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Abstract: Pneumonia is a life-threatening disease, which occurs in the lungs caused by either bacterial
or viral infection. It can be life-endangering if not acted upon at the right time and thus the early
diagnosis of pneumonia is vital. The paper aims to automatically detect bacterial and viral pneumonia
using digital x-ray images. It provides a detailed report on advances in accurate detection of
pneumonia and then presents the methodology adopted by the authors. Four different pre-trained
deep Convolutional Neural Network (CNN): AlexNet, ResNet18, DenseNet201, and SqueezeNet were
used for transfer learning. A total of 5247 chest X-ray images consisting of bacterial, viral, and normal
chest x-rays images were preprocessed and trained for the transfer learning-based classification task.
In this study, the authors have reported three schemes of classifications: normal vs. pneumonia,
bacterial vs. viral pneumonia, and normal, bacterial, and viral pneumonia. The classification accuracy
of normal and pneumonia images, bacterial and viral pneumonia images, and normal, bacterial,
and viral pneumonia were 98%, 95%, and 93.3%, respectively. This is the highest accuracy, in any
scheme, of the accuracies reported in the literature. Therefore, the proposed study can be useful in
more quickly diagnosing pneumonia by the radiologist and can help in the fast airport screening of
pneumonia patients.

Keywords: pneumonia; bacterial and viral pneumonia; chest X-ray; deep learning; transfer learning;
image processing

1. Introduction

Pneumonia is considered the greatest cause of child fatalities all over the world.
Approximately 1.4 million children die of pneumonia every year, which is 18% of the total children
died at less than five years old [1]. Globally, overall, two billion people are suffering from pneumonia
every year [1]. Pneumonia is a lung infection, which can be caused by either bacteria or viruses.
Luckily, this bacterial or viral infectious disease can be well treated by antibiotics and antivirals drugs.
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Nevertheless, faster diagnosis of viral or bacterial pneumonia and the consequent application of correct
medication can help significantly to prevent deterioration of a patient’s condition, which eventually
leads to death [2]. Chest X-rays are currently the best method for diagnosing pneumonia [3]. X-ray
images of pneumonia are not very clear and are often misclassified to other diseases or other benign
abnormalities. Moreover, the bacterial or viral pneumonia images are sometimes miss-classified by
the experts, which leads to wrong medication being given to the patients and thereby worsening
the condition of the patients [4–6]. There are considerable subjective inconsistencies in the decisions
of radiologists reported in diagnosing pneumonia. There is also a lack of trained radiologists in
low resource countries (LRC), especially in rural areas. Therefore, there is a pressing need for
computer-aided diagnosis (CAD) systems, which can help the radiologists in detecting different types
of pneumonia from the chest X-ray images immediately after the acquisition.

Currently, many biomedical complications (e.g., brain tumor detection, breast cancer detection, etc.) are
using Artificial Intelligence (AI)-based solutions [7–10]. Among the deep learning techniques, convolutional
neural networks (CNNs) have shown great promise in image classification and therefore widely adopted
by the research community [11]. Deep Learning Machine learning techniques on chest X-rays are gaining
popularity as they can be easily used with low-cost imaging techniques and there is an abundance of data
available for training different machine-learning models. Several research groups [1,12–25] have reported
the use of deep machine learning algorithms in the detection of pneumonia; however, only one article [16]
has reported the classification of bacterial and viral pneumonia.

There are many works where the authors tried varying the parameters of deep layered CNN for
pneumonia detection. The pattern of diffuse opacification in the lung radiograph due to pneumonia can
be alveolar or interstitial. Patients with alveolar infiltration on the chest radiograph, especially those
with lobar infiltrates, have laboratory evidence of a bacterial infection [26]. Again, interstitial infiltrations
on radiograph may be linked with viral pneumonia [27]. These might be the distinctive features in the
machine learning algorithms in differentiating viral and bacterial pneumonia. Some researchers have
promising results, such as Liang et al. [18], Vikash et al. [28], Krishnan et al. [29], and Xianghong et al. [30].
Some groups have combined CNN with rib suppression and lung filed segmentation for other
classification tasks, while some highlighted a visualization technique in CNN to find the region of
interest (ROI) that can be used to identify pneumonia and distinguish between bacterial and viral
types in pediatric chest X-rays. The concept of transfer learning in deep learning framework was used
by Vikash et al. [28] for the detection of pneumonia using pre-trained ImageNet models [31] and their
ensembles. A customized VGG16 model was used in Xianghong et al. [30], which consists of two
parts, lung region identification with a fully convolutional network (FCN) model and pneumonia
category classification using a deep convolutional neural network (DCNN). A dataset containing
32,717 patients’ X-rays were used in a deep learning technique by Wang et al. [12] producing promising
results. In [13] the authors further went on using data augmentation along with CNN to get better
results by training on a small set of images. Rajpurkar et al. [32] reported a 121-layer CNN on chest
X-rays to detect 14 different pathologies, including pneumonia using an ensemble of different networks.
Jung et al. [33] used a 3D Deep CNN with shortcuts and dense connections which help in solving
the gradient vanishing problem. Jaiswal et al. [17] and Siraz et al. [34] used a deep neural network
called Mask-RCNN (Region based Convolutional Neural Network) for the segmentation of pulmonary
images. This was used along with image augmentation for pneumonia identification, which was
ensembled with RetinaNet to localize pneumonia. A pretrained DenseNet-121 and feature extraction
techniques were used in the accurate identification of 14 thoracic diseases in [16]. Sundaram et al. [35]
used AlexNet and GoogLeNet [36] with data augmentation to obtain an Area Under the Curve
(AUC) of 0.94–0.95. The same authors had better results of AUC of 0.99 using modified two-network
ensemble architecture.

The highest accuracy reported in the above-mentioned literatures in classifying the normal vs.
pneumonia patients and bacterial vs. viral pneumonia using X-ray images using deep learning
algorithms was 96.84% and 93.6%, respectively. Therefore, there is significant room for improving
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the result either by using different deep learning algorithms or modifying the existing outperforming
algorithms or combining several outperforming algorithms as an ensemble model to produce a better
classification accuracy, particularly in classifying viral and bacterial pneumonia. The proposed study is
reporting a transfer learning approach using four different pre-trained network architectures (AlexNet,
ResNet18, DenseNet201, and SqueezeNet) and analyzed their performances. The key contribution of
this work is to provide a CNN-based transfer-learning approach using different pre-trained models to
detect pneumonia and classify bacterial and viral pneumonia with higher accuracy compared to the
recent works. In addition, the paper also provides the methodological details of the work, which can
be utilized by any research group to take the benefit of this work. Moreover, radiographic findings
are poor indicators for the diagnosis of the cause of pneumonia until now. Therefore, the motivation
of the present study was to utilize the power of machine learning, firstly to diagnose pneumonia by
analyzing radiograph and secondly to differentiate viral and bacterial pneumonia with better accuracy.

The rest of the paper is divided in the following section: Section 2 summarizes different pre-trained
networks used for this study and Section 3 describes the methodology used in the study, where the
details of the dataset and the pre-processing steps to prepare the data for training and testing are
provided. Section 4 provides the results of the classification algorithms, which is compared with some
other recent studies, and the results are discussed in this section. Finally, the conclusion is presented in
Section 5.

2. Background of Deep Machine Learning Algorithms

2.1. Convolutional Neural Networks (CNNs)

As discussed earlier, CNNs have been popular due to their improved performance in image
classification. The convolutional layers in the network along with filters help in extracting the spatial
and temporal features in an image. The layers have a weight-sharing technique, which helps in
reducing computation efforts [37,38].

Architecture wise, CNNs are simply feedforward artificial neural networks (ANNs) with two
constraints: neurons in the same filter are only connected to local patches of the image to preserve
spatial structure and their weights are shared to reduce the total number of the model’s parameters.
A CNN consists of three building blocks: (i) a convolution layer to learn features, (ii) a max-pooling
(subsampling) layer is to down sample the image and reduce the dimensionality and thereby reduction
in computational efforts, and (iii) a fully connected layer to equip the network with classification
capabilities [39]. The architectural overview of CNN is illustrated in Figure 1.
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2.2. Deep Transfer Learning

CNNs typically outperform in a larger dataset than a smaller one. Transfer learning can be useful
in those applications of CNN where the dataset is not large. The concept of transfer learning is shown
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in Figure 2, where the trained model from large datasets, such as ImageNet [40,41], can be used for
application with a comparatively smaller dataset.Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 18 
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Figure 2. Concept of transfer learning.

Recently, transfer learning has been successfully used in various field applications, such as
manufacturing, medical and baggage screening [42–44]. This removes the requirement of having large
dataset and also reduces the long training period, as is required by the deep learning algorithm when
developed from scratch [45,46].

2.3. Pre-Trained Convolutional Neural Networks

In this study, four well-known pre-trained deep learning CNNs: AlexNet [11], ResNet [47],
DenseNet [47], and SqueezeNet [48] were used for pneumonia detection. A brief introduction of these
pre-trained networks is mentioned below:

2.3.1. AlexNet

AlexNet can classify more than 1000 different classes using deep layers consisting of 650k neurons
and 60 million parameters. The network is made up of five convolutional layers (CLs) with three
pooling layers, two fully connected layer (FLCs), and a Softmax layer [11]. The dimension of input
image for the AlexNet has to be 227 × 227 × 3 and the first CL converts input image with 96 kernels
sized at 11 × 11 × 3 having a stride of four pixels, which is the input to the second layer [49], and the
remaining details are summarized in Figure 3.

2.3.2. ResNet18

ResNet, which is a short form of Residual Network (Figure 4), was originally developed to two
problems, such as the vanishing gradient and degradation problem [47]. Residual learning tries to solve
both these problems. ResNet has three different variants: ResNet18, ResNet50, and ResNet101 based
on the number of layers in the residual network. ResNet was successfully used in biomedical image
classification [48] for transfer learning. In this paper, we have used ResNet18 for the pneumonia
detection. Typically, deep neural network layers learn low- or high-level features during training,
while ResNet learns residuals instead of features.
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2.3.3. DenseNet201

DenseNet, which is a short form of the Dense Convolutional Network, needs less numbers of
parameters than a conventional CNN, as it does not learn redundant feature maps [50]. The layers in
DenseNet are very narrow, i.e., 12 filters, which add a lesser set of new feature-maps. DenseNet has
four different variants: DenseNet121, DenseNet169, DenseNet201, and DenseNet264. In this paper,
we have used DenseNet201 for the pneumonia detection [51]. Each layer in DenseNet (as shown
in Figure 5) has direct access to the original input image and gradients from the loss function.
Therefore, the computational cost significantly reduced, which makes DenseNet a better choice for
image classification.

2.3.4. SqueezeNet

SqueezeNet [52] is another CNN, which was trained using ImageNet database [51].
The SqueezeNet was trained with more than 1 million images and it has 50 times fewer parameters
than AlexNet. The foundation of this network is a fire module, which consists of the squeeze layer and
expand layer. The squeeze layer has only 1 × 1 filters, which are feeding to an expand layer that has a
mixture of 1 × 1 and 3 × 3 convolution filters [52] (Figure 6). We have used the SqueezeNet pre-trained
model to detect pneumonia and classify bacterial and viral pneumonia in this research.
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3. Methodology

3.1. Dataset

In this work, the kaggle chest X-ray pneumonia database was used, which is comprised of
5247 chest X-ray images with resolutions varying from 400p to 2000p [53]. Out of 5247 chest X-ray
images, 3906 images are from different subjects affected by pneumonia (2561 images for bacterial
pneumonia and 1345 images for viral pneumonia) and 1341 images are from normal subjects (Table 1).
Mixed viral and bacterial infection occurs in some cases of pneumonia. However, the dataset used in
this study does not include any case of viral and bacterial co-infection. This dataset was segmented
into the training and test set.

Table 1. Complete dataset details.

Type Number of X-ray Images
Normal 1341

Bacterial Pneumonia 2561

Viral Pneumonia 1345

Total 5247



Appl. Sci. 2020, 10, 3233 7 of 17

Table 2 shows a number of train (using augmentation) and test images for different evaluation
experiments. Four different algorithms were trained using the training dataset and then evaluated on
test dataset. Figure 7 shows two samples for normal, bacterial, and viral pneumonia chest X-ray images.

Table 2. Details of the training and test set.

Types Training Set
(Using Augmentation) Test Set

Normal and Pneumonia
Normal 4500 205

Pneumonia 4500 214

Normal, Bacterial,
and Viral Pneumonia

Normal 4500 199

Bacterial Pneumonia 4500 197

Viral Pneumonia 4500 201

Bacterial and Viral
Pneumonia

Bacterial Pneumonia 4500 197

Viral Pneumonia 4500 201
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and (C) shows viral pneumonia cases.

In this study, MATLAB (2019a) was utilized to train, evaluate, and test different algorithms.
Figure 8 illustrates the overview of the methodology of this study. Image sets undergo some
pre-processing steps, data augmentation, and then training using pre-trained algorithms: AlexNet,
ResNet18, DenseNet201, and SqueezeNet, and all the tested algorithms on the test dataset. The training
of the different models was carried out in a computer with Intel© i7-core @3.6GHz processor and
16GB RAM, 2 GB graphics card with graphics processing unit (GPU) on 64-bit Windows 10 operating
system. Different parameters used for training the CNN models were shown in the Table 3. ResNet and
DenseNet have different variants; however, ResNet18 and DenseNet201 were readily available for
Matlab 2019a and therefore used in this study. Moreover, ResNet18 outperforms other ResNet models
in terms of radiographic classification.

Table 3. Training parameters of different pre-trained CNN models.

Software Pre-Trained
CNN Models

Image
Size Optimization Momentum Mini-Batch Learning Rate

Matlab
(2019a)

AlexNet 227 × 227

Gradient
Descent

0.9 16 0.0003
ResNet18 224 × 224

DenseNet201 224 × 224

SqueezeNet 227 × 227
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3.2. Preprocessing

One of the important steps in the data preprocessing was to resize the X-ray images as the
image input for different algorithms were different. For AlexNet and SqueezeNet, the images were
resized to 227 × 227 pixels, whereas for ResNet18 and DenseNet201, the images were resized to and
224 × 224 pixels. All images were normalized according to the pre-trained model standards.

Data Augmentation

As discussed earlier, CNNs work better with a large dataset. However, the size of the working
database is not very large. There is a common trend in training deep learning algorithms to make
the comparatively smaller dataset a large one using data augmentation techniques. It is reported
that data augmentation can improve the classification accuracy of the deep learning algorithms.
The performance of the deep learning models can be improved by augmenting the existing data rather
than collecting new data. Some of the deep learning frameworks have data augmentation facility built
into the algorithms; however, in this study, authors have utilized three augmentation strategies to
generate new training sets (Rotation, Scaling, and Translation), as shown in Figure 9.
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The rotation operation used for image augmentation is normally done by rotating the image in the
clockwise direction by an angle between 0 to 360 degrees, which rotates the pixel of the image frame
and fills the area of the image where there was no image pixel. In this work, the rotation of 315 degrees
(counter clockwise 45 degrees) was used. The scaling operation is the magnification or reduction
of frame size of the image, which is another augmentation technique used. In total, 10% of image
magnification, as done as shown in Figure 9C. Image translation can be done by either translating the
image in a horizontal (width shift) or vertical direction (height shift) or in both directions. The original
image was horizontally translated by 10% and vertically translated by 10%.

3.3. Visualization of the Activation Layer

We investigated the features of the image by observing which areas in the convolutional layers
activated on an image by comparing with the matching regions in the original images. Each layer of a
CNN consists of many 2D arrays called channels. The input image was applied to different networks,
and the output activations of the first convolution layer was examined.

The activations for different network models is shown in Figure 10. The activation map can take
different range values and was therefore normalized between 0 and 1. The strongest activation channels
were observed and compared with the original image. It was noticed that this channel activates on
edges. It activates positively on light left/dark right edges and negatively on dark left/light right edges.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18 
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Most convolutional neural networks learn to detect features like color and edges in their first
convolutional layer. In deeper convolutional layers, the network learns to detect features that are more
complicated. Later layers build up their features by combining features of earlier layers. Figure 10
shows the activation map in early convolutional layers, the deep convolutional layer, and the strongest
activation channel for each of the models.

3.4. Different Experiments

Three different forms of performance evaluations and comparisons were carried out in this study:
two classes (normal and pneumonia), three classes (normal, bacterial pneumonia, and viral pneumonia),
and two classes (bacterial pneumonia and viral pneumonia) classification using four different deep
learning algorithms through transfer learning.

The experiment carried out in this study consists of three steps. In the first step, the dataset divided
into normal and pneumonia. In the second step, the dataset divided into normal, bacterial, and viral
pneumonia. In the last step, the dataset divided into bacterial and viral pneumonia. An end-to-end
training approach was adopted to classify normal, bacterial, and viral pneumonia images.

3.5. Performance Matrix for Classification

Four CNNs were trained and evaluated using five-fold cross-validation in this study.
The performance of different networks for the testing dataset is evaluated after the completion
of the training phase and was compared using the following six performances metrics: accuracy,
sensitivity or recall, specificity, precision (PPV), the area under curve (AUC), and F1 score. Table 3
shows six performance metrics for different deep CNNs:

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
(1)

Sensitivity =
(TP)

(TP + FN)
(2)

Speci f icity =
(TN)

(FP + TN)
(3)

Precision =
(TP)

(TN + FP)
(4)

F1 Score =
(2 ∗ TP)

(2 ∗ TP + FN + FP)
(5)

In the above equations, while classifying normal and pneumonia patients, true positive (TP),
true negative (TN), false positive (FP), and false negative (FN) were used to denote the number of
pneumonia images identified as pneumonia, the number of normal images identified as normal,
the number normal images incorrectly identified as pneumonia images, and the number of pneumonia
images incorrectly identified as normal, respectively. On the other hand, while classifying viral and
bacterial pneumonia, TP, TN, FP, and FN were used to denote the number of viral pneumonia images
identified as viral pneumonia, the number of bacterial pneumonia images identified as bacterial
pneumonia, the number bacterial pneumonia images incorrectly identified as viral pneumonia images,
and the number of viral pneumonia images incorrectly identified as bacterial pneumonia, respectively.

4. Results and Discussions

The comparative performance of training and testing accuracy for different CNNs for classification
schemes are shown in Figure 11. It can be noted that, for three classification schemes, DenseNet201 is
producing the highest accuracy for both training and testing. For normal and pneumonia classification,
the test accuracy was 98%, while, for normal, bacterial, and viral pneumonia classification, it was
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93.3%, and, for bacterial and viral pneumonia classification, it was found to be 95%. Figure 12 shows
the area under the curve (AUC)/receiver-operating characteristics (ROC) curve (also known as AUROC
(area under the receiver operating characteristics)) for different classification schemes, which is one of
the most important evaluation metrics for checking any classification model’s performance. It is also
evident from Figure 12 that DenseNet201 outperforms the other algorithms.
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Figure 12. Comparison of the receiver-operating characteristics (ROC) curve for normal pneumonia
(A), normal, bacterial, and viral pneumonia (B), and bacterial and viral pneumonia (C) classification
using CNN-based models.

Figure 13 shows the confusion matrix for outperforming Densenet201 pre-trained model in for
three different classifications.

Table 4 summarizes the performance matrix for different CNN algorithms tested for the three
different classification schemes. DenseNet201 outperforms other models in three different classification
schemes in terms of different performance indices.

The authors have also compared the results in the paper with the results of recently published
works in the same problem. Vikash et al. [21] reported the detection of pneumonia using a deep
learning technique called CXNet-m1, which showed sensitivity, precision, and accuracy of 99.6%,
93.28%, and 96.39%, respectively. Krishnan et al. [29] evaluated the performance of VGG16 CNNs to
classify pneumonia into normal, bacterial, and viral pneumonias. This showed sensitivity, precision,
and accuracy of 99.5%, 97.7%, and 96.2%, respectively for pneumonia detection; however, 98.4%, 92%,
and 93.6%, respectively, for distinguishing viral and bacterial pneumonias. Table 5 summarized the
comparison of others works in pneumonia and types of pneumonia detection from chest X-ray images.
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Table 4. Different performance metrics for different deep learning networks.

Task Models Accuracy Sensitivity
(Recall) Specificity Precision

(PPV)
Area under

Curve (AUC) F1 Scores

AlexNet 0.945 0.953 0.926 0.931 0.942 0.943
ResNet18 0.964 0.97 0.95 0.954 0.963 0.965

DenseNet201 0.98 0.99 0.97 0.97 0.98 0.981
Normal and
Pneumonia

SqueezeNet 0.961 0.94 0.98 0.985 0.96 0.961
AlexNet 0.884 0.883 0.941 0.886 0.911 0.885

ResNet18 0.877 0.88 0.94 0.875 0.91 0.909
DenseNet201 0.933 0.932 0.967 0.937 0.95 0.935

Normal, Bacterial
Pneumonia and
Viral Pneumonia SqueezeNet 0.861 0.859 0.93 0.87 0.895 0.865

AlexNet 0.90 0.94 0.845 0.86 0.89 0.921
ResNet18 0.87 0.92 0.82 0.83 0.87 0.873

DenseNet201 0.95 0.96 0.94 0.95 0.952 0.952
Bacterial and Viral

Pneumonia
SqueezeNet 0.83 0.905 0.75 0.79 0.83 0.84

Table 5. Comparison with other recent similar works.

Author Classes Technique Image
No.

Recall
/Sensitivity(%)

Precision
(%)

AUC
(%)

Accuracy
(%)

Vikash et al. [21] Normal &
Pneumonia

Different
pre-trained CNN

model
5232 99.6 93.28 99.34 96.39

Sivarama krishnan
et al. [29]

Normal &
Pneumonia

customized
VGG16 CNN model 5856 99.5 97.0 99.0 96.2

Kermanyetal. [54] Normal &
Pneumonia

Inception
V3 pretrained CNN

model
5232 93.2 90.1 - 92.8

* M.Togacar
et al. [22]

Normal &
Pneumonia Deep CNN model 5849 96.83 96.88 96.80 96.84

A. A. Saraiva
et al. [23]

Normal &
Pneumonia Neural network 5840 94.5 94.3 94.5 94.4

Enes AYAN
et al. [24]

Normal &
Pneumonia

VGG16 deep
learning model 5856 89.1 91.3 87.0 84.5

Xianghong Gu
et al. [30]

Bacterial &
Viral

Pneumonia

Deep Convolutional
neural network 4882 77.55 88.86 82.3 80.4

* Sivarama krishnan
et al. [29]

Bacterial &
Viral

Pneumonia

customized
VGG16 CNN model 3883 98.4 92.0 96.2 93.6

Archit Khatri
et al. [25]

Bacterial &
Viral

Pneumonia
EMD approach 144 89.5 80.0 88.0 83.30

** This work Normal &
Pneumonia

Different
pre-trained CNN

model
5247 99.0 97.0 98.0 98.0

** This work
Bacterial &

Viral
Pneumonia

Different
pre-trained CNN

model
5247 96.0 95.0 95.2 95.0

* The best performing algorithms reported in the literature while ** shows the performance of this study.

It is evident that DesneNet201 exhibits the highest accuracy of all recent studies to the best of our
knowledge, which could be useful in developing a prototype that can automatically classify results
into normal, bacterial and viral pneumonia. Training the network using a larger database and working
on an ensemble of the pre-trained CNN algorithms might increase the detection accuracy, which can
be done as a future study.

5. Conclusions

This study presents a deep-CNN-based transfer learning approach for the automatic detection of
pneumonia and its classes. Four different popular CNN-based deep learning algorithms were trained
and tested for classifying normal and pneumonia patients using chest x-ray images. It was observed
that DenseNet201 outperforms the other three different deep CNN networks. The classification
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accuracy, precision, and recall of normal and pneumonia images, bacterial, and viral pneumonia
images, and normal, bacterial, and viral pneumonia were 98%, 97%, and 99%; 95%, 95% and 96%;
and 93.3%, 93.7% and 93.2%, respectively. There are millions of children, who die each year due
to this potentially fatal disease. Timely intervention with proper treatment plan through correct
diagnosis of the disease can save a significant number of lives. Due to the huge number of patients in
outdoor emergencies or emergencies specifically in the third world countries, medical doctors’ time
is limited and computer-aided-diagnosis (CAD) can save lives. Moreover, there is a large degree of
variability in the input images from the X-ray machines due to the variations in the expertise of the
radiologists. DenseNet201 exhibits an excellent performance in classifying pneumonia by effectively
training itself from a comparatively lower collection of complex data, such as images, with reduced
bias and higher generalization. We believe that this computer-aided diagnostic tool can significantly
help the radiologist to take more clinically useful images and to identify pneumonia with its type
immediately after acquisition. This fast classification will open up other avenues of application for this
CAD tool, more particularly in the airport screening of pneumonia patients.
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