
applied  
sciences

Article

Impact of Heart Rate Fragmentation on the
Assessment of Heart Rate Variability †

Junichiro Hayano 1,* , Masaya Kisohara 1, Norihiro Ueda 1 and Emi Yuda 2

1 Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan;
c181713@ed.nagoya-cu.ac.jp (M.K.); nueda@med.nagoya-cu.ac.jp (N.U.)

2 Graduate School of Engineering, Tohoku University, Miyagi 980-8577, Japan; yuda@ieee.org
* Correspondence: hayano@acm.org; Tel.: +81-52-853-8502
† This paper is an extended version of paper published in 2019 IEEE International Conference on Consumer

Electronics-Taiwan (ICCE-TW), held on 20–22 May 2019, in Yilan, Taiwan.

Received: 19 April 2020; Accepted: 6 May 2020; Published: 10 May 2020
����������
�������

Abstract: Heart rate fragmentation (HRF) is a type of sinoatrial instability characterized by frequent
(often every beat) appearance of inflection in the R-R interval time series, despite the electrocardiograms
appearing to be sinus rhythm. Because the assessment of parasympathetic function by heart
rate variability (HRV) analysis depends on the assumption that the high-frequency component
(HF, 0.15–0.4 Hz) of HRV is mediated solely by the cardiac parasympathetic nerve, HRF that is
measured as a part of HF power confounds the parasympathetic functional assessment by HRV.
In this study, we analyzed HRF in a 24-h electrocardiogram big data and investigated the changes in
HRF with age and sex and its influence on the assessment of HRV. We observed that HRF is often
observed during childhoods (0–20 year) and increased after 75 year, but it has a large impact on
individual differences in HF power at ages 60–90.

Keywords: electrocardiogram; heart rate; heart rate variability; heart rate fragmentation;
autonomic nervous function; bio-signal processing

1. Introduction

The analysis of heart rate variability (HRV) is widely used for assessing autonomic function.
Particularly, the high-frequency component (HF, 0.15–0.4 Hz) of HRV is currently the most popular
metric of cardiac vagal function (Figure 1). The association between HF and cardiac vagal function is
supported by the fact that respiratory sinus arrhythmia (RSA), the major source of the HF, is mediated
purely by the cardiac parasympathetic nerves [1].

However, there are two unanswered questions about HF. The first question is the paradoxically low
predictive power of HF for mortality risk after acute myocardial infarction (Figure 2) [2]. Decreased HRV
is increased mortality risk after acute myocardial infarction [3], but the predictive power of HF is lowest
among HRV frequency components. Why is the predictive power of HF such low, despite the fact that
the association of decreased HRV with mortality risk has been explained as cardiac parasympathetic
disfunction? The second question concerns the paradoxical increase in HF in the elderly (Figure 3) [4].
Cardiac parasympathetic function is believed to decrease with advancing age, but big data studies
have reported that HF power increases paradoxically and progressively from age 75. Why?
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HRV [9,10], sinus node alternans [11], erratic sinus rhythm [12,13], and heart rate fragmentation [5–
7]. HRF is a type of sinoatrial instability characterized by frequent (often every beat) appearance of 
peak and valley in R-R interval time series despite ECG appealing normal sinus rhythm (Figure 4). 

 
Figure 1. Analysis of heart rate variability (HRV) under sinus rhythm. HF = high-frequency component 
(0.15–0.4 Hz), LF = low-frequency component (0.04–0.15 Hz), PSD = power spectral density. 

 
Figure 2. Relative risk of death predicted by the decrease in HRV frequency components. L/H = LF to 
HF ratio in power, TP = total power, ULF = ultra-low-frequency component (<0.003 Hz), VLF = very-
low-frequency component (0.003–0.04 Hz). Made from Table 2 in reference [2]. 
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Figure 1. Analysis of heart rate variability (HRV) under sinus rhythm. HF = high-frequency component
(0.15–0.4 Hz), LF = low-frequency component (0.04–0.15 Hz), PSD = power spectral density.
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Figure 2. Relative risk of death predicted by the decrease in HRV frequency components. L/H = LF
to HF ratio in power, TP = total power, ULF = ultra-low-frequency component (<0.003 Hz),
VLF = very-low-frequency component (0.003–0.04 Hz). Made from Table 2 in reference [2].
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Figure 4. ECG and R-R intervals showing heart rate fragmentation (HRF). Although ECGs look like 
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Because the assessment of parasympathetic function by HRV depends on the assumption that 
RSA is only source of the HF, HRF that is measured as a part of HF confounds the parasympathetic 
functional assessment by HRV (Figure 5). However, neither the factors affecting the occurrence of HRF 
nor the degree of its impact on the HF power has been clarified. In this study, we analyzed the age and 
sex dependency of the occurrence of HRF and the degree of the influence on HRV metrics using 24-h 
ECG big data of the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) [4,14,15].  

Figure 3. Age-dependent changes in HRV frequency components. Made from data from a previous
study [4].

An answer to these questions may be the influence of heart rate fragmentation (HRF) [5–7].
While other HRV components are mediated by fluctuations in autonomic activity, HRF is thought to be
a heart rate fluctuation intrinsic to the heart itself [8]. They usually appear in or above the HF band.
This phenomenon has been known for a long time and called with several terms including complex
HRV [9,10], sinus node alternans [11], erratic sinus rhythm [12,13], and heart rate fragmentation [5–7].
HRF is a type of sinoatrial instability characterized by frequent (often every beat) appearance of peak
and valley in R-R interval time series despite ECG appealing normal sinus rhythm (Figure 4).
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Figure 4. ECG and R-R intervals showing heart rate fragmentation (HRF). Although ECGs look like
sinus rhythm (upper and middle panels), R-R interval trend gram shows periodic dip (lower panel).

Because the assessment of parasympathetic function by HRV depends on the assumption that
RSA is only source of the HF, HRF that is measured as a part of HF confounds the parasympathetic
functional assessment by HRV (Figure 5). However, neither the factors affecting the occurrence of HRF
nor the degree of its impact on the HF power has been clarified. In this study, we analyzed the age and
sex dependency of the occurrence of HRF and the degree of the influence on HRV metrics using 24-h
ECG big data of the Allostatic State Mapping by Ambulatory ECG Repository (ALLSTAR) [4,14,15].
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Figure 5. R-R interval trend grams and power spectrum of the same case as Figure 4. HRF causes
frequent inflection points in R-R interval (upper panel) and forms a spectral peak often in HF band
(lower panel).

2. Methods

This study was performed according to the protocol that has been approved by the Ethics Review
Committee of Nagoya City University Graduate School of Medical Sciences and Nagoya City University
Hospital (No. 709).

2.1. ECG Data Base

We used the ALLSTAR Holter electrocardiogram (ECG) database [2,13]. From this database,
the data used for the present study were extracted as follows. The ALLSTAR database included
430,169 data of 24-h Holter ECG data recorded between November 2007 and February 2016, from which
the candidate ECG data were selected by the following inclusion criteria:

(1) Record length >21.6 h (90% of 24 h).
(2) Cardiac rhythm is in sinus rhythm for >19.2 h (80% of 24 h).

ECG data were excluded from the analysis if ECG showed at least one of the followings:

(1) Evidence of artificial pacemaker implantation
(2) Ventricular or supraventricular ectopic beats >3000 per 24 h
(3) Atrial fibrillation for >10% of recorded beats
(4) Atrial flutter for >10% of recorded beats
(5) ST-T abnormality suggesting myocardial ischemia

Among 430,169 data, 294,323 data (73.4%) of 24-h R-R interval time series were extracted by these
criteria. From these data, 3917 data were randomly selected (up to 100 data per every 5 year old from
ages 0 to 100 for each sex) for the present study by the Survey Select procedure of Statistical Analysis
System (SAS Institute, Cary, NC, USA).
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2.2. Data Analysis

We analyzed the conventional time- and frequency-domain HRV metrics according to the
recommended standard [3] using custom-made software validated with simulated R-R interval data
including HRV components of known amplitude and frequency. Briefly, from the ECG data, the time
series of NN intervals, {NNi} = {tNi − tNi−1}, where tNi represents the time of occurrence of the ith

normal sinus beat were derived. Mean HR was calculated from the average of NNi over 24 h. For the
time domain HRV metrics, SDNN was computed as 24 h standard deviation of NNi, rMSSD as the root
of mean square of successive difference of NNi. For the frequency domain metrics, {NNi} time series
were interpolated by a horizontal step function, resampled at 2 Hz, filtered with a Hanning window,
and converted into frequency domain by Fast Fourie transformations (FFT). The power spectral density
was integrated for the power within ultra-low frequency (ULF, <0.0033 Hz), very-low frequency
(VLF, 0.0033–0.04 Hz), low frequency (LF, 0.04–0.15 Hz), and high frequency (HF, 0.15–0.40 Hz) bands,
respectively. The power of ULF, VLF, LF, and HF was transformed into natural logarithmic values to
normalize the distributions.

We also calculate LF/HF as LF-to-HF power ratio. Additionally, we calculated the power of
very-high frequency component (VHF, 0.4–1.0 Hz) to detect high frequency HRF such as the alternation
of NN interval every beat.

As the indicator of HRF, we calculated the percentage of inflection points (PIP) [5] and the
distributions of the symbolic dynamical patterns (words) of NN interval sequence [6]. First, from the
{NNi}, the time series of the differences between consecutive NN intervals, {∆NNi} = {NNi −NNi−1},
were derived. Second, {∆NNi} were converted into a ternary symbolic sequence as follows:
“A” (acceleration) if ∆NNi ≤ −8 ms, “N” (no change) if −8 ms < ∆NNi < 8 ms, and “D” (deceleration) if
∆NNi ≥ 8 ms, where ± 8 ms was used for threshold taking 125 Hz sampling frequency of the Holter
ECG into consideration (1000 ms/125 Hz = 8 ms). Third, the hard inflection point was defined as the
point where ∆NNi changed from “A” to “D”, or “D” to “A”. The soft inflection point was defined
as the point where ∆NNi changed from “N” to “A”, “N” to “D”, “A” to “N”, or “D” to “N”. Fourth,
the hard PIP (PIPh) and soft PIP (PIPs) were calculated as the percentage of hard and soft inflection
points to all points connecting two consecutive NN intervals, respectively.

The symbolic dynamical patterns were analyzed as the word of length four that was consisted of
the ternary symbols of four consecutive ∆NN. The words were categorized depending on the type
(hard, soft, or mixed) and number (0–3) of inflection points in the sequence of ∆NN [6]. For example,
sequence “DDAD” is categorized as “Wh2” because it includes two hard inflection points, “DNAN”
as “Ws3” because it includes three soft inflection points, and “DDAN” as “Wm2 because it includes
two mixed (hard and soft) inflection points. Table 1 shows the entire picture of the word classification.
The percentage of each category of words for all observed words during 24 h was calculated.
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Table 1. Classification of all different words of length four by nine category codes.

Category Code Words

W0 AAAA NNNN DDDD

W1h AAAD AADD ADDD DAAA DDAA DDDA

W2h AADA ADAA ADDA DAAD DADD DDAD

W3h ADAD DADA

W1s
AAAN AANN ANNN NAAA NNAA NNNA
NNND NNDD NDDD DNNN DDNN DDDN

W2s
NAAN NANN AANA AAND ANAA ANNA
ANND ANDD NNAN NNDN NDNN NDDN
DNAA DNNA DNND DNDD DDNA DDND

W3s
ANAN ANDN NANA NAND NDNA NDND
DNAN DNDN

W2m
ADDN NDDA AADN ADNN NAAD NADD
NNAD NNDA NDAA DAAN DANN DDAN

W3m
ADAN NADA NDAD DADN ANAD ANDA
ADNA ADND NADN NDAN DANA DAND
DNAD DNDA

Words consist of four letters representing the beat-to-beat changes in heart rate; A = acceleration, D = deceleration,
and N = no change. Category codes consist of letter “W” with the type (h = hard, s = soft, and m = mixed) and
number of inflection points within the word.

2.3. Statistical Analysis

SAS program package (SAS Institute, Cary, NC) was used for statistical analyses. To delineate
the sex and age dependent changes in HRV and HRF metrics, data were averaged for every 5 year
of age in each sex. The associations among HRF metrics and between HRV and HRF metrics were
evaluated by the product moment correlation coefficients for the entire sample and for every 5 year of
age. The gender effects on variables were evaluated after adjusting for age effects by the analysis of
covariance with the SAS general linear model procedure.

3. Results

3.1. Age and Sex Dependency of HRV Metrics

As shown in Figure 6, both time and frequency domain HRV metrics increased after birth up to
age 20 in both sexes. Although they decreased with advancing age thereafter, HRV metrics affected
by higher frequency oscillation (rMSSD, LF, HF, and VHF) switched from decreasing to increasing at
age 75. The increase after age 75 was more pronounced for the HRV metrics in the order of frequency
(LF < HF < VHF). There was no significant gender difference in rMSSD or ULF after adjusting for age
effects, but VLF and LF were greater in men than in women and HF and VHF were greater in women
than in men (Table S1).
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Figure 6. Age and sex dependency of the metrics of heart rate variability (HRV). HR = 24-h mean heart
rate, SDNN = standard deviation of 24-h normal-to-normal R-R (NN) intervals, rMSSD = root mean
square of successive difference in NN intervals, ULF = ultra-low frequency (<0.0033 Hz), VLF = very-low
frequency (0.0033–0.04 Hz), LF = low frequency (0.04–0.15 Hz), HF = high frequency (0.15–0.4 Hz),
VHF = very-high frequency (0.4–1.0 Hz), LF/HF = LF-to-LF ratio.

3.2. Age and Sex Dependency of HRF Metrics

Figure 7 shows the age dependent changes in the three types of PIP in each sex. PIPh increased
after birth up to age 20, decreased thereafter, and reached a plateau, but increased again after age 75.
PIPs showed changes almost opposite to the age dependence of PIPh. Age-adjusted PIPh was greater
in women than in men, but there was no significant difference in PIPs (Table S1).
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PIPh+s = PIP calculated for both hard and soft inflection points.

Figure 8 shows the age dependent changes in the percentage of each word category code of the
∆NN symbolic dynamics. Wh1 and Wh2 increased after birth until age 10–20, decreased thereafter,
and reached a plateau and Ws1, Ws2, Ws3, Wm2, and Wm3 showed changes almost opposite to the
age dependence of Wh1 and Wh2. Wh3 gradually decreased until middle age, and then increased
with age. Although there was no sex difference in age-adjusted mean of Wh1 or Wh3, Wh2, Wm2,
and Wm3 were greater in women than in men and the other word categories were greater in men than
in women (Supplementary Table S1).
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3.3. Relationships among HRF Metrics

Table 2 shows the correlation coefficients among HRF metrics. A negative correlation was observed
between PIPh and PIPs. PIPh showed close positive correlations with Wh2 and Wh3 and negative
correlations with Ws1, Ws2, Ws3, and Wm2. PIPs showed close positive correlations with Ws1, Ws2,
Ws3, Wm2, and Wm3 and negative correlations with Wh2.

Table 2. Correlation coefficients among HRF metrics (N = 3927).

PIPh PIPs PIPh+s

PIPh − −0.73 0.35
PIPs −0.73 − 0.39

PIPh+s 0.35 0.39 −

W0 −0.38 −0.09 −0.63
Wh1 −0.11 −0.55 −0.90
Wh2 0.85 −0.84 −0.01 NS

Wh3 0.74 −0.32 0.56
Ws1 −0.86 0.79 −0.09
Ws2 −0.92 0.88 −0.04
Ws3 −0.74 0.98 0.33
Wm2 −0.70 0.90 0.29
Wm3 −0.13 0.74 0.85

All correlation coefficients (except those marked with NS) were statistically significant. Only those greater than 0.70
were presented in bold face. The variables are explained in Table 1 and caption of Figure 7.

3.4. Relationships between HRF and HRV Metrics

To estimate the impact of PIP on the interindividual differences in LF and HF power at each age,
the correlations of HRV power with PIPh and PIPs were calculated (Table 3). Both LF and HF power
correlated positively with PIPh and negatively with PIPs, but the correlation coefficients between HF
power and PIPh exceeded 0.50 at ages 60–90. This indicates that HRF has a large impact (>25% of the
variance) on individual difference in HF power in this age range.
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Table 3. Correlation coefficients between HRF and HRV metrics.

Age N
PIPh PIPs

LF HF LF HF

0 181 0.40 0.25 −0.55 −0.54
5 200 0.25 0.08 NS −0.50 −0.42
10 201 0.37 0.37 −0.57 −0.56
15 201 0.27 0.33 −0.46 −0.53
20 200 0.33 0.38 −0.65 −0.72
25 200 0.37 0.42 −0.69 −0.71
30 202 0.34 0.43 −0.67 −0.75
35 200 0.28 0.46 −0.66 −0.76
40 200 0.24 0.49 −0.65 −0.80
45 200 0.14 0.49 −0.57 −0.75
50 200 0.30 0.46 −0.68 −0.75
55 201 0.28 0.50 −0.60 −0.77
60 200 0.39 0.60 −0.66 −0.77
65 200 0.34 0.60 −0.66 −0.81
70 201 0.30 0.51 −0.60 −0.69
75 202 0.35 0.56 −0.60 −0.74
80 202 0.40 0.60 −0.62 −0.75
85 200 0.40 0.52 −0.70 −0.74
90 200 0.42 0.53 −0.64 −0.72
95 136 0.29 0.41 −0.62 −0.70

All correlation coefficients (except those marked with NS) were statistically significant. Only those greater than 0.50
were presented in bold face. The variables are explained in Table 1 and caption of Figure 7.

4. Discussion

HRF is a type of sinus arrhythmia that should be noted as a potential factor confounding autonomic
function evaluation and prognosis prediction by HRV [8], but the factors affecting the occurrence of
HRF and the degree of its impact on HRV has been unclear. In the present study, we examined the age
and sex dependency of HRF and its impact on HRV metrics using the ALLSTAR database of clinical
24-h Holter ECG big data. We quantified HRF with two types of metrics (PIP and symbolic dynamics
word category) concerning the inflection pattern (hard and soft) in NN interval time series. Analysis of
24-h ECG samples with even distribution for all ages (0–100 year) for both genders revealed that the
HRV metrics reflecting higher frequency oscillations (rMSSD, LF, HF, and VHF) showed a paradoxical
increase after age 75 and that the increase was more pronounced the higher the frequency band
(LF < HF < VHF). The similar age dependent changes were observed in the HRF metrics quantifying
the occurrence of hard NN interval inflection (PIPh and Wh3), while those quantifying the occurrence
of soft inflection (PIPs and Ws2 and Ws3) showed the almost opposite patterns of age dependent
change. Additionally, among HRV metrics, age-adjusted HF and VHF were greater in women than in
men, and age-adjusted PIPh was also greater in women than in men. Consistent with these, negative
correlations were observed between PIPh and PIPs and between word categories reflecting hard and
soft inflection points. Both LF and HF power correlated positively with PIPh and negatively with PIPs.
The correlation coefficients between HF power and PIPh, however, exceeded 0.50 only at ages 60–90,
indicating that HRF has a large impact (>25% of the variance) on individual difference in HF power in
this age range.

Although the term HRF was first proposed in 2017 by Costa et al. [5], this phenomenon has long
been known in several terms [9–13]. Although HRF is a type of HRV that is defined as the cardiac
beat-to-beat cycle length variation of sinus nodal rhythm, HRF has a fundamental difference from
conventional HRV. In contrast to conventional HRV that is caused by the physiological modulation of
the cardiac intrinsic pacemaker rate through autonomic input to the sinus node, HRF is the pathological
variation of the intrinsic pacemaker rate itself, although the occurrence of HRF may be triggered and
its nature may be modified by the autonomic input [6].
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Earlier studies reported the potential clinical significance of HRF. Woo et al. reported a complex
pattern of R-R interval Poincaré plots that is thought to correspond to a type of HRF in patients with
advanced heart failure [9] and its association with serum norepinephrine level in 27 patients [10].
Stein et al. defined erratic sinus rhythm as the pattern of Poincaré plots with numerous plots outside
an ellipsoid or comet-shaped core and the pattern of HRV FFT spectrum with increased power in
band >0.4 Hz (VHF in the present study) [12,13]. They reported that this pattern was associated
with increased mortality risk after myocardial infarction. Costa et al. [5,6] reported that the degree of
fragmentation measured as PIP and other HRF metrics increased with age in 202 ostensibly healthy
subjects and in 271 patients with coronary artery disease. They also reported that the degree of HRF
was greater in the cardiac patients than in the healthy subjects. Although our observations of increased
PIPh and Wh3 in the elderly are consistent with those of Costa et al. [5,6], the present study also
delineated the entire picture of age and sex dependency and the impact of HRF on HRV metrics.

In the present study, we observed a negative correlation between PIPh and PIPs (Table 2). Also,
while PIPh showed positive correlations with LF and HF in all age groups, PIPs showed strong negative
correlations with LF and HF (Table 3). These indicate that the HRF metric shows the opposite behavior
depending on the definition of the inflection point. Although the soft inflection point is defined as the
point at which a change in consecutive NN intervals is preceded or followed by unchanged consecutive
NN intervals, even changes in consecutive NN intervals if they were below the detection threshold
determined by ECG sampling frequency are not detected and are judged unchanged. Conversely,
if the change exceeds the threshold, the points that had been defined as a soft inflection point could
change to a hard inflection point or a non-inflection point. Therefore, increasing the amplitude of HRF
could increase the points where the judgment changes from soft to hard, creating a complementary
relationship between PIPs and PIPh. Similarly, increasing the amplitude of LF and HF could increase
the points where the judgment changes from soft to non-inflection, creating negative correlations
between PIPs and these HRV metrics. Although PIPs may help characterize the dynamic features
of NN interval inflections, PIPs itself does not seem to be a measure of the degree of fragmentation,
i.e., HRF.

Due to the cross-sectional nature of this study, the causal links between changes in HRF and HRV
metrics are not completely clear. In short, the increase in PIPh and Wh3 in the elderly could be the result
of increased HF, although this is not consistent with weak correlations between PIPh and HF before age
20. Additionally, aging is accompanied by degenerations of the regulatory network, which has been
thought to reduce physiological parasympathetic modulations, such as those controlling heart rate.
This is expected to reduce HF and other short-term HRV metrics. Thus, the counterintuitive increase in
HF in the elderly seems to be the result but not the cause of increased HRF. Several mechanisms can
be considered for the genesis of HRF [5], which include sinus node exit block, subtle atrial bigeminy
originating near or within the sinoatrial (SA) node, modulated SA node parasystole caused by multiple
interacting pacemaker sites in the SA node [16], and modulated periodicity of pacemaker clock in the
SA node [17,18]. Thus, increased HRF may be a marker reflecting the age-related degeneration or
pathologic impairment of the SA-node-atrial network for cardiac pacemaker function. Increased HRF
in patients with coronary artery disease [5] and its association with adverse cardiovascular events [7]
support this contention. Although it is interesting if HRF itself also plays a proarrhythmic role,
particularly in the development of atrial fibrillation, it remains to be clarified.

Increasing HRF with age is thought to confound autonomic functional assessment by HRV and to
dilute the association between decreased HRV and increased risk for adverse prognosis in the elderly [8].
The principle of the assessment of parasympathetic function by HRV depends on the assumptions
that HRV above 0.15 Hz (including HF band) is mediated solely by the cardiac parasympathetic
nerve [1] and that HRV in this band is mediated by respiratory fluctuation of autonomic outflow to the
sinus node [19–22]. In the presence of HRF, however, both assumptions may not hold. HFR causes
non-autonomous, non-respiratory HRV in the frequency band, well above 0.15 Hz. The HRV that the
HRF causes at frequencies of 0.15 to 0.4 Hz is integrated as HF power and leads to an overestimation of
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parasympathetic function. The present study suggests that a substantial portion of HF power at ages
60–90 may be non-parasympathetic origin. Decreased HRV in 24-h ECG is an increased mortality risk
after acute myocardial infarction [2,23,24]. These studies have reported a greater predictive power
for HRV metrics that mainly reflects fluctuations at lower frequencies (SDNN and VLF) than those
reflecting fluctuations at higher frequencies (rMSSD and HF). This seems resulted from increased HRF
in the elderly and in patients with adverse prognosis [7]. These suggest that proper subtraction of
the influence of HRF on HRV may improve the usefulness of HRV as an autonomic index and risk
predictor. This is an important future research topic.

The possible limitation of the present study may be that the ALLSTAR database is composed of
clinical Holter ECG data. All ECG data were recorded for some clinical purpose(s), although only data
without ECG abnormality were selected for this study. On the other hand, these data can be regarded
as a sample that reflects the general patient population undergoing Holter ECG in Japan. Another
potential limitation is that the present findings were obtained from 24-h ECG data. Thus, they may
not apply to other equipment or systems. HRF itself, however, could occur in short ECG recordings
such as those used for autonomic function assessment by short-term (typically 5 min) HRV [3]. The LF
and HF powers obtained from such analyses also need to consider the influence of HRF, especially in
elderly subjects. On the other hand, the present observations may not apply to heartbeat interval data
estimated from pulse waves. The evaluation of HRF depends on the accuracy of interval measurement,
which may not be enough with pulse wave signals.

5. Conclusions

To examine the impact of HRF on HRV, the age and sex dependency of HRF were studies using
a clinical 24-h Holter ECG database. The HRV metrics reflecting higher frequency oscillations increase
after age 75 and the increase is more pronounced the higher the frequency band (LF < HF < VHF).
HRF quantified with PIPh shows the similar age dependent changes. Although both LF and HF power
correlate positively with PIPh, close correlations (r > 0.5) are observed only between HF power and
PIPh at ages 60–90. HRF has a large impact (>25% of the variance) on individual difference in HF
power in this age range.
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