
optimization problem. With this method, the extended information filtering (EIF) [26,27]
is exploited to estimate the target state, which can compute the predicted information
matrix required by the trajectory optimization explicitly and iteratively. Each time after
the state estimation, the next optimized waypoint is solved and becomes an index to the
control algorithm so that the UAV can reach the desired position and minimize the target
localization uncertainty.

The main contributions of this paper can be enumerated as follows.

(i) It is derived that the target localization using the UAV with a visual platform is a 3D
bearing-only target localization problem.

(ii) A closed-form method based on EIF for the simultaneous target localization and UAV
trajectory optimization problem is presented, which well decouples the target local-
ization from the UAV trajectory optimization. By using the predicted estimate of the
target estimate and taking account of the process noise in the trajectory optimization
phase, the optimized next waypoint will become more effective than existing methods.

(iii) By analyzing the valid information of the information matrix, the position-related
information matrix is extracted, which can facilitate the numerical computation for
the optimization objective of the next waypoint.

The remainder of this paper is outlined as follows. Section 2 introduces the system
and principle of target localization, and derives that the target localization problem using
the UAV with a visual platform is a 3D bearing-only target localization problem; Section 3
presents the simultaneous target localization and UAV trajectory optimization method
based on EIF; Section 4 gives the simulations, field experiments and relevant discussions;
and Section 5 concludes this paper and introduces the future work.

2. Target Localization Based on Visual Platform
2.1. System Structure and Preliminaries

The referred UAVs in our project were equipped with an inertial measurement unit
(IMU), a high precision global positioning system (GPS) with real-time kinematic (RTK)
technique, and a visual tracking platform. The target localization workflow is shown in
Figure 1. In the target localization process, the target is first detected and recognized by the
video processing unit once the target is captured by the camera, and the video algorithm
localizes the pixel centroid of the target and outputs the pixel position as the control block’s
input. The camera control module drives the pan/tilt servo motor to change the camera’s
azimuth and elevation angle through pulse width modulation, so as to lock the target image
in the center of the camera’s field of view (FOV). Meanwhile, the camera attitude sensors
output the relative angles between the UAV and the camera. Combining the synchronized
measurement data (MEA) from the GPS, IMU, and camera attitude sensors, the target can
be localized in real time. Note that in the localization process, some prior information
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may be available such as the known height of the target to be localized. To introduce the
proposed method concisely, we avoid discussing the observability of the moving target
by guaranteeing the observability of the target (i.e., it is assumed that the target height
is known while the related angle measurements are achieved). In many applications,
the target usually moves in a limited area so that the ground can be considered as flat [3].
To illustrate the target localization procedure in detail, several coordinate frames should
be introduced.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 23 

 

Figure 1. Target localization workflow. 

process, the target is first detected and recognized by the video processing unit once 

the target is captured by the camera, and the video algorithm localizes the pixel centroid 

of the target and outputs the pixel position as the control block’s input. The camera control 

module drives the pan/tilt servo motor to change the camera’s azimuth and elevation an-

gle through pulse width modulation, so as to lock the target image in the center of the 

camera’s field of view (FOV). Meanwhile, the camera attitude sensors output the relative 

angles between the UAV and the camera. Combining the synchronized measurement data 

(MEA) from the GPS, IMU, and camera attitude sensors, the target can be localized in real 

time. Note that in the localization process, some prior information may be available such 

as the known height of the target to be localized. To introduce the proposed method con-

cisely, we avoid discussing the observability of the moving target by guaranteeing the 

observability of the target (i.e., it is assumed that the target height is known while the 

related angle measurements are achieved). In many applications, the target usually moves 

in a limited area so that the ground can be considered as flat [3]. To illustrate the target 

localization procedure in detail, several coordinate frames should be introduced. 

(1) Global coordinate frame, notated as gC , where, the axes 
gX ,

gY  point to the east 

and north directions, respectively, which together with axis 
gZ  form a right hand Carte-

sian frame and the origin gO  is set at a fixed point, as shown in Figure 2. 

 

 

Figure 2. Illustration of coordinate frames. 

(2) UAV geographical coordinate frame, notated as uC , which has the same directions 

as gC  over three axes except that the origin of the uC  is at the center position of mass of 

the UAV. 

GPS

Synchronization

MEA 1

Real-time localization

IMU

Camera attitude sensors

MEA 2

kMEA

Prior information

Video processing

Control block

Camera

Target

1,2, ,t k
1,2, ,t k

Figure 1. Target localization workflow.

(1) Global coordinate frame, notated as Cg, where, the axes Xg,Yg point to the east
and north directions, respectively, which together with axis Zg form a right hand Cartesian
frame and the origin Og is set at a fixed point, as shown in Figure 2.
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(2) UAV geographical coordinate frame, notated as Cu, which has the same directions
as Cg over three axes except that the origin of the Cu is at the center position of mass of the
UAV.

(3) UAV body fixed coordinate frame, notated as Cb, where, the axes Xb,Yb point to
the front and left directions of the UAV, respectively, which together with axis Zb form a
right hand Cartesian frame, with the origin coinciding with Ob.

(4) Camera coordinate frame, represented by Cc, which coincides with Cb when the
attitude angles of the camera are kept at the initial positions (i.e., the azimuth angle and
elevation angle are both zero). Note that using the control block, as shown in Figure 1,
the positive direction of the Zc-axis always points to the UAV from the target, as shown in
Figure 2. As the point of mass of the UAV is very close to the optical center of the camera,
the origins of Cu and Cb can be assumed to be at the optical center.
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2.2. Target Localization Principle

The fundamental principle of the target localization using the above hardware setting
can be expressed as follows.

First, the target position in the camera coordinate frame is transformed into the global
coordinate frame,

xg = Rotb
g(φ, θ, ϕ)Rotc

b(α, β)xc + y (1)

where xg,xc denote the target position in the Cg frame and Cc frame, respectively, and
xc = [0, 0,−l]> where l denotes the distance between UAV and the target and > is the
transpose operation; y represents the UAV position; Rotc

b(α, β) and Rotb
g(φ, θ, ϕ) denote the

transformation matrices from Cc to Cb and Cb to Cg, respectively, which can be expressed
as: {

Rotc
b(α, β) = Ry(β)Rz(α)

Rotb
g(φ, θ, ϕ) = Rx(φ)Ry(θ)Rz(ϕ)

(2)

where α,β denote the azimuth and elevation angle, respectively, and φ,θ,ϕ represent the
roll, pitch, and yaw angle, respectively; and

Rx(γ) =


1 0 0

0 cos γ − sin γ

0 sin γ cos γ

, Ry(γ) =


cos γ 0 sin γ

0 1 0

− sin γ 0 cos γ

, Rz(γ) =


cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 (3)

As in (1), both xg and xc are unknown, and (1) is linear about these variables, so (1) can be
considered as the Line of Sight (LoS) representation. For a stationary target, if there is no
other prior information such as the distance from UAV to the target, the target position
can be determined by two or more LoS equations as above from different observation
stations; for the moving target, if there is no prior information available, multiple LoS
equations cannot make up the sufficient condition to determine the target position because
the moving target may be unobservable with the improper multiple measurements [28].
However, if there is prior information such as distance information, the target position
can be determined uniquely using only one of the above LoS equations. In this paper,
to concisely present the proposed method, we circumvented the observability problem,
and instead, we assumed that the moving target had a prior known height, which can
guarantee that after each measurement, an estimate of the target position can be achieved,
and in most of the practical applications, this assumption is reasonable. Importantly,
the proposed method can be easily generalized to other measurement models, for example,
the bearing-only measurement model and the bearing-distance model.

In practical applications, the measurements are obtained with noise; to reduce the
influence of noise on the localization results, classical estimation methods such as maximum
likelihood estimator (MLE) and least square estimator (LSE) can be used. For the moving
target localization problem, the most used estimation methods belong to the class of filtering
methods, among which the extended Kalman filtering (EKF) is the most common one [1].
In the following paper, we use a variant of EKF to iteratively estimate the target position
and simultaneously optimize the UAV trajectory so that the localization uncertainty for the
moving target can be minimized.

3. Simultaneous Target Localization and Unmanned Aerial Vehicle (UAV)
Trajectory Optimization
3.1. Target Localization with the Attitude Measurement of Line of Sight (LoS)

To simplify the above problem, we now treated the target and UAV as mass points.
Given the measurement at one observation station, we achieved a LoS as shown in Figure 3.
Obviously, in this setting, the problem becomes a 3D bearing-only target localization
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problem. Denote the azimuth and elevation angle of the LoS by ϑ and γ, respectively.
We have  γ = arctan2

(
r(3)√

r(1)2+r(2)2

)
ϑ = arctan

(
r(2)
r(1)

) (4)

where r := xg− y denotes the pointing vector from the UAV to the target; r(1),r(2), and r(3)
denote the components of r in Xg,Yg, and Zg axes in Cg, respectively; arctan2(·) denotes the
2-argument arctangent, which makes the azimuth angle range from −π to π. We now use
the direct measurement to represent the attitude of the LoS. According to the transformation
relation in the previous section, r can be obtained by transforming the pointing vector on
Zc in Cc into Cu using the direct measurement, in other words,

r = Rotb
g(φ, θ, ϕ)Rotc

b(α, β)

 0
0
−l

 (5)
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Therefore, the target localization problem can be considered as a 3D bearing-only
target localization problem combining (4) with (5). Furthermore, the measurement noises
for the direct measurement can be transformed into errors of the azimuth and elevation
angles using (4) and (5). Assuming the error of the direct measurement is denoted by
n = [δα, δβ, δφ, δθ, δϕ]>(the UAV position error is ignored because the GPS-RTK data have
a high precision to the centimeter level), the azimuth and elevation angle errors denoted
by w = [δγ, δϑ]> can be approximately expressed as:

w = Jn (6)

where,

J =

(
∂γ
∂α

∂γ
∂β

∂γ
∂φ

∂γ
∂θ

∂γ
∂ϕ

∂ϑ
∂α

∂ϑ
∂β

∂ϑ
∂φ

∂ϑ
∂θ

∂ϑ
∂ϕ

)
|α,β,φ,θ,ϕ

(7)

denotes the Jacobian matrix at the current measurement. If the direct measurement is
assumed with Gaussian-distributed noise, the errors of the attitude angles of the LoS can
also be treated as Gaussian, and their expectation and variance can be computed using (7).

With the above analysis, the target localization problem can be depicted as a 3D
bearing-only target localization problem, which corresponds to the direct measurement
using (5). For the ease of expressing our idea, the following paper will treat the attitude
angles of LoS as the direct measurement.
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As stated in the previous section, if there is no prior information available, multiple
LoS equations still cannot make up the sufficient condition to determine the position
of a moving target because the moving target may be unobservable with the achieved
angle measurements. To make the moving target observable using arbitrary measurement,
one more dimensional measurement is usually needed such as the real-time distance or
the relative height between the target and UAV. In our project, the height of the target was
assumed to be known because the height of the ground plane, which can usually be treated
as flat, can be measured using GPS before localizing the target. Therefore, the measurement
model for the moving target can be expressed as:

z = h(x) + w (8)

where x = [xg, yg]
> denotes the horizontal position vector of the target; z = [γ, ϑ]>

represents the measurement vector; and the expression of h(x) is exactly the equation in (4).
As zg is known, there are only two variables to be estimated, and hence the target position
can be estimated by (4). Thus, the target is observable with the attitude measurement of
the LoS.

3.2. Simultaneous Target Localization and UAV Trajectory Optimization

The attitude angles of LoS are measured with random errors, and thus there is un-
avoidable error in the localization result. However, the localization performance to the
moving target is not only influenced by the measurement noises, but also significantly
influenced by the trajectory of the UAV, which determines the sensor–target geometry at
each time instant. Therefore, to best localize the target position, an optimized trajectory
should be generated automatically according to the desired Sensor–target geometry. As the
true position of the target is unknown, the localization uncertainty minimization objective
of the moving target relies closely on the estimate of the target. In other words, the position
estimation for the target and trajectory optimization for the UAV are closely coupled, which
makes the simultaneous target localization and UAV trajectory optimization problem
complicated, as shown in Figure 4a.

For the discrete measurement case, one solution to decoupling the problem is to
optimize the next waypoint of the UAV immediately each time the estimation task of the
target position is completed, as shown in Figure 4b. The existing methods use the current
estimate of the target position to optimize the next waypoint of the observer. However,
when the measurement time interval is large, the current estimate of the target position
deviates largely from the actual position at the next time instant. This will make the next
optimized waypoint of the UAV invalid. To overcome this problem, the predicted estimate
of the target position was utilized in this paper. This can be expressed as follows. In the es-
timation phase of time step k, the target position is estimated using the optimized waypoint
of UAV at time step k− 1, and then, in the trajectory optimization phase, the predicted
position of the target given the obtained estimate is exploited to optimize the waypoint of
UAV at time step k + 1. In this way, the target localization and UAV trajectory optimization
are implemented concurrently, leading to the localization performance being maximized
and the UAV trajectory is also generated automatically.

To facilitate the simultaneous target localization and UAV trajectory optimization,
the EIF target state estimation method was exploited, which can express the predicted FIM
information of the target state explicitly and iteratively. Using the predicted FIM obtained
from the target motion model and the current estimate, the UAV waypoint optimization
objective can be established. The sequel will first introduce the EIF method for moving
target localization, and then present the UAV trajectory optimization algorithm.
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3.2.1. Target Localization Using EIF

Assume the target has a constant velocity motion model as follows:

xk = Φk|k−1xk−1 + Γk|k−1vk−1 (9)

where xk = [xg,k, yg,k, vx,k, vy,k]
> denotes the target state at time step k, of which the first

two components represent the horizontal position of the target and the last two components
are the velocities in the horizontal plane; and

Φk|k−1 =

(
I2×2 ∆tI2×2
02×2 I2×2

)
(10)

denotes the state transition matrix of the target from time k− 1 to time k, where I2×2,02×2
denote the identity matrix and zero matrix of order 2, respectively; ∆t denotes the time
interval of measurements; and

Γk|k−1 =

(
∆tI2×2

I2×2

)
(11)

denotes the noises input matrix; vk−1 = (nx, ny)
> denotes the process noise assumed as

zero mean Gaussian with covariance matrix Qk−1. Based on (8), in the previous section, we
have the measurement model of the form:

zk = h(xk) + wk (12)

where zk,wk denote the measurement vector and measurement noise vector at time k,
respectively; and wk is assumed as zero mean Gaussian with covariance matrix Rk and
independent from vk−1.

Given the initial state x̂0 and covariance matrix P0, the filtering methods such as EKF
and uscent Kalman filtering (UKF) can be used to iteratively and consistently estimate target
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state, performing the real-time localization to the moving target. However, to optimize the
UAV trajectory so that the target localization uncertainty can be minimized, the predicted
FIM is needed in the trajectory optimization phase. To circumvent the inverse computation
of predicted covariance matrix in each iteration, the information filtering corresponding
to EKF is used, which can express the predicted FIM of the target state explicitly in each
iteration. Furthermore, compared with the existing methods, using the predicted FIM,
the process noise of the target model was also taken into consideration, which can optimize
the next waypoint of UAV more effectively.

EIF is an information form of the extended Kalman filtering, of which the target
state estimation and covariance matrix are replaced with the information state vector and
information matrix, respectively. The relation between them can be expressed as follows:{

Yk = P−1
k

ŷk = P−1
k x̂k

(13)

where Yk,ŷk denote the information matrix and information state vector at time k, re-
spectively; Pk,x̂k denote the covariance matrix and target state estimation at time step k,
respectively. Using (13), the initial information matrix Y0 and the information state vector
ŷ0 can be obtained. Given the information matrix Yk−1 and information state vector ŷk−1
at time instant k− 1, the EIF advances with time as follows:

1. Prediction update:

Yk|k−1 =
(

Φk|k−1Y−1
k Φ>k|k−1 + Γk|k−1Qk−1Γ>

k|k−1

)−1
(14)

Bk|k−1 = Yk|k−1Φk|k−1Y−1
k (15)

ŷk|k−1 = Bk|k−1ŷk−1 (16)

2. Measurement update:
ik = H>k R−1

k zk (17)

Ik = H>k R−1
k Hk (18)

ŷk = ŷk|k−1 + ik (19)

Yk = Yk|k−1 + Ik (20)

where

Hk =

( ∂γ
∂xg

∂γ
∂yg

∂ϑ
∂xg

∂ϑ
∂yg

)
(21)

denotes the Jacobian matrix of h(xk) with respect to xk at x̂k|k−1, and x̂k|k−1 can be
computed using the corresponding information matrix and information state vector
as follows:

x̂k|k−1 = Y−1
k|k−1ŷk|k−1 (22)

Using the above procedure, the moving target can be located consistently in real-time.

3.2.2. UAV Trajectory Optimization

Although the EIF can estimate the target position consistently, the sensor-target ge-
ometry also significantly influences the performance of target localization. Based on the
decoupling structure, the UAV trajectory should be optimized at each waypoint.

Assuming the previous waypoints have existed at time k, and the next waypoint at
time k + 1 is to be optimized. According to relevant theory in the literature, making the
uncertainty of the target position estimate minimized is equivalent to maximizing the
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posterior FIM after observation at time k + 1 in some measure, which can be expressed
mathematically as:

maxT [Yk+1] (23)

where T denotes some measure of the FIM. On the other hand, the UAV maneuverability
constraints should also be taken into account:

γh ≤ γh,max
γv ≤ γv,max

vmin ≤ ‖vk‖ ≤ vmax
zu,k+1 − z0 ≥ hmin

, ∀k =1, 2, · · · (24)

where vk is the velocity vector of the UAV; vmin,vmax denote the minimum and maximum
velocity values, respectively; γh,γv denote the horizontal turn rate and vertical turn rate
with γh,max,γv,max as their maximum values, respectively; zu,k+1 denotes the third com-
ponent of yk+1, the UAV position vector in Cg; z0 represents the height of ground plane
(i.e., the third component of target position vector). The first constraint is about the maxi-
mum turn rate of UAV; the second constraint is about the maximum velocity of UAV; the
third equality is to restrict the relative height between the target and the UAV. Combining
(23) and (24), for UAV trajectory optimization, we have the following optimization problem:

max T [Yk+1]
s.t. Yk+1 = Yk+1|k + Ik+1

γh ≤ γh,max
γv ≤ γv,max

vmin ≤ ‖vk‖ ≤ vmax
zu,k − z0 ≥ hmin∀k =1, 2, · · ·

(25)

where the predicted information matrix Yk+1|k and information gain Ik+1 at time step k + 1
can be computed by (14) and (18) using the current information matrix and information
state vector Yk,ŷk. Note that in order to optimize the UAV trajectory, Ik+1 should be
expressed in terms of the target position, and as the target position is unknown, we replaced
it with the predicted state, x̂k+1|k.

Before proceeding to solve the optimization problem of (25), the valid FIM of the
target state for the trajectory optimization should be illustrated. As the Fisher information
is a way of measuring the amount of information that some measurement carries about
an unknown variable, upon which the probability of the measurement depends, the FIM
is a way of measuring the information of an unknown vector. Each element of the FIM
corresponds to the amount of information about the corresponding variable element in
the vector to be estimated. For example, the element in entry (1,1) of the Yk+1 represents
the information of the component xg,k+1 of the posterior target state estimate vector from
the prior estimate and the current measurement, and the element in entry (1,2) of Yk+1
represents the information relevant with both component xg,k+1 and component yg,k+1
of the target state vector. As the measurement model (12) only involves the position
variables of the target state vector, the essential variables to be estimated is the position
variables, according to which the velocity variables can be inferred. Hence, the information
we really care about is the information involved with the position variables. Denote the
information matrix involved with the position variables of the target state vector by Ỹk+1,
which can be obtained by dropping the columns of order 3, 4, and the rows of order 3, 4 in
the information matrix,Ỹk+1. Furthermore, the predicted information matrix Ỹk+1|k and
information gain Ĩk+1 involved with target position variables corresponding to Yk+1|k and
Ik+1 can also be achieved in the same way. Hence, we have

Ỹk+1 = Ỹk+1|k + Ĩk+1 (26)
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As Yk+1|k is predicted from Yk, it can be computed directly with the current estimate.
Hence, only Ĩk+1 is related to yk+1, the next waypoint of UAV. To directly compute Ĩk+1,
the Jacobian matrix of the measurement with respect to the predicted target position vector
can be computed as:

H̃k+1 =

 ∂γ
∂xg,k+1|k

∂γ
∂yg,k+1|k

∂ϑ
∂xg,k+1|k

∂ϑ
∂yg,k+1|k


=

 − rk(2)
rk(1)

2+rk(2)
2

rk(1)
rk(1)

2+rk(2)
2

− rk(3)rk(1)

‖rk‖2
√

rk(1)
2+rk(2)

2 − rk(3)rk(2)

‖rk‖2
√

rk(1)
2+rk(2)

2

 (27)

where rk = [xg,k+1|k − xu,k+1, yg,k+1|k − yu,k+1, z0 − zu,k+1]
> denotes the target pointing

vector, and rk(i) denotes the ith element of rk, i = 1, 2, 3; xg,k+1|k and yg,k+1|k denote the
position elements of the predicted state at the time step k. Then, we have:

Ĩk+1 = H̃
>
k+1R−1

k+1H̃k+1 (28)

For computation facility, the Cartesian coordinate representation can be transformed
into the spherical coordinate form. In the spherical coordinate frame, the origin is selected
as the predicted target position; then we have:

xu,k+1 = ρ cos η cos ω + xg,k+1|k
yu,k+1 = ρ cos η sin ω + yg,k+1|k
zu,k+1 = ρ sin η + z0

(29)

where (ρ, ω, η)> denotes the spherical coordinate of the UAV position; ρ, ω, and η denote
the radius, azimuth angle, and elevation angle, respectively. Substitute (29) and (27) into
(28), we have

Ĩk+1 =
1
ρ2

 sin2 ω
σ2

γ cos2 η
+ sin2 η cos2 ω

σ2
ϑ

− sin ω cos ω
σ2

γ cos2 η
+ sin2 η cos ω sin ω

σ2
ϑ

− sin ω cos ω
σ2

γ cos2 η
+ sin2 η cos ω sin ω

σ2
ϑ

cos2 ω
σ2

γ cos2 η
+ sin2 η sin2 ω

σ2
ϑ

 (30)

where σγ,σϑ denote the standard deviation of the azimuth and elevation angle, respectively.
To express the problem explicitly, a proper measure T should be selected. Different

measures will lead to different optimization criterion. The optimization criterion includes:
D-criterion, A-criterion, and E-criterion. Among them, the D-criterion leads to minimizing
the determinant of the inverse of the FIM, which actually minimizes the area of the ellipse of
uncertainty; the A-criterion results in minimizing the trace of the inverse of the FIM, which
usually minimizes the average radius of the uncertainty ellipse, and the E-criterion, which
minimizes the maximum radius of the uncertainty ellipse. Considering the optimization
effectiveness and computation complexity [1], the measure that leads to the A-criterion
was selected to optimize the next waypoint of UAV in (25).

With the above arrangements and analysis, we can achieve the following optimization
problem:

min
yk+1

trace
(

Ỹ
−1
k+1

)
s.t. Ỹk+1 = Ỹk+1|k + Ĩk+1
|ωk −ωk+1| ≤ ∆ωmax
|ηk − ηk+1| ≤ ∆ηmax
∆tvmin ≤ ‖yk+1 − yk‖ ≤ ∆tvmax
zu,k − z0 ≥ hmin ∀k =1, 2, · · ·

(31)

where the constraints have been expressed as feasible forms in the discrete measurement
case; the operator trace(·) denotes the trace operation of a matrix. The second and third
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constraints are to restrict the horizontal and vertical turn rate of the UAV; the fourth
constraint is to constrain the minimum and maximum velocity of UAV; yk is the current
position of the UAV. The optimization problem is nonconvex in general, which makes the
optimization quite sensitive to initial positions of UAV and may cause the optimizer to get
stuck in local minima if not initialized properly. However, if the initial position of UAV is
initialized with the current position yk and the interior point method is utilized to solve
the above problem, it is easy to find the global minimum solution.

Combined with the target position estimation with the UAV trajectory optimiza-
tion phases together, a simultaneous target localization and UAV trajectory optimization
procedure is presented as follows:

Step 1: Predict the information state and information matrix based on the initial state
x̂0 and covariance matrix P0 using the target motion model (9), achieving ŷ1|0,Y1|0.

Step 2: Solve the optimization problem using the interior point method based on
current UAV position y0, obtaining y1, and control the UAV to reach the indexed waypoint
y1 using the onboard control algorithm.

Step 3: Conduct observation to the target. Utilize the new measurement to correct the
predict information state and information matrix, achieving ŷ1,Y1.

Step 4: Predict the information state and information matrix based on the initial state
x̂k and covariance matrix Pk using the target motion model (9), achieving ŷk+1|k,Yk+1|k.

Step 5: Solve the optimization problem using the interior point method based on
current UAV position yk, obtaining yk+1, and controlling the UAV to reach the indexed
waypoint yk+1.

Step 6: Conduct observations on the target. Utilize the new measurement to correct
the predict information state and information matrix, achieving ŷk+1,Yk+1.

Step 7: Repeat Step 4~Step 6.
The pseudocode for the algorithm of simultaneous target localization and UAV trajec-

tory optimization algorithm is shown as Algorithm 1.

Algorithm 1: Simultaneous target localization and UAV trajectory optimization.

Input: Initial state x̂0 and covariance matrix P0; initial position of UAV y0; Process
noise covariance:
Qk; Measurement noise covariance: Rk,∀k = 0, 1, 2 . . .
Output: UAV waypoints yk, and target position estimate x̂k; ∀k = 0, 1, 2 . . .

1: ŷ0 ← P−1
0 x̂0 ; Y0 ← P−1

0 ;
2: for k = 1; k ≤ T do
3: Yk|k−1 ←

(
Φk|k−1Y−1

k−1Φ>k|k−1 + Γk|k−1QkΓ>k|k−1

)−1
;

4: Ỹk|k−1 ← Yk|k−1 ;
5: Establish the objective: Ỹk ← Ỹk|k−1 + Ĩk ;

yk← Solve the optimization problem (31) using interior points method.
6: Bk|k−1 ← Yk|k−1Φk|k−1Y−1

k ;
7: ŷk|k−1 ← Bk|k−1ŷk−1 ;
8: Ik ← H>k R−1

k Hk ;
9: Wait for a new measurement: zk;

10: ik ← H>k R−1
k zk ;

11: Ik ← H>k R−1
k Hk ;

12: Yk ← Yk|k−1 + Ik ;
13: ŷk ← ŷk|k−1 + ik ;
14: x̂k ← Y−1

k ŷk ;
15: k← k + 1 ;
16: end for

3.2.3. Generalization to Other Motion Models

Note that the above description of the simultaneous target localization and UAV
trajectory optimization was based on the assumption that the target has a constant velocity
motion mod0el. However, the above algorithm is also applicable to other motion models
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such as the constant acceleration model and constant turn motion model, which are the
most widely used motion models [28].

As different motion models of the moving target have different state transition func-
tions with the different dimensionalities of the target state vector, the target estimation
procedures are also different for different motion models. For instance, for the constant
acceleration motion model, the state transition function has the same form as (9), except that
the transition matrix and noise input matrix have different forms:

xk = Φa
k|k−1xk−1 + Γa

k|k−1va
k−1 (32)

where

Φa
k|k−1 =

 I2×2 ∆tI2×2
1
2 ∆t2I2×2

02×2 I2×2 ∆tI2×2
02×2 02×2 I2×2

 (33)

and

Γa
k|k−1 =

 1
2 ∆t2I2×2
∆tI2×2

I2×2

 (34)

denote the transition matrix and noise input matrix, respectively. Additionally, note that the
target state vector is of six dimensions, as xk = [xg,k, yg,k, vx,k, vy,k, ax,k, ay,k]

>, where the last
two elements denote the acceleration variables; and va

k−1 is noise vector of the acceleration.
Corresponding to this target motion model, the predicted information matrix involved
with the position variables can be obtained by dropping the columns and rows of order
from 3 to 6 of the full information matrix.

On the other hand, the transition matrix will be replaced with the Jacobian matrix
obtained at the previous state if the target has a constant turn motion model because the
state transition function is nonlinear. The target state also contains the turn rate of the
target compared with the constant velocity model. Hence, the position-related predicted
information matrix can be acquired by dropping the columns and rows of order from 3 to
5. The corresponding noise input matrix and noise vector is also changed according to the
constant turn model. For more details, we refer the reader to [28].

4. Simulations, Experiments and Results Analysis

To validate the localization performance obtained from the UAV trajectory optimized
by the proposed algorithm, simulations and field experiments were conducted.

4.1. Simulations

The simulations were conducted based on the full measurement of the UAV target
localization system (i.e., the measurement contains the attitude angles of the UAV and
camera). Utilizing (6), the required measurement errors of the azimuth and elevation angle
of LoS were computed. The measurement noises were both set as zero mean Gaussian, of
which the symbol (SYM) and standard deviations (STD) are listed in Table 1.

Table 1. Measurement noise setting.

Roll Angle Pitch Angle Yaw Angle Azimuth Elevation

SYM φ θ ϕ α β
STD (degree) 0.8 0.8 1.2 1 1

For the simulations, three scenarios were designed: the first scenario had with a
moving target with a constant velocity model; the second scenario had the constant turn
rate model; and the third had a constant acceleration motion model. For simplicity, the
flight heights were all fixed at 600 m.
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In the scenario with the constant velocity model, the initial point of the target was
set as the origin of Cg, the velocity was set as 25 m/s and 12 m/s in the two axes of
the horizontal plane; the initial position of the UAV was set as (−1000 m, 0 m, 600 m),
and the minimum and maximum velocity were set as 70 m/s and 100 m/s, respectively,
and the maximum turn rate was 12 degree/s. The time interval of measurement was one
second and the tracking lasts 100 s. Using the above trajectory optimization algorithm,
the trajectory result is obtained as Figure 5. To learn the relation between the target and
the optimized trajectory, the trajectory optimization result relative to the target position is
shown in Figure 5 (i.e., the optimized trajectory when treating the target position as the
origin). From the trajectory result, we can see that the optimal trajectory tends to form
circles around the target, where the target position is the circle center.
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Figure 5. Trajectory optimization result with the constant velocity motion model. (a) Absolute trajectory. (b) Relative
trajectory with target as the origin.

To illustrate the localization performance, 100 Monte Carlo trails were conducted.
The root mean squared error (RMSE) results are shown in Figure 6, where the localization
method in [1] (EKF based on stochastic model) and the method similar to the referenced
method in [17] (notated by STLUTO-IDEAL) are also presented. The two referenced
methods are also simultaneous target localization and trajectory optimization strategies,
among which the first one assumes target motion as a stochastic model, and the second
one does not take into account the process noise. In the simulations, for the first method,
the process noise covariance was set as 27.7× 27.7× I2×2 because the maximum velocity
value was 27.7m/s; for the second method, the MLE was used to estimate the target
position. From the comparison, we could see that the simultaneous target localization and
UAV trajectory optimization based EIF (notated by STLUTO-EIF) had overall lower errors
than the two referenced methods. The method of EKF based on the stochastic model had
an obviously large error than the other two methods, of which the localization error tended
to diverge at t ≈ 45 s. The underlying reason is that the EKF-based method predicts the
position badly using the stochastic model. The method without considering the process
noise had an obvious better performance than the EKF-based method, but it has a large
error than the proposed method. This shows that the consideration of process noise can
improve the effectiveness of the optimized trajectory of the UAV.
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Figure 6. Root mean squared error (RMSE) errors of target localization for the moving target with
constant velocity.

For the second scenario, the target motion model was changed accordingly. The initial-
izations of the target state and UAV, and the constraints settings were the same as scenario
1; the turn rate of the target was set as 2 degree/s. The trajectory optimization result is
shown in Figure 7.
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target as the origin.

From the optimized trajectory, we can see that similar to the constant velocity scenario,
the optimized trajectory of UAV tends to form a circle around the target with the target as
the center. The comparison of localization performances for the proposed method and the
referenced method is shown in Figure 8. We can see that the optimized trajectory by the
proposed method in this paper can still achieve a better localization performance than that
of the referenced methods.
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Figure 8. RMSE errors of target localization for the moving target with constant turn rate.

In the scenario with the constant acceleration motion model, the initializations and
constraints were the same as the above scenarios; and the acceleration of the target were set
as 0.135m/s2, 0.260 m/s2 in the Xg, Yg directions, respectively. The trajectory optimization
result is shown in Figure 9. From the result, we can see that the optimal trajectory was
similar to the other two scenarios. The localization performance is shown in Figure 10.
The RMSE comparisons of the proposed method and the referenced methods showed that
using the predicted information matrix could also better predict the target position and
improve the effectiveness of the trajectory for minimizing the localization uncertainty of
the target with an acceleration motion model.
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All three simulation results coincided with the phenomenon that the optimal path
for a moving sensor to maximize a stationary target’s observability is a circle around it.
Furthermore, how large the circle is determined by the UAV’s limit and the UAV’s allowable
turn rate, which is essentially determined by the UAV’s acceleration. In fact, the circle
around the target exists because the allowable minimum speed is not zero. According to
the simulation setting where the relative UAV height from the target is known, the optimal
position to minimize the target position estimate uncertainty is just above the target location.
The algorithm always tries to find a waypoint nearest to the target at each optimization
step while satisfying the UAV maneuverability requirement.
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From the simulation results, it can be seen that the simultaneous target localization
and UAV trajectory optimization algorithm based on EIF is applicable to the common
motion models, and can achieve an obvious improvement on the localization performance
compared with the existing methods. The underlying reason includes two aspects. First,
the proposed algorithm exploits the EIF to consistently estimate the target state by pre-
dicting the target state based on the target dynamic model with the previous states and
correcting it with the latest obtained measurement. Second, the consistent estimate of
the target position was utilized to optimize the next UAV’s waypoint, which makes the
waypoint more effective for suppressing the target estimate uncertainty. However, the other
two methods, which either use the stochastic model or cannot consistently estimate the
target state, are likely to degrade the localization performance.

4.2. Field Experiment

To validate the effectiveness of the proposed method in the field applications, field
experiments were conducted in this subsection. The platform we used was the DJI M100,
a platform for developers as shown in Figure 11, which was modified to output the attitude
angles of the camera, but the precision of the camera attitude was low with a standard
deviation of about 5 degrees. The onboard IMU can output the UAV attitude angles with
error levels ranging from 1 degree to 5 degrees, and we assumed them as zero mean
Gaussian noises, for which the standard deviations are shown in Table 2.
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Table 2. Measurement noise setting.

Roll Angle Pitch Angle Yaw Angle Azimuth Elevation

SYM φ θ ϕ α β
STD (degree) 1.5 1.5 2 5 5

The target-tracking video algorithm, which can detect and track a pre-specified target
was incorporated into the main board of the UAV. The optimized waypoints for UAV
were generated by the proposed method, which were then the input index for the internal
control algorithm and linear model predictive control (LMPC) algorithm [29]. The control
algorithm, together with the information of the current UAV state, was responsible for
controlling the UAV to arrive the index point.

We designed the experiment to track and localize an outdoor car, as shown in Figure
12. The car performed an approximately constant velocity motion (5 m/s along the Xg

direction), and the covariance for the process noise were set as I2×2 (i.e., the motion
uncertainty in each direction was set as 1 m; the flight altitude is set as about 100 m;
UAV had the initial position as (0 m, 100 m, 100 m)). According to the constraints of
UAV motion, the experiments were conducted in two scenarios. The first scenario was
with the UAV minimum and maximum velocities set as 0 m/s and 9 m/s, respectively;
the second scenario was with the UAV minimum and maximum velocity set as 5 m/s and
9 m/s, respectively.Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 23 
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Figure 12. Tracking and localization of a car.

In each iteration, after the optimized waypoint is computed, the onboard control
algorithm guided the UAV to the indexed waypoint. Therefore, we achieved the actual
UAV trajectory result, but not the planned trajectory. The actual trajectory results were
obtained as Figure 13a,b. Figure 14 is the relative trajectory result for the scenario with
the minimum velocity of 5 m/s, and as the relative trajectory of Figure 13a is trivial, it
was neglected. From Figure 13a, we can see that the optimized trajectory nearly coincided
with the car trajectory in the horizontal plane in the scenario with the zero minimum
velocity constraint. The underlying reason is that the allowable minimum velocity is 0,
and the optimal waypoint above the target location can be retained. Figures 13b and 14
show that after being imposed, the nonzero minimum velocity constraint and the relative
UAV trajectory still tends to circle the target at a constant height, but the circle was not
standard, and instead, the UAV hovered along the Y direction. The difference between the
field test results and the simulation results can be explained as follows. In the field test,
the resulting UAV waypoints, which are the direct consequence of the LMPC algorithm,
are not the output from the waypoint optimization algorithm. Hence, the trajectory result
also contains imperfections or the influence of the control algorithm. In the simulation
examples, the UAV waypoints were all the direct outputs of the trajectory optimization
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algorithm, and thus the waypoints are the result under the ideal condition. Note also that
the error levels were significantly large in the field experiment, but it did not influence the
result much because the flight height was relatively low, and it did not cause a divergence
error. Despite the difference, the test results roughly showed the trajectory optimization
performance on the whole. The UAV tended to follow the target as quickly as possible
and as near as possible to the target, which essentially attempts to minimize the target
localization uncertainty.
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Figure 14. Relative trajectory result for the scenario with a minimum velocity of 5 m/s.

To validate the localization performance, the actual positions of the car were measured
using the RTK-GPS. We repeated the experiment 10 times to compute the RMSE, and the
results are shown in Figure 15. In the figures, the localization results of the referenced
methods are also presented. From the results, we can see that for the scenario with
the minimum zero velocity constraint, the method proposed in this paper was slightly
better than the second referenced method, and the EKF-based method was also slightly
worse than the other two methods, which was, interestingly, different from the simulation
scenario. As the target had a slow speed, the EKF-based method can track and localize
it robustly, which is different from the simulation scenarios where the target has a fast
speed, which is likely to cause a divergence error. However, for the scenario with a
nonzero minimum velocity constraint, the localization performance was obviously better
than the referenced methods, which coincided with simulation results. Through the field
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experiments, we confirmed that the proposed method outperformed the existing similar
methods, and are also applicable to engineering applications.
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5. Conclusions

This paper presents a closed-form method for simultaneous target localization and the
UAV trajectory optimization problem. While decoupling the problem of target localization
from the UAV trajectory optimization in the discrete measurement case, the proposed
method uses the predicted target state and the corresponding FIM to establish the trajectory
optimization objective, which can not only better estimate the target position, but also take
the process noise in the target motion model into consideration. Eventually, the optimized
trajectory becomes more effective than existing methods of the same class. Solving the
objective, the resulting optimized UAV waypoint can be the index point for minimizing the
target localization uncertainty in practical engineering applications. In both the simulation
examples and field experiments, we have confirmed the analytical findings. Although the
field test was conducted on the quadrotor UAV based on the bearing measurement model
with the flight height already known, the proposed method was also applicable to the fixed-
wing UAV, which often has a nonzero minimum velocity, with other measurement models,
for instance, the bearing-distance measurement model and the bearing-only measurement
model without any prior information available. However, successful tracking and localizing
to the moving target for the bearing-only measurement model require that the UAV has
a special maneuverability. Hence, our algorithm has a certain engineering significance.
However, the proposed algorithm also has its limitations, as the algorithm can only track
and localize the target with a known motion model. Our future research will focus on
simultaneous target localization and UAV trajectory optimization for the target with an
unknown motion model and multiple targets with known motion models with multiple
UAVs to extend this work.
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