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Abstract: This paper presents an approach for creating online assessment power curves by calculating
the variations between the baseline and actual power curves. The actual power curve is divided into
two regions based on the operation rules of a wind turbine, and the regions are individually assessed.
The raw data are filtered using the control command, and outliers are detected using the density-based
spatial clustering of applications with noise clustering method. The probabilistic area metric is applied
to quantify the variations of the two power curves in the two regions. Based on this result, the variation
in the power curves can be calculated, and the results can be used to dynamically evaluate the power
performance of a wind turbine. The proposed method is verified against the derivation of secondary
principal component method and traditional statistical methods. The potential applications of the
proposed method in wind turbine maintenance activities are discussed.

Keywords: wind turbine; performance assessment; power curve; health value; probabilistic
area metric

1. Introduction

Wind energy is essential to the satisfaction of electrical power demands in an environmentally
sustainable manner. With the increase in installed wind power capacity, the operation and maintenance
(O&M) costs of wind turbines are gradually increasing. Research has shown that the use of a
supervisory control and data acquisition (SCADA) system is an economical and effective method
for identifying early signs of failure and performance issues; thus, such systems have been widely
installed in large-scale wind turbines. Using the SCADA system, large quantities of environmental
data and equipment status data are stored. By mining these SCADA data, several investigations
can be carried out, such as for condition monitoring [1–3], fault diagnosis [4,5], ageing [6,7] and
reliability assessment of wind turbines [8]. A wind turbine is a piece of equipment that generates
electricity through the conversion of the kinetic energy of the wind, which automatically adjusts
the operating state according to the wind speed and direction. The research and application of the
real-time monitoring and fault diagnosis are important to ensure the wind turbine safety and save
O&M costs [9,10]. The electricity generation performance of wind turbines is an important index that
manufacturers, wind farm operators, investors and grid operators consider.

The power curve is commonly used to monitor wind turbine power performance, as it is an
important indicator that reflects the electricity generation performance. By monitoring the variation in
the power curve, the operating power performance of wind turbines can be assessed, and problems
can be identified [11]. Therefore, it is necessary to define a baseline power curve that represents the
optimal power performance of the wind turbine. This reference curve is either constructed by using the
measured wind-power data or provided by the wind turbine manufacturers [11,12]. The actual power
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curve generated by SCADA data can be compared with this baseline curve, and the deviation between
the two curves can reflect variations in power performance. This deviation is often represented as
a health value (HV) or confidence value [13,14]. Further trend analysis on the gradual change of
the health value will help to identify signs of performance degradation, performance optimization
opportunities, incipient fault detection, and so on. Due to the highly dynamic and stochastic operating
conditions, the wind-power data from the SCADA system contain a large quantity of abnormal data
because of underperformance, changes in wind resources or equipment failure/anomalies such as
pitch system faults and ice on the blade [15,16]. Therefore, the efficient and objective calculation of the
health value is key to power performance assessment.

At present, a considerable number of methods are used to calculate the health value. Some of these
approaches first model the actual power curves and then analyze the deviations between the baseline
power curve and the actual power curve. Such approaches are called parametric evaluation methods.
Kusiak et al. [17] constructed parametric models of the power curve with a logistic function to monitor
wind turbine performance. Other parametric modelling methods have been presented, such as the bin
method [18], the evaluation method [19], the Gaussian process [20,21], fuzzy clustering [22], the copulas
function [23], the Gaussian mixture model and the neural network [24]. Based on the parametric
model, performance assessment methods that use the baseline power curve for comparison were
presented. These comparison methods included minimum quantization error, Euclidean distance and
residue analysis. A comparative study of wind turbine performance assessment based on three typical
parametric evaluation methods was carried out in reference [25]. The results indicated that the Gaussian
mixture model-L2 distance (GMM-L2) method is suitable for degradation modelling and performance
prediction. However, parametric evaluation methods involve model selection, parameter estimation,
error modelling and algorithm convergence; thus, these methods require human intervention to
acquire the best parametric model, which is mainly used for offline data analysis. To achieve online
wind turbine assessment, there are many problems to overcome. To avoid modelling problems,
nonparametric assessment methods that directly assess the actual wind-power data and the baseline
wind-power data were proposed [26–28], the derivation of secondary principal component (PCA2-Dev)
method is a representative method [27]. PCA2-Dev reduced the dimensionality of wind-power data
via principal analysis and selected power data as the main evaluation data. The deviations were
calculated by using the ratio of the standard deviations of the baseline power data and the actual
power data. However, PCA2-Dev could assess only quasilinear wind-power data and could not be
used with rated power data. However, the wind turbine maximized its power output in the rated
power region; thus, performance fluctuation this region would affect the economic benefit of wind
farms. Therefore, SCADA data in the rated power region need to be assessed.

In this paper, a novel nonparametric assessment method is developed based on the probabilistic
area metric that can compute the health value of the actual wind-power data by locating either the
quasilinear region or the rated power region and achieve online assessment in real time. The presented
method is compared with the PCA2-Dev method and traditional statistical methods. The results show
that the proposed method is simple and effective. In addition, because the probabilistic area metric is
used in the proposed method for direct derivation, an iterative process is not required, and convergence
does not need to be considered. The assessment result shows that the power performance variation is
stable; thus, this result appropriate for prediction analysis. In summary, the key scientific contributions
of this paper are as follows:

• The probabilistic area metric is used to evaluate the deviations of the probabilistic models of two
datasets. In other words, the datasets are transformed into probabilistic models instead of means
or variances, and the deviations of the probabilistic models are calculated. The area metric has an
obvious advantage in dynamic and stochastic SCADA data mining analysis.

• The assessment method combines physical model analysis and data mining techniques.
The assessment result is statistically significant, and it has physical significance and is easy
for engineers to understand.
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The rest of this paper is organized as follows. Section 2 introduces the basic theory of power
curves and establishes the objective of the current study. Section 3 explains the data preprocessing
method, the principle of selecting the baseline data, the health value based on the probabilistic area
metric and the calculation flow. In Section 4, the proposed method is compared with the PCA2-dev
method and the traditional statistical approach. Section 5 discusses the application of the present
method in performance optimization, degradation analysis and condition pre-warnings. Section 6
summarizes the study.

2. Problem Definition

2.1. Power Curves

A wind turbine power curve depicts the relationship between the hub wind speed and output
power, and it is an important index for evaluating the wind turbine performance. As shown in
Figure 1, the power curve can be divided into four regions according to the operational features.
In Region A, where the wind speed is lower than the cut-in speed vin, no electric power generation
occurs. In Region B, the wind speed v ∈ [vin, vrated], and vrated is rated wind speed. The maximum
wind power tracking can be attained. According to Betz’s Law, the theoretical maximum utilized wind
power is called the Betz theoretical limit value, the coefficient of which is 0.593. To produce maximum
power, several types of control strategies are applied, such as pitch angle control, generator torque
control and yaw control, to approximate the Betz curve as much as possible. In Region C, where in
which the wind speed v ∈ [vrated, vout], the wind turbine remains at the rated power. As the wind
speed increases, the tip speed ratio decreases more rapidly than that in the constant rotation region,
and the wind turbine runs at a constant power with a smaller wind turbine power coefficient CP.
In Region D, where the wind speed is faster than the cut-out speed, the pitch angle is adjusted to 90◦;
consequently, the turbine blades stop rotating, and wind power is no longer generated. By analyzing
the operational features of the power curve, Regions B and C can be noted as the main working regions,
and these regions are selected as the research objects for assessing the operation condition of a wind
turbine. For convenience, Region B is called the maximum wind power tracking region (MWPTR),
while Region C is called as the rated power output region (RPOR).
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Figure 1. Power curve of a pitch-regulated wind turbine.

2.2. Problem Statement and Purpose of Assessment

The ageing of components or change in wind resources due to long-term service could lead
to output power fluctuations of the wind turbine. As shown in Figure 2, an obvious deviation
exists between the actual measurement data and the baseline data in the MWPTR. Therefore, on-line
performance assessment of a wind turbine can be realized by quantifying the deviations of power curves
and analyzing the change trends to provide a reference for operations and maintenance decision-making.
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This paper proposes a power performance assessment method by mining 10-min SCADA data;
this method could prove to be a useful tool for operation and maintenance staff when assessing the
overall performance of a wind turbine and to making maintenance plans. The performance assessment
of wind turbines based on power curve monitoring requires a set of complete dataset in the MWPTR
and RPOR, which is used to determine the change trend of the wind turbine. The wind speed and
output power have different mapping relations in the MWPTR and RPOR; therefore, the assessment
method must consider these distinctions in different wind speed regions. In particular, the control
objective of MWPTR is to capture the maximum wind power capture, while RPOR is oriented to
achieve as much output power as possible while maintaining a stable output power. Based on the
analysis derived from Figure 2, the proposed assessment method must possess the following features:

(1) The evaluation results must accurately indicate the variations between the actual power curve
and the baseline power curve.

(2) The method must be robust and unaffected by the presence of outliers.
(3) The method must be able to be implemented simply, and the assessment results must be easy to

understand for engineers to understand.
(4) A stable trend of power performance changes must be acquired, as this trend can be used for

prediction analysis.

3. Power Performance Assessment Methodology

3.1. Baseline Data Selection

Baseline data are obtained from the operation data of a real wind turbine; they represent the
optimal operation state of the turbine and are used to produce the reference power curve for the
condition assessment. In this study, the baseline data were selected from an optimally performing
wind turbine; the data were verified and pertained to a continuous period. To select the baseline data,
both the wind resource and operating condition of the wind turbine should be taken into consideration.
In terms of the wind resource, it is ideal to select wind–power operation data in an abundant wind
resource period, to ensure that complete assessment information in the region from cut-in wind speed to
rated wind speed can be obtained. Information pertaining to operation and maintenance, such as repair
reports and downtime, can be used to evaluate the operational condition. Finally, using theoretical and
experimental analyses, a comparative analysis of these preselected baseline data can be conducted
to acquire the optimal wind speed and power data of the entire wind farm, which is defined as the
baseline data.
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3.2. Preprocessing

Based on the control principle of the wind turbine, SCADA data can be filtered using the following
steps: (1) Filter out data for which power P = 0. (2) Eliminate data for which the wind speeds are less
than vin or greater than vout. (3) Filter out artificially limited electricity data by the control command,
such as the limit value of the wind turbine power and generator power. (4) Determine the wind
speed and power data in the MWPTR and RPOR according to vin, vout and vrated. In other words,
vin < v < vrated correspond to the MWPTR, while vrated < v < vout correspond to the RPOR.

SCADA data including numerous abnormal data such as sensor abnormality and icing are
identified using the density-based spatial clustering of applications with noise (DBSCAN) clustering
method [29]. The DBSCAN clustering method, a typical clustering method based on density, can identify
a cluster by setting a density threshold. This clustering algorithm has two key parameters—Eps
and Minpts. Eps represents the radius of cluster, and Minpts is the number of neighbors within the
cluster. With reference to [30,31], Minpts is set to 4 in this study, and Eps is calculated using the
following equation:

Eps =

(
V ×MinPts× γ(0.5× n + 1)

m
√
πn

) 1
n

(1)

where m denotes the number of objects in the experimental data set, n is the dimensionality of the
experimental space, γ(·) is the factorial function, and V is the volume of the experimental space formed
by m objects:

V =
n∏

i=1

{
max(xi) −min(xi)

}
(2)

where max(·) is the largest value function, min(·) is the smallest value function, xi is the i-th column
data of the m-by-n experimental data matrix.

3.3. Health Value Based on the Probabilistic Area Metric

3.3.1. Health Value in the MWPTR

According to the interval size δ, the MWPTR can be divided into t intervals, and the ith wind
speed interval can be expressed as

[
vmean

i − δ, vmean
i + δ

]
. The assessment data can be expressed as{

(v1, P1), (v2, P1), · · · · · · , (vn, Pn)
}
, in which the points falling within the ith wind speed interval are

expressed as
(
vi, j, Pi, j

)
; here, the first subscript denotes the interval number, and the second subscript

indicates the number of points in the interval. Similarly, the baseline data are divided into t intervals,

in which each interval point set is
{
C0

1, C0
2, · · · · · · , C0

n

}
, where C0

i corresponds to a point set
(
v0

i, j, P0
i, j

)
within the ith interval. The empirical cumulative distributive function (ECDF) in the ith interval can be
calculated using:

F0
i (P) =

1
m

m∑
j=1

I
[
P0

i, j ≤ P
]

(3)

Fi(P) =
1
k

k∑
j=1

I
[
Pi, j ≤ P

]
(4)

where I is the indicator function [32]. Next, the deviation Mi between the baseline data in the ith
interval and the actual measurement data can be mathematically expressed as:

Mi =
1

P
0
i

∞∫
−∞

∣∣∣F0
i (P) − Fi(P)

∣∣∣dP (5)
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where P
0
i is the mean value of power in the ith interval, Mi is the ratio of the probabilistic area and

P
0
i . To explain the probabilistic area metric (PAM), the actual ECDF and baseline ECDF are shown in

Figure 3. There is a contact point of two ECDF curves. The probabilistic area is cyan region of two
ECDF curves, which can be calculated by the integral method in the Equation (5). It is possible that
actual ECDF and baseline ECDF have no contact point. In other words, the actual ECDF is always
above or under the baseline ECDF. The probabilistic area is also computed by the Equation (5).
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After calculating the deviations in t intervals, the standard power curve is used to compound the
overall variations. Assuming the standard power curve can be expressed as P = g(v), where v is the
wind speed, P is the power and g(·) is the standard power curve function. The power of the mean
point in the ith speed interval should be:

Pmean
i = g

(
vmean

i

)
(6)

where vmean
i is mean of the ith wind speed interval, Pmean

i is the power of the standard power curve.
In the i interval, the weighting value κi is calculated by:

κi =
Pmean

i
t∑

i=1
Pmean

i

(7)

The HV in the MWPTR is:

γMWPTR = κ1M1 + κ2M2 + · · · · · ·+ κtMt (8)

In the MWPTR, the control objective of wind turbine is to track the maximum wind power.
γMWPTR represents the derivation that the actual power data from the baseline data. The HV with
an approximate zero value means that the individual wind turbine is close to the optimal power
performance. Conversely, a higher HV represents a poorer health condition. The reasons may be
equipment fault, machine degradation, weather and so on. By analyzing γMWPTR and its change trend,
it is beneficial to condition assessment and monitoring.
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3.3.2. Health Value in the RPOR

The theoretical power curve in the RPOR is a horizontal line equal to the rated power. The actual
wind speed and power points in the RPOR are assessed together. Using the rated wind speed and
cut-out wind speed, the dataset in the RPOR can be selected and defined as Crated, and the wind speed
and power data can be expressed as

(
vr

i , Pr
i

)
(i = 1, 2, · · · · · · , s). The baseline data in the RPOR are

defined as CB
rated, and the wind speed and power data can be expressed as

(
v0,r

i , P0,r
i

)
(i = 1, 2, · · · · · · , s1).

The health value can be calculated using:

γrated =

∫
∞

−∞

∣∣∣F0,r(P) − Fr(P)
∣∣∣d(P) (9)

where

F0,r(P) =
1
s1

s1∑
j=1

I
[
P0,r

j ≤ P
]

(10)

Fr(P) =
1
s

s∑
j=1

I
[
Pr

j ≤ P
]

(11)

where γrated is the HV in the RPOR. A small γrated means the well health condition. Conversely, γrated

with a higher value represents the poorer health condition.

3.4. Calculation Flowchart

The assessment flowchart of the power performance based on the PAM is shown in Figure 4. First,
the useful parameters are collected from the SCADA system, including the nacelle wind speed, power,
hub rotational speed, and electricity limitation command. Next, the time window length T and slide
step length ∆T need to be determined, as shown in Figure 5. The window length T is related to the
quality of data of the considered wind farm, and these data are of a size similar to the baseline data
used in this study. ∆T is determined according to the assessment needs. SCADA data of 10 min are
taken as an example; T pertains to 20 days, and the wind speed and power data pertain to 2280 days.
If we set ∆T as the data obtained in a day, then 144 data points should be collected. However, due to
data loss, downtime data and abnormal data, the actual number of T is less than 2280, and ∆T is less
than 144. Therefore, to avoid the impact of insufficient data, T and ∆T are determined by referring to
the preprocessed data. The corresponding assessment result γindex is thus not the result of equal time
intervals, as shown in Figure 5.

The baseline data and actual data are both divided into MWPTR and RPOR. The DBSCAN
method is used to preprocess the data, in which Eps_opt is calculated using Equation (1). Next,
the wind speed and power data in the MWPTR and RPOR are evaluated using the methods proposed
in Sections 3.3.1 and 3.3.2, respectively. The values of γMWPTR and γrated of the wind turbine can be
computed by Equations (8) and (9). After assessing the performance of the R region, the new assessment
data can be obtained by sliding the windows with step ∆T. The update method of the evaluation data
is shown in Figure 5. With the same calculation process, the HV of different time windows can be
obtained. For SCADA data pertaining to a long duration, two time series can be acquired, which are
defined as

{
γ1

MWPTR,γ2
MWPTR, · · · · · · ,γn

MWPTR

}
and

{
γ1

rated,γ2
rated, · · · · · · ,γn

rated

}
. Later, through analysis

of the time series of the HV, operations and maintenance activities, such as performance assessment,
degradation analysis and early warning, fault detection, can be better performed.
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4. Verification of Results

4.1. MWPTR Results

The SCADA data used in this study are obtained from a mountain wind farm which has 24 sets
of 2 WM wind turbines. The cut-in wind speed vin is 3 m/s, the cut-out wind speed vout is 25 m/s,
and the rated wind speed vrated is 11 m/s. In this study, 10 min of SCADA data are used, and the
wind speed data are collected from the nacelle sensor. In addition, the SCADA data pertains to the
period from 1 January 2013 and 31 December 2017. The analysis of the operation conditions of all the
wind turbines in the wind farm indicated that the T01 wind turbine demonstrates relatively stable
performance with fewer maintenance activities during its service. Through a comparative analysis
with other wind turbines, with reference to the wind resource and maintenance records, data of the T01
wind turbine from June to July 2015 are selected as the baseline data. The length of the time window T
is 4320 (30 days), and the slide step size ∆T is 432(3 days).

HV curve of the T01 wind turbine is calculated and given in Figure 6, it can be seen that a larger
HV corresponds to poorer power performance. In addition, if two health values are farther from each
other along the horizontal axis, there may be downtime. From Figure 6, it can be noted that HV is
between 0.4 and 0.5 before Date A. During the time interval between Dates A and C, HV changes
violently. During Dates C and D, the wind turbine operates in a stable manner, fluctuating only in
a remarkably short interval with little downtime, which is consistent with the actual maintenance
record. To clarify whether the HV can actually reflect the variations between the reference data and the
actual data, the wind speed and power data of Dates A, B and C are plotted, as shown in Figure 7.
From Figure 7a, it can be found that the deviation between Date A and Date C is extremely pronounced,
and Point B indicates a transition from Date A to Date C. Therefore, the HV with the presented method
accurately quantifies the power performance changes. More importantly, the gradual change of the
HV is objectively presented. Further trend analysis will be meaningful for the turbine operation and
maintenance activities.

To further prove the validity of the presented method, a comparative study is performed using
the PC2-Dev method [27]. T01 and T07 are both selected as research objects and analyzed using
two different methods. The respective results are shown in Figures 8 and 9, in which the blue
and red lines respectively represent the results obtained using the PC2-Dev method and the PAM
method. From Figure 8, two HV curves reflect the change trend of the actual power curve well;
meanwhile, the inflection points in the two curves occur nearly simultaneously. In addition, in Figure 9,
from March 2014 to January 2017, the two health value curves also demonstrate a similar trend.
However, it must be noted that from January 2017 to September 2017, the HV curves obtained using the
PAM method change slightly with the date while the HV curves obtained using the PC2-Dev method
exhibit large fluctuations, demonstrating distinct differences. For analyzing the reason, two points
with the largest changes in the PC2-Dev method are selected and named Date A and Date B; next,
their data together with the baseline data are plotted, as shown in Figure 10. Figure 10a shows data of
Dates A and B, as well as the baseline data. Figure 10b shows data of Dates A and B; the overlapped
part is marked in blue, as shown in Figure 10c, while others are marked in different color, as shown in
Figure 10d. Based on the observation from Figure 10, Dates A and B data are remarkably similar to the
baseline data, both containing a large amount of overlapped information. Therefore, it can be implied
that the resultant large fluctuation of curves comes from the small number of non-overlapped data.
By analyzing the non-overlapped data in Figure 10d, it can be noted that the data of Date A are mainly
locate in the wind speed interval [3.0, 7.0], and the data of Date B are located in the speed interval
[7.0, 11.0]. The power in interval [7.0, 11.0] is greater than that in interval [3.0, 7.0]. As seen from
Figure 10, data of Dates A and B are close to the baseline data, and consequently, the corresponding
health values should be similar. The HV calculated using the PAM method is consistent with the
actual situation; however, that obtained using the PC2-Dev method behaves in a contrasting manner.
The reason for this finding is that the PC2-Dev method adopts the principal component analysis to
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reduce the dimensions of wind speed and power, and calculates the HV based on the variance of the
actual measurement power and the baseline power data. In fact, the variance of Date B is larger than
that of Date A in this case.
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Consequently, in some cases, the PC2-Dev method may calculate an abnormal HV because the
variance-based method cannot reflect the entire data information. The PAM method can avoid this
defect because the ECDF of data is applied to quantify the variations between the data sets, which
include more information than the variance of data. The above discussion indicates that although the
PC2-Dev method is an effective method to assess power curves of wind turbine, it may cause false
alarms in certain situations. In this regard, the PAM method can attain better results.

4.2. RPOR Results

In this analysis, the rated power data of the T22 wind turbine, for the period between December
2015 and December 2017, are collected as the research object. Due to the strong turbulence of the
mountain wind farm, the actual data in which the power is rated are filtered. The time series of power
is plotted, as shown in Figure 11. The size of the data in the RPOR is less than 3000, and the power
interval is [1900, 2040]. It could be observed that the data fluctuated considerably in the vertical
direction. However, in the dashed box region, the data behaves in a stably manner, and the center
value is slightly higher than the rated power value, that is, 2 MW. The theoretical analysis indicates
that the output power of the wind turbine in the rated region should, in theory, stably fluctuate around
the rated power value. However, the operation and maintenance companies expect to benefit more
by generating more electricity under a safe level, which requires the wind turbine to operate stably
with a power value slightly larger than the rated power. Based on the above analysis, the data in the
dashed box are selected as the baseline data. Three hundred eight wind-power points are present in
the baseline data, derived from a continuous time interval. The size of the time window T is selected to
be 288, and due to inadequate data, ∆T is set as 36 to acquire a lasting change trend.
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The result calculated using the PAM method is plotted, as shown in Figure 12. The red dotted line
represents the HV curve. A larger HV value represents a greater deviation between the actual data and
the baseline data. The two points are apart from each other with a large horizontal span, signaling a
high possibility of downtime; alternatively, they might correspond to the RPOR data. The adjacent
points are dense, indicating that sufficient data is available. Peak points are selected from the health
value curve, labelled as Dates A–H, and they are connected using a dotted line. From Date A to Date B,
the health value curve exhibits a declining trend, and from Date B to Date C, the health value curve
trend is increasing. The reason was that, although the performance of the wind turbine naturally
degrades as the service time increases, it can be improved through repair and maintenance. From Date
C to Date H, an evident change similar to the former one is exhibited. The trend indicates that Date B
and Date F do not correspond to the optimal operation state; instead, Date H has the smallest point
on the curve as well as the point with the best performance point. This analysis indicates that the
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variation trend of the health value obtained using the PAM method is consistent with the theoretical
performance change trend of repairable electromechanical equipment.
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According to the research described in Section 2, the primary objective of the power curve in
the MWPTR is to ensure stable operation of the wind turbine. The purpose of the PAM method is to
analyze the deviation of the actual data and the baseline data. To prove whether the PAM method can
efficiently calculate and describe the deviation between the two data, the mean value and variance
of the baseline data at the extreme Points A, B, E, F, and G are calculated. The results are plotted in
ascending order according to the HV values listed in Table 1, and the corresponding power sequence
is plotted, as shown in Figure 13. Figure 13a shows that the mean value of the baseline data is 2013,
the variance is 3.6, and the entire range of data points exhibits stable operation. Figure 13b shows
that the HV value of node F is slightly lower than that in the baseline data, the variance is 10.65, and
the values of some power points are less than 2000. B is the minimum point, slightly larger than F,
with a HV value of 7.071, because its variance is larger than that of F. Figure 13c indicates that the
number of points with a value lower than 2000 is smaller than that in Figure 13b. Points G, A and E are
the maximum points because their mean values are smaller than the rated power and the baseline
mean value, and they have large variance. The change trend can be determined from Figure 13d–f.
The above analysis demonstrates that the HV value calculated using the PAM method can well reflect
the deviation between the actual data and the baseline data, as well as the mean and variance of the
dataset. In general, the PAM method can be an effective tool for calculating the performance change
trend of wind turbines for predictive analysis.

Table 1. State parameters for different dates.

Date Health Value Mean Value (KM) Standard Deviation (std)

Baseline Data 0 2013 3.6
Point F 5.21 2015 10.65
Point B 7.071 2012 13.97
Point G 18.92 1994 15.75
Point A 21.74 1992 19.39
Point E 31.66 1981 16.84
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5. Potential Implementation

5.1. Performance Optimization

The long-term HV curves of multiple wind turbines can be determined using the PAM method,
which can be used to monitor and optimize the performance of wind turbines. In Figure 14, two HV
curves is shown to illustrate the performance change of the T01 and T04 wind turbines from July 2014
to 1 November 2017 by using the proposed method. It can be seen that the T01 wind turbine is never in
the optimal state before March 2015; however, after repair in January 2015, the turbine shifted towards
an optimal state. This change in the performance can be quantified in terms of the difference in HV.
For example, the difference in the health value on two different dates is 0.4, which means that the
deviation between the actual data and the baseline data reaches 40%. The HV curve of T07 indicates
that this wind turbine undergoes notable performance fluctuations, which means that its deviation
with the baseline data is large. The baseline data represents the optimal state of the T01 wind turbine in
terms of the optimal operation state of the wind farm. After the wind turbine is repaired in March 2017,
its performance improved and developed toward the optimal state. Thus, the proposed method can be
effectively used to diagnose whether a given wind turbine operates in the optimal state or whether
other wind turbines in the wind farm operate under optimal conditions.
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5.2. Degradation Analysis

A wind turbine is a complex electromechanical system, and its performance changes in accordance
with the degradation trend of a repairable system. Taking the HV curve of T07 in Figure 14 as an
example, it is easy to note that the HV curve trend is similar to the theoretical change trend of a
repairable system if the maximum and minimum points are connected. In other words, although the
performance of the equipment degrades after operation, it can be improved after repair. Subsequently,
the operational phase of the equipment can be determined, and an efficient maintenance plan can be
formulated. If we connect the peak points in Figure 12, a notable change trend of the health value
before and after the repair can be found. More importantly, the degradation level of the equipment
can be quantified through the HV. In Figure 12, the health value of Point E is large, which indicates
poor stationarity of the wind turbine. After a series of maintenance activities is carried out, the HV
is continuous and stably decreases, eventually reaching the ideal Point F eventually. It can be
concluded that the PAM method can act as a valuable tool for analyzing the performance degradation
of wind turbines.

5.3. Condition Pre-Warning

Condition pre-warnings are especially important for the operation and maintenance staff of in a
wind farm. Using the PAM method, the T22 HV curves for the MWPTR and RPOR from 20 May 2015
to December 2017 were calculated. The HV in the MWPTR corresponds to the deviation of the actual
measured data and the baseline data. Presuming a deviation of 0.05 is set as the alarm threshold,
a point larger than the minimum points by 0.05 is selected as the pre-warning point. The HV curve
and pre-warning line are plotted, as shown in Figure 15a, in which the minimum power point of the
HV curve are marked as A, B and C. The growth rate of the HV curve after Date A is larger than 0.1.
The HV of Date B is much larger than that for Date A, and the growth rate of the HV curve after date B
exceeds 0.05. The HV of Date C is less than that of Date B but larger than that of Date A, of which the
later growth rate exceeds 0.1. This analysis indicates that the HV curve of T22 changes considerably; in
other words, the wind turbine performances are unstable. If the degradation trend after the minimum
point is detected by the threshold line with HV equal to 0.05 and effective maintenance activities are
carried out, a worsening in the degradation trend can be avoided. Similarly, when the minimum power
point exceeds 0.1, the maintenance staff should focus extensively on investigating the reason.

In the wind farm considered in the research, the generator power limit is 2067.6 kW, the mean
power of the baseline data is approximately 2013 kW, and their difference is 54.6 kW, which is the
theoretical deviation value in the RPOR area. The threshold is set as 10 kW in the RPOR, the minimum
power of the HV curve is selected, and the warning line with HV equal to 10 is plotted, as shown in
Figure 15b. It can be seen that after the HV curve of Date A increases gradually with a span larger than
10 kW, it decreases gradually to Date B. The continuous increasing rate after Point B exceeds 20 kW
and reaches the global maximum, and the growth rate of the HV curve after Date C exceeds 10 kW.
Therefore, using the proposed method to determine the HV curves and setting the threshold value line
after the minimum power, an early warning can be triggered when the HV exceeds the threshold value
so that further degradation can be avoided through maintenance.
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6. Conclusions

This paper proposes a method for evaluating the working wind turbine power performance by
calculating variations between the actual wind-power data and the baseline wind-power data from the
SCADA system. The HV curve of wind turbine is calculated by the present method. The result from
the proposed method on the MWPT region has been validated with the PC2-Dev method. In the RPOR
region, the present method is also benchmarked with the traditional statistic mean and variance method.
The computed results show the present method can effectively quantify variations between the actual
and reference wind-power data. The performance results can effectively reflect the operational status of
wind turbines; furthermore, they are able to be understood by engineers, and they provide important
information for the operations and maintenance of wind turbines.

The purpose of this work is to propose an effective tool for assessment the power performance
of wind turbines. Power generation depends not only on the wind speed but also on the turbine
conditions, such as the operating factors, yaw angle, and wind turbulence. To find change causes
or detect anomalies, more data need be analyzed. In future work, the authors intend to investigate
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the reasons for these anomalies and perform fault identification. In addition, the current method
only considered wind speed and power. The wind direction, air density and temperature have a
considerable impact on the power of wind turbines and should be studied.

Author Contributions: Data curation, X.Y.; project administration, Q.Z.; resources, A.Z.; writing—original draft,
Z.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by National Key Research and Development Program of People’s Republic of
China (grant number 2016YFF0203400), National Natural Science Foundation of People’s Republic of China (grant
number 51875199 and 51905165), Hunan Provincial Natural Science Foundation (grant number 2019JJ50186) and
Scientific Research Fund of Hunan Provincial Education Department (grant number 18C034).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Hameed, Z.; Hong, Y.S.; Cho, Y.M.; Ahn, S.H.; Song, C.K. Condition monitoring and fault detection of wind
turbines and related algorithms: A review. Renew. Sustain. Energy Rev. 2009, 13, 1–39. [CrossRef]

2. Stetco, A.; Dinmohammadi, F.; Zhao, X.; Robu, V.; Flynn, D.; Barnes, M.; Keane, J.; Nenadic, G. Machine
learning methods for wind turbine condition monitoring: A review. Renew. Energy 2019, 133, 620–635.
[CrossRef]

3. Gao, Z.; Sheng, S. Real-time monitoring, prognosis, and resilient control for wind turbine systems. Renew.
Energy 2018, 116, 1–4. [CrossRef]

4. Jia, X.; Jin, C.; Buzza, M.; Di, Y.; Siegel, D.; Lee, J. A deviation based assessment methodology for multiple
machine health patterns classification and fault detection. Mech. Syst. Signal Process. 2018, 99, 244–261.
[CrossRef]

5. Wang, X.; Zhao, Q.C.; Yang, X.B.; Zeng, B. Condition monitoring of wind turbines based on analysis of
temperature-related parameters in supervisory control and data acquisition data. Meas. Control 2019.
[CrossRef]

6. Staffell, I.; Green, R. How does wind farm performance decline with age? Renew. Energy 2014, 66, 775–786.
[CrossRef]

7. Roscher, B.; Werkmeister, A.T.; Schelenz, R.; Jacobs, G. Estimation of 1Hz Distribution based on 10min
SCADA Data. In Proceedings of the Offshore Wind R&D Conference 2018, Bremerhaven, Germany,
14–16 November 2018.

8. Li, J.L.; Zhang, X.R.; Zhou, X.; Lu, L.Y. Reliability assessment of wind turbine bearing based on the
degradation-Hidden-Markov model. Renew. Energy 2019, 132, 1076–1087. [CrossRef]

9. Gao, Z.; Ding, S.X.; Cecati, C. Real-time fault diagnosis and fault-tolerant control. IEEE Trans. Ind. Electron.
2015, 62, 3752–3756. [CrossRef]

10. Gao, Z.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques-part II: Fault diagnosis
with knowledge-Based and hybrid/active approaches. IEEE Trans. Ind. Electron. 2015, 62, 3768–3774.
[CrossRef]

11. IEC, IEC 61400-12-1. Wind Turbines—Part 12-1: Power Performance Measurements of Electricity Producing Wind
Turbines; International Electrotechnical Commission: Geneva, Switzerland, 2005.

12. Taslimi-Renani, E.; Modiri-Delshad, M.; Elias, M.F.M.; Rahim, N.A. Development of an enhanced parametric
model for wind turbine power curve. Appl. Energy 2016, 177, 544–552. [CrossRef]

13. Zhang, F.; Wen, Z.; Liu, D.; Jiao, J.; Wan, H.; Zeng, B. Calculation and Analysis of Wind Turbine Health
Monitoring Indicators Based on the Relationships with SCADA Data. Appl. Sci. 2020, 10, 410. [CrossRef]

14. Lee, J. Measurement of machine performance degradation using a neural network model. Comput. Ind. 1996,
30, 193–209. [CrossRef]

15. Dai, J.C.; Liu, D.S.; Wen, L.; Long, X. Research on power coefficient of wind turbines based on SCADA data.
Renew. Energy 2016, 86, 206–215. [CrossRef]

16. Park, J.Y.; Lee, J.K.; Oh, K.Y.; Lee, J.S. Development of a novel power curve monitoring method for wind
turbines and its field tests. IEEE Trans. Energy Convers. 2014, 29, 119–128. [CrossRef]

17. Kusiak, A.; Zheng, H.; Song, Z. On-line monitoring of power curves. Renew. Energy 2009, 34, 1487–1493.
[CrossRef]

http://dx.doi.org/10.1016/j.rser.2007.05.008
http://dx.doi.org/10.1016/j.renene.2018.10.047
http://dx.doi.org/10.1016/j.renene.2017.10.059
http://dx.doi.org/10.1016/j.ymssp.2017.06.015
http://dx.doi.org/10.1177/0020294019888239
http://dx.doi.org/10.1016/j.renene.2013.10.041
http://dx.doi.org/10.1016/j.renene.2018.08.048
http://dx.doi.org/10.1109/TIE.2015.2417511
http://dx.doi.org/10.1109/TIE.2015.2417501
http://dx.doi.org/10.1016/j.apenergy.2016.05.124
http://dx.doi.org/10.3390/app10010410
http://dx.doi.org/10.1016/0166-3615(96)00013-9
http://dx.doi.org/10.1016/j.renene.2015.08.023
http://dx.doi.org/10.1109/TEC.2013.2294893
http://dx.doi.org/10.1016/j.renene.2008.10.022


Appl. Sci. 2020, 10, 3268 18 of 18

18. Cambron, P.; Lepvrier, R.; Masson, C.; Tahan, A.; Pelletier, F. Power curve monitoring using weighted moving
average control charts. Renew. Energy 2016, 94, 126–135. [CrossRef]

19. Long, H.; Wang, L.; Zhang, Z.; Song, Z.; Xu, J. Data-Driven Wind Turbine Power Generation Performance
Monitoring. IEEE Trans. Ind. Electron. 2015, 62, 6627–6635. [CrossRef]

20. Guo, P.; Infield, D. Wind Turbine Power Curve Modeling and Monitoring with Gaussian Process and SPRT.
IEEE Trans. Sustain. Energy 2018, 11. [CrossRef]

21. Papatheou, E.; Dervilis, N.; Maguire, A.E.; Campos, C.; Antoniadou, I.; Worden, K. Performance monitoring
of a wind turbine using extreme function theory. Renew. Energy 2017, 113, 1490–1502. [CrossRef]

22. De la Hermosa, R.R.; González-Carrato, R. Wind farm monitoring using Mahalanobis distance and fuzzy
clustering. Renew. Energy 2018, 123, 526–540.

23. Gill, S.; Stephen, B.; Galloway, S. Wind Turbine Condition Assessment through Power Curve Copula
Modeling. IEEE Trans. Sustain. Energy 2012, 3, 94–101. [CrossRef]

24. Marvuglia, A.; Messineo, A. Monitoring of wind farms’ power curves using machine learning techniques.
Appl. Energy 2012, 98, 574–583. [CrossRef]

25. Lapira, E.; Brisset, D.; Ardakani, H.D.; Siegel, D.; Lee, J. Wind turbine performance assessment using
multi-regime modeling approach. Renew. Energy 2012, 45, 86–95. [CrossRef]

26. Skrimpas, G.A.; Sweeney, C.W.; Marhadi, K.S.; Jensen, B.B.; Mijatovic, N.; Holbll, J. Employment of Kernel
Methods on Wind Turbine Power Performance Assessment. IEEE Trans. Sustain. Energy 2015, 6, 698–706.
[CrossRef]

27. Jia, X.; Jin, C.; Buzza, M.; Wang, W.; Lee, J. Wind turbine performance degradation assessment based on a
novel similarity metric for machine performance curves. Renew. Energy 2016, 99, 1191–1201. [CrossRef]

28. Dai, J.C.; Yang, W.X.; Cao, J.W.; Liu, D.S.; Long, X. Ageing assessment of a wind turbine over time by
interpreting wind farm SCADA data. Renew. Energy 2018, 116, 116,199–208. [CrossRef]

29. Ester, M.; Kriegel, H.P.; Xu, X. A density-based algorithm for discovering clusters a density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International
Conference on Knowledge Discovery & Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231.

30. Daszykowski, M.; Walczak, B.; Massart, D.L. Looking for natural patterns in data: Part 1. Density-based
approach. Chemom. Intell. Lab. Syst. 2001, 56, 83–92. [CrossRef]

31. Daszykowski, M.; Walczak, B.; Massart, D.L. Looking for natural patterns in analytical data. Part 2. Tracing
local density with OPTICS. J. Chem. Inf. Comput. Sci. 2016, 42, 500. [CrossRef]

32. Mahmoud, H.M. Sorting: A Distribution Theory; John Wiley & Sons: Hoboken, NJ, USA, 2000;
ISBN 978-04713978-047132710327103.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.renene.2016.03.031
http://dx.doi.org/10.1109/TIE.2015.2447508
http://dx.doi.org/10.1109/TSTE.2018.2884699
http://dx.doi.org/10.1016/j.renene.2017.07.013
http://dx.doi.org/10.1109/TSTE.2011.2167164
http://dx.doi.org/10.1016/j.apenergy.2012.04.037
http://dx.doi.org/10.1016/j.renene.2012.02.018
http://dx.doi.org/10.1109/TSTE.2015.2405971
http://dx.doi.org/10.1016/j.renene.2016.08.018
http://dx.doi.org/10.1016/j.renene.2017.03.097
http://dx.doi.org/10.1016/S0169-7439(01)00111-3
http://dx.doi.org/10.1021/ci010384s
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Problem Definition 
	Power Curves 
	Problem Statement and Purpose of Assessment 

	Power Performance Assessment Methodology 
	Baseline Data Selection 
	Preprocessing 
	Health Value Based on the Probabilistic Area Metric 
	Health Value in the MWPTR 
	Health Value in the RPOR 

	Calculation Flowchart 

	Verification of Results 
	MWPTR Results 
	RPOR Results 

	Potential Implementation 
	Performance Optimization 
	Degradation Analysis 
	Condition Pre-Warning 

	Conclusions 
	References

