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Abstract: As a kind of promising optoelectrical material, all-inorganic perovskite nanocrystals CsPbX3

(X = Cl, Br, I) have attracted much attention, due to their excellent optoelectrical characteristics,
in recent years. However, their synthesis approaches require rigorous conditions, including high
temperature, eco-unfriendly solvent or complex post-synthesis process. Herein, to overcome these
issues, we reported a novel facile room temperature in-situ strategy using ultraviolet polymerizable
acrylic monomer as solvent to synthesis CsPbX3 nanocrystals without a complex post-synthesis
process. In this strategy, adequate soluble precursors of Cs, Pb and Br and reaction terminating agent
3-aminopropyltriethoxysilane (APTES) were used. The obtained CsPbBr3 nanocrystals showed a
high photoluminescence quantum yields (PLQY) of 87.5%. The corresponding polymer composites,
by adding light initiator and oligomer under ultraviolet light radiation, performed excellent stability
in light, air, moisture and high temperature. The reaction process and the effect of the reaction
terminating agent have been investigated in detail. This strategy is a universal one for synthesizing
CsPbX3 nanocrystals covering visible light range by introducing HCl and ZnI2.

Keywords: perovskite nanocrystals; acrylic monomers; in-situ synthesis

1. Introduction

In recent years, inorganic lead halide perovskite CsPbX3 (X = Cl, Br, I) nanocrystals have drawn
attention because of their potential applications in light emitting diodes (LEDs), solar cells, lasers,
fluorescent probes, display backlights et al. [1–13], owing to their excellent optoelectrical properties [1–3],
such as high photoluminescence quantum yield (PLQY), tunable emission spectra over the whole
visible spectrum (400–700 nm), relatively narrow full width at half maximum (FWHM) (12–42 nm),
facile solution synthetic process and low cost [4,14,15].

At present, many synthetic approaches have emerged to prepare the high performance of
perovskite nanocrystals (PNCs) and their composites, including hot injection [4], supersaturated
recrystallization [15], top-down [16], mechanochemistry [17], in-situ synthesis [18], microwave
assistant [19], volatilization of solvent [20], etc. However, high temperature, gas protection,
eco-unfriendly solvent and other conditions required by these methods lead to difficulty for mass
production [4,12]. For instance, the employed solvents include N, N-dimethylformamide (DMF) [2],
toluene [15], 1-Octadecene (ODE) [21] and dimethyl sulfoxide (DMSO) [22], because of the need to
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dissolve Cs, Pb and halogen precursors. To solve this problem, many researchers have devoted time
to exploring an eco-friendly and cost-effective strategy, such as aqueous or alcohol synthesis [23–27].
Recently, Li et al. firstly achieved direct synthesis of CsPbBr3 nanorods via tip ultrasonication by using
a series of short chain alcohols, except for ethanol [28], offering a novel synthetic strategy in polar
solvent. Nevertheless, this strategy still needs post-synthesis treatment and redispersion in toluene.

Many efforts have been devoted into the color-conversion perovskite nanocrystals-polymer
composite film applied in liquid crystal display backlight in recent years. One typical strategy is
to blend perovskite nanocrystals sols synthesized via different approaches with polymer, then the
composite film can be obtained by solvent volatilization. The mixing of perovskite nanocrystals with
polymers often causes a predictable agglomeration of nanocrystals, due to the large difference in polarity
between perovskite nanocrystals and polymers [29]. To avoid the aggregation of perovskite nanocrystals
in polymers, an in-situ synthetic strategy, which firstly adopts an appropriate solvent to dissolve Cs,
Pb, Br sources and polymer, and then follows a solvent volatilization process, has been reported [14,30].
For instance, Zhong et al. reported an in-situ synthesis of perovskite nanocrystals-polyvinylidene
fluoride (PVDF) composite film by employing DMF as solvent of CsBr, PbBr2 and PVDF [14]. Chen et al.
realized an in-situ large-scale continuous production of PNCs embedded in polymethyl methacrylate
(PMMA) via microfluidic spinning microreactors, by using chloroform as solvent and Cs-oleate,
Pb-oleate and tetraoctylammonium bromide as precursors [30]. Dong et al. developed an in situ
polymer swelling/deswelling strategy to fabricate MAPbBr3/polystyrene and MAPbBr3/polycarbonate
composite films [31]. Moreover, these hydrophobic polymers tend to form a coherent barrier layer
around perovskite nanocrystals, remarkably enhancing the stability of perovskite nanocrystals against
moisture and oxygen. However, these approaches still inevitably employ eco-unfriendly solvent.
Recently, Tong et al. developed a modified hot-injection synthesis of CsPbBr3 nanocrystals by using
ultraviolet (UV)-polymerizable lauryl methacrylate (LMA) as a solvent, which effectively diminished
the use of consumptive solvent, opening a new window to synthesize CsPbX3 polymer composite
films [29]. Regretfully, this strategy still needs high reaction temperature (180 ◦C) and an ice bath to
terminate the reaction.

Herein, we developed a facile in-situ one-pot synthesis of CsPbX3 nanocrystals using acrylic
monomer as solvent at room temperature. Unlike the high temperature hot-injection method in a kind
of solvent [4] and the supersaturated recrystallization method using two kinds of solvent [15], two key
points have to be considered before the synthesis of CsPbX3 nanocrystals in a kind of solvent at room
temperature. On one hand, adequate soluble precursors of Cs, Pb and Br should be included in the
solvent. On the other hand, the growth of perovskite crystals owing to the desorption of conventional
ligands, such as oleylammonium and oleic acid, should be restricted [32]. Therefore, in this work,
we employed Cs oleate, Pb oleate and tetraoctylammonium bromide as precursors, because of their
high enough solubility in acrylic monomer. In addition, we introduced APTES as ligands to restrict
the crystal growth of CsPbX3 nanocrystals, due to the strong chemical interaction between the -NH2

group and CsPbX3 [33–36]. APTES, which usually acts as the precursors of SiO2 coating [37,38], and
also avoids the desorption of ligands, owing to the cross-linking Si-O-Si network around CsPbX3 by
hydrolysis condensation. The synthesis of CsPbBr3 nanocrystals showed a high PLQY of 87.5%, as well
as excellent stability for corresponding film in light, air, moisture and high temperature. The present
strategy has the following advantages: (1) direct one-pot synthesis of CsPbX3 sol at room temperature
without complex post-synthesis process, such as purification, centrifuge and redispersion; (2) easy for
mass production even fabrication online for film by an ultraviolet (UV) curing technology; (3) uniformly
distributed CsPbBr3 nanocrystals within the polymer matrix, compared to the inevitable aggregation
in blending method. Moreover, this strategy can be expanded to the synthesis of red (CsPbI3) and blue
(CsPbCl3) nanocrystals by introducing an appropriate amount of ZnI2 and HCl, respectively.
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2. Experiment

2.1. Materials

All raw materials, including Cesium carbonate (Cs2CO3, 99.9%,), lead oxide (PbO,
99.0%), oleic acid (OA, 90%), ethanol (EtOH,), tetraoctylammonium bromide (TOAB, 98%),
2-hydroxy-2-methylpropiophenone (C10H12O2, 97%), isobornyl methacrylate (IBOMA, AR), isobornyl
acrylate (IBOA, AR), lauryl methacrylate (LMA, AR), methyl mtethacrylate (MMA, AR),
3-aminopropyltriethoxysilane (APTES, 99.0%), hydrogen chloride (HCl, 99.0%) and zinc iodide
(ZnI2, 99.0%), were purchased from Sigma-Aldrich (Sigma-Aldrich Company, Shanghai, China) and
used directly without further purification.

2.2. Synthesis of CsPbBr3 Sol/Composites

Cs2CO3 (0.5 mmol, Aldrich, 99.9%), PbO (1 mmol, Aldrich, 99.0%), OA (2.5 mL, Sigma-Aldrich,
90%) and acrylic monomers (IBOMA/IBOA/LMA/MMA, 45 mL) were added into a 100 mL 3-neck
flask and then heated to 75 ◦C. After fully reacting, the solution was cooled to room-temperature for
preparing CsPbBr3 nanocrystals.

Acrylic monomers (IBOMA/IBOA/LMA/MMA, 20 mL), OA (1 mL) and TOAB (0.3 mmol) were
added into a 100 mL beaker to obtain a TOAB solution. The TOAB solution was swiftly injected into
above prepared Cs-oleate and Pb-oleate solution (5 mL) and 60 s later APTES (0.3 mmol) was injected.
It was stirred for 4 h in air and then preserved in the reagent bottle for further use.

For the preparation of block, blended 25 mL CsPbBr3 solution (prepared in IBOMA) with light
initiator 2-hydroxy-2-methyl-1-acetone (0.58 g) and then added them into a 50 mL beaker. After stirred
for 5 min, the solution was poured into a template and then cured by a 395 nm UV lamp. The thickness
of the block can be changed according to depth of the template. For the preparation of film, 25 mL
CsPbBr3 solution (prepared in IBOMA), 0.58 g light initiator 2-hydroxy-2-methyl-1-acetone and 75 g
oligomer have been used.

2.3. Anion-Exchange Process

Certain amounts of HCl or ZnI2 (Table 1) as the anion source were mixed with IBOMA (10 mL) in
a beaker, and stirred until they were dissolved completely. When TOAB-IBOMA solution was injected
into the Cs-oleate and Pb-oleate IBOMA solution, the CsPbBr3 nanocrystals were obtained, and the
sol showed bright green under the ultraviolet light (395 nm). The HCl/ZnI2-IBOMA solution was
added into CsPbBr3 sol, and 60 s later the APTES (0.3 mmol) was injected. After stirring for 4 h in air,
the anion-exchanged samples were obtained.

Table 1. Preparation data of CsPbX3 (X = Cl, Br, I) nanocrystals samples.

Cl:Br

Ratio 1.2 1.0 0.8 0.65 0.5 0.35 0
HCL (µL) 31.5 27 22.5 18 13.5 9 0

I:Br

Ratio 0 0.35 0.5 0.65 0.8 1.0 1.2
ZnI2 (g) 0 0.016 0.024 0.032 0.04 0.048 0.056

2.4. Characterization Methods

UV-VIS absorption spectra were collected using a 950 UV-Visible Spectrophotometer (Shimadzu
Corporation, Kyoto, Japan) with absorption mode. Photoluminescence (PL) spectra were measured
by a Fluorolog-3-P UV-VIS-NIR fluorescence spectrophotometer (Jobin Yvon, Longjumeau, France)
with a 450 W Xe lamp as the excitation source. PLQY was estimated according to standard procedure,
using Rhodamine B (95% of the yield in ethanol) as reference. For samples and rhodamine ethanol
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solution, an excitation wavelength of 450 nm was used. Powder X-ray diffraction (XRD) patterns were
collected using a Bruker AXS D8 Advance diffractometer (Bruker AXS Ltd., Karlsruhe, Germany) with
a step width of 0.02◦ (Voltage 50 kV, current 40 mA, Cu-Ka). The CsPbBr3 acrylic sols (after adding
APTES) were precipitated by adding 1-butyllactone, and then centrifuged in a centrifuge for 10 min
(10,000 r/min). The precipitate was freeze-dried and ground to produce the yellow powder samples
for XRD test. The morphology and particles size of the samples were examined by a JEM-2100 (JEOL
Ltd.,Tokyo, Japan) transmission electron microscopy (TEM). High-resolution TEM (HRTEM) images
were recorded using a JEOL JEM-2100 microscope (JEOL Ltd., Tokyo, Japan) operated at 200 kV. After
adding 2-hydroxy-2-methylpropiophenone (0.58 g) as a photoinitiator, CsPbBr3 blocks were prepared
via an ultraviaolet polymerization method. The CsPbBr3 composite sample for TEM measurement was
obtained by means of ultrathin frozen section. Fourier transform infrared (FTIR) spectra in the region
of 400~4000 cm−1 were recorded on a Thermo Fisher Scientific Nicolet 6700 Spectrometer (Thermo
Nicolet Corporation, Basingstoke, United Kindom) by pressing the mixture of the powder sample
(obtained after centrifugation and freeze-drying) and KBr to a sheet.

3. Results and Discussion

As schematically shown in Figure 1a, the synthetic process was performed in two steps: the
formation of CsPbBr3 nanocrystals and size controlling by adding APTES. Details of the process have
been described in the Experimental section. The sol sample showed bright green under the ultraviolet
light (395 nm) (Figure 1c), and CsPbBr3 nanocrystals/polyarcylic composites can be prepared via an
ultraviaolet polymerization method (Figure 1b,c).
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Figure 1. (a) In-situ one-step synthesis process of CsPbBr3 nanocrystals sol; (b) preparation of solid
CsPbBr3 nanocrystals composites; (c) nanocrystals sol, blocks and films.

Figure 2a shows the absorption and fluorescence spectra of CsPbBr3 nanocrystals prepared in
IBOMA. An emission peak at 510 nm was observed, and the corresponding absorption peak located at
485 nm. According to the formula proposed by Tauc and Mott, the calculated bandgap of as-prepared
CsPbBr3 nanocrystals is 2.25 eV [39,40]. However, red shift can be observed in the emission spectra
of CsPbBr3 prepared in other three acrylic monomers, indicating the particle size increasing [41]
(Figure S1 in Supplementary Materials). It was noted that the PLQY of CsPbBr3 nanocrystals prepared
in IBOMA reached 87.5%, much higher than the samples prepared in other acrylic monomers (Table S1
in Supplementary Materials). In order to study the crystal structure of the samples, the XRD patterns of
CsPbBr3 powder samples are shown in Figure 2b and Figure S1, and CsPbBr3 nanocrystals possessing
a cubic structure (PDF # 54-0752) were synthesized in IBOMA. However, a small impurity peak
(Figure S1) identified as PbBr2 existing in the pattern of CsPbBr3 nanocrystals synthesized in IBOA.
The XRD results demonstrated that cubic CsPbBr3 nanocrystals can be synthesized at room temperature
by this method.
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Figure 2. (a) Photoluminescence (PL) (dark dash) and absorption (red line) spectra, and; (b) X-ray
diffraction (XRD) pattern of CsPbBr3 nanocrystals synthesized in isobornyl methacrylate (IBOMA).

TEM images of the as-synthesized CsPbBr3 nanocrystals are shown in Figure 3. Compared to
other three samples (Figure S2 in Supplementary Materials), CsPbBr3 synthesized in IBOMA (Figure 3a)
has a smaller particle size about 8.4 ± 1.3 nm (Figure 3b). The HRTEM image (Figure 3c) reveals high
crystallinity with a lattice spacing of 0.295 nm, which fits well with the (200) plane of cubic CsPbBr3.
According to the TEM results and the PLQY performance, CsPbBr3-IBOMA sol has been used for the
subsequent studies and tests.
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resolution TEM (HRTEM) with crystalline interplanar spacing of CsPbBr3 nanocrystals in IBOMA.

The CsPbBr3-IBOMA nanocrystals sol exhibited excellent stability. After being placed in air
without any protection for 2 weeks, the particle size remained nearly unchanged (Figure 4a), which
was attributed to the capping of hydrolyzed APTES ligand [32]. APTES hydrolyzes on the surface of
nanocrystals, forming a network structure to prevent the desorption of ligands and to subsequently
prohibit size increases, which enhanced the stability of nanocrystals [37,42]. To further prove the effect
of APTES, CsPbBr3-IBOMA nanocrystals without APTES were synthesized, and their morphology
and size were determined by TEM (Figure 4b). The size (45.7 ± 7.7 nm) was obviously larger than the
sample using APTES (8.4 ± 1.3 nm). The reaction with and without APTES revealed a large difference
(Video S1). Because of unrestricted increasing of particle size, the APTES-free sample rapidly turned
to yellow after mixing two precursors, and finally the sample subsided [43]. Meanwhile, the sample
with APTES remained unchanged and no aggregation was observed, suggesting that the addition
of APTES effectively prevents the size increasing of CsPbBr3 nanocrystals. FTIR spectrum was used
to demonstrate the capping of APTES, as shown in Figure 4c, in which it exists a N-H vibration
absorption peak at 3448 cm−1, originating from the -NH2 group of APTES. The peak at 948 cm−1 was
ascribed to the vibration absorption of the -Si-OH group of hydrolyzed APTES. The peak at 1125 cm−1

originated from the vibration absorption of the -Si-O-Si- group, owing to the hydrolysis condensation
between the -Si-OH groups or the -Si-OH and -SiOC2H5 groups [37]. Therefore, the mechanism of
CsPbBr3 nanocrystals with APTES can be summarized as follows: the polar -NH2 group of APTES
closely connects to CsPbBr3 nanocrystals and three ethoxyl siloxane groups hydrolyze to form -Si-OH,
following a dehydration process between the -SiOH groups or -SiOH and -SiOC2H5, resulting in the
formation of an Si-O-Si cross-linking network structure (Figure 4d). In the whole process, a small
amount of water in air and solvent advanced the hydrolysis reaction slowly [44].
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The present strategy can be expanded to synthesize blue and red emission CsPbX3 by adding HCl
or ZnI2 to adjust the ratio of halide ions. Details of the process have been described in the Experimental
section. The XRD patterns of the CsPbBr3 nanocrystals and anion-exchanged samples showed the
retention of cubic perovskite structure, and the shift of the XRD reflections was observed due to the
difference of anion radius (Figure S3 in Supplementary Materials). Their PL spectra were adjustable
from 430 to 620 nm (Figure S4 in Supplementary Materials) with narrow FWHM (10−40 nm), indicating
this is a universal strategy.

It is well known that the high sensitivity to the oxygen, moisture, light and temperature etc.
leads to the poor stability of perovskites nanocrystals [13,45,46]. In order to enhance the stability for
further application, in previous work, CsPbBr3 nanocrystals were often combined with polymer by
complicated processing [12]. Herein, by a facile UV curing process, CsPbBr3-IBOMA sol, can be cured
directly into various shapes, because of the polymerization of the IBOMA monomer. The morphology
of the CsPbBr3 nanocrystals block sample was studied by TEM. As shown in Figure 5a, the CsPbBr3

nanocrystals were uniformly distributed in the polymer matrix without phase separation or aggregation
as expected, owing to the in-situ method. The particle size (11.6 ± 2.2 nm) showed a slight increase
compared with the sample before curing, because of the UV irradiation [47]. Furthermore, the emission
spectrum was also unchanged, and only the emission intensity slightly reduced (Figure 5b), suggesting
that the polymerization process of IBOMA does not affect the performance of nanocrystals.Appl. Sci. 2020, 10, x 7 of 11 
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High stability is very crucial for the practical application of CsPbBr3 nanocrystals. Therefore, the
light, air, moisture and thermal stability of as-synthesized nanocrystals were investigated. The PL
spectra of the CsPbBr3-IBOMA block sample was measured at 5 h intervals under continuous irradiation
with 395 nm UV LEDs (3W). As shown in Figure 6a, the shape and peak position of the emission spectra
did not change significantly with the increase of irradiation time, indicating that the particle size of
CsPbBr3 nanocrystals was not affected by UV irradiation. However, the luminous intensity of the
sample showed a decreasing trend (Figure 6b). It increased in the initial 10 h, and then went through
slight decreasing. Finally, it decreased only by 9.7%, to 0.903 after 70 h. The results exhibited the
excellent light stability of CsPbBr3 nanocrystals, due to the encapsulation of IBOMA and the coating
of APTES.Appl. Sci. 2020, 10, x 8 of 11 
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Figure 6. PL spectra and intensity attenuation of CsPbBr3-IBOMA block sample (a,b) at 5 h intervals
under 395 nm UV LEDs; (c,d) in air at 4-day intervals; (e,f) in water at 15 h intervals. (All samples were
excitated under 395 nm light).

To explore the stability in air, the CsPbBr3-IBOMA nanocrystals block sample was placed in the
air without any protection and the emission spectrum was measured every 4 days under laboratory
conditions (K = 298 K, 57% RH). The emission peak of the CsPbBr3 sample kept at about 510 nm steadily
without any shift (Figure 6c), indicating unchanged particle size. In addition, the fluorescence intensity
maintained a high level of 89.5% at 30 days (Figure 6d), compared with the previous work [48].

To evaluate the water and thermal stability of CsPbBr3 nanocrystals, we kept the CsPbBr3-IBOMA
nanocrystals block sample immersed in water and heated to 348.15 K. The fluorescence intensity of the
emission spectrum was tested at 15 h intervals. As shown in Figure 6e, the emission spectra shape and
peak position of the sample nearly did not change, while the luminous intensity decreased gradually
(Figure 6f). Within the initial 15 h, it went through a slight rise and then decreased slowly. Finally, after
135 h, the luminous intensity reached 75.6%. The result is comparable with previous reported CsPbBr3

nanocrystals [29].
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4. Conclusions

In summary, we have introduced a controllable one step in-situ preparation method at room
temperature in acrylic monomer. The cubic phase CsPbBr3 nanocrystals with outstanding luminous
performance have been successfully synthesized. The photoluminescence quantum yield is up to
87.5%. Isobornyl methacrylate as solvent can be cured directly by ultraviolet light to form transparent
solid materials, such as block and film. In this way, not only can a large amount of organic waste
liquid be avoided, but also the acrylic polymer encapsulates the nanocrystals and limits further growth.
The CsPbBr3-IBOMA nanocrystals block showed great stability under the conditions of air, continuous
irradiation and water. In addition, the ligands APTES adsorbing on the surface of CsPbBr3 nanocrystals
effectively controlled its particle size at 8.4 ± 1.3 nm, which ensured its excellent luminous performance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/9/3325/s1,
Figure S1. (a) PL and Abs spectra and (b) XRD patterns of CsPbBr3 nanocrystals synthesized in different acrylic
monomers, Table S1. Photoluminescence quantum yield of CsPbBr3 in different acrylic monomers, Figure S2.
TEM images of nanocrystals synthesized (a) in IBOA (61.5 ± 5.8 nm), (b) in MMA (40.5 ± 8.6 nm), (c) in LMA
(15.2 ± 1.8 nm), Figure S3. XRD patterns of the CsPbBr3 nanocrystals and anion-exchanged samples, Figure S4.
Emission spectra of CsPbX3 (X = Cl, Br, I) nanocrystals, Figure S5. Photograph of perovskite CsPbX3 (X = Cl, Br, I)
nanocrystals. Video S1: comparison between samples with and without APTES.

Author Contributions: L.Z. prepared the samples and wrote this manuscript. J.C., C.L. and L.C. processed and
analyzed the signal data. S.Y., H.T., H.Z., and Q.C. conceived the research and provided many suggestions for the
research method and revised the article completely. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.
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