
applied
sciences

Article

Application of Improved LightGBM Model in Blood
Glucose Prediction

Yan Wang and Tao Wang *

School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China;
wangyan@lut.cn
* Correspondence: w921094412@126.com; Tel.: +86-1733-988-1226

Received: 6 April 2020; Accepted: 2 May 2020; Published: 6 May 2020
����������
�������

Abstract: In recent years, with increasing social pressure and irregular schedules, many people have
developed unhealthy eating habits, which has resulted in an increasing number of patients with diabetes,
a disease that cannot be cured under the current medical conditions, and can only be mitigated by early
detection and prevention. A lot of human and material resources are required for the detection of the
blood glucose of a large number of people in medical examination, while the integrated learning model
based on machine learning can quickly predict the blood glucose level and assist doctors in treatment.
Therefore, an improved LightGBM model based on the Bayesian hyper-parameter optimization algorithm
is proposed for the prediction of blood glucose, namely HY_LightGBM, which optimizes parameters using
a Bayesian hyper-parameter optimization algorithm based on LightGBM. The Bayesian hyper-parameter
optimization algorithm is a model-based method for finding the minimum value of the function so as
to obtain the optimal parameters of the LightGBM model. Experiments have demonstrated that the
parameters obtained by the Bayesian hyper-parameter optimization algorithm are superior to those
obtained by a genetic algorithm and random search. The improved LightGBM model based on the
Bayesian hyper-parameter optimization algorithm achieves a mean square error of 0.5961 in blood
glucose prediction, with a higher accuracy than the XGBoost model and CatBoost model.

Keywords: blood glucose prediction; integrated learning; LightGBM; Bayesian super parameter
optimization

1. Introduction

The recent years have seen a rapid increase in the incidence of diabetes around the world, due
to many factors such as the continuous improvement in people’s living standards, changes in dietary
structure, an increasingly rapid pace of life, and a sedentary lifestyle. Diabetes has become the third major
chronic disease that seriously threatens human health, following cancer and cardiovascular disease [1,2].
According to statistics from the International Diabetes Federation (IDF), there were approximately
425 million patients with diabetes across the world in 2017. One in every 11 adults has diabetes, and one
in every two patients is undiagnosed [3]. As of 2016, diabetes directly caused 1.6 million deaths [4], and it
is estimated that by 2045, nearly 700 million people worldwide will suffer from diabetes, which will pose
an increasing economic burden on health systems in most of countries. It is forecast that by 2030, at least
$490 billion will be spent on diabetes globally [5].

Currently, the diagnosis rate of diabetes is low, as patients exhibit no obvious symptoms in
the early onset of the disease, and many people do not realize they have the disease [6]; thus, early
detection and diagnosis are particularly needed. It is relatively simple to measure a person’s blood
glucose under the existing medical conditions, but it takes a lot of human and material resources to
detect the blood glucose of a large number of people in medical examination. Therefore, the prediction

Appl. Sci. 2020, 10, 3227; doi:10.3390/app10093227 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-9341-2968
http://dx.doi.org/10.3390/app10093227
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/9/3227?type=check_update&version=2

Appl. Sci. 2020, 10, 3227 2 of 16

of the blood glucose of a large number of people in medical examination by machine learning can save
a lot of unnecessary expenses (for example [7]).

With the application of machine learning in medical fields, more and more people are applying
emerging prediction methods to many different medical fields to help greatly reduce the workload of
the related medical staff and improve the diagnosis efficiency of doctors. For example, Yu Daping and
Liu applied the XGBoost model for the early diagnosis of lung cancer [8]. Tjeng Wawan Cenggoro used
the XGBoost model to predict and analyze colorectal cancer in Indonesia [9]. Chang Wenbing forecasted
the prognosis of hypertension using the XGBoost model [10]. Ogunleye Adeola Azeez applied the
XGBoost model for the diagnosis of chronic kidney disease [11]. Wenbing Chang used the XGBoost
model and clustering algorithm to analyze the probability of hypertension-related symptoms [12].
Wang Bin predicted severe hand, foot, and mouth disease using the CatBoost model [13].

As the XGBoost model generates a decision tree using the level-wise method [14], it the splits
leaves simultaneously on the same layer, but the splitting gain of most leaf nodes is low. In many cases
where further splitting is unnecessary, the XGBoost model will continue to split, causing non-essential
expenses. Compared with the LightGBM model, the XGBoost model occupies more memory and consumes
more time when the dataset is large.

The traditional genetic algorithm and random search algorithm have different defects—the genetic
algorithm is a natural adaptive optimization method that simulates the problem to be solved as a process
of biological evolution, and gradually eliminates the solutions with low fitness function values through
generating next-generation solutions by operations such as replication, crossover, and mutation [15].
The genetic algorithm uses the search information of multiple search points at the same time, and adopts
probabilistic search technology to obtain the optimal or sub-optimal solution of the optimization problem.
It boasts of good search flexibility, global search capability, and is easily implemented [16]. However, it has
a poor local search ability, complicated process caused by many control variables, and there are no definite
termination rules. The random searching algorithm (RandomizedSearchCV) performs a random search
in a set parameter search space. It samples a fixed number of parameters from a specified distribution
instead of trying all of the parameter values [17]. However, the random searching algorithm exhibits a
poor performance when the dataset is small. Therefore, this paper proposes an improved LightGBM
model for blood glucose prediction.

The main contributions of this study are as follows: by preprocessing the data on various medical
examination indicators of people receiving medical examination, this paper proposes a LightGBM model
optimized by the Bayesian hyper-parameter optimization algorithm to predict the blood glucose level of
people receiving medical examination. The LightGBM model optimized by the Bayesian hyper-parameter
optimization algorithm achieves a higher accuracy than the XGBoost model, Catboost model, the LightGBM
model optimized by genetic algorithm, and the LightGBM model optimized by random searching algorithm,
which can help doctors give early warning to those potentially suffering from diabetes, so as to reduce
the incidence of diabetes, increase the diagnosis rate, and provide new ideas for the in-depth study on
diabetes. The proposed method was verified by the diabetes data from a grade-three first-class hospital in
China from September to October 2017.

2. Materials and Methods

2.1. LightGBM Model

LightGBM is an improvement framework based on decision tree algorithm released by Microsoft
in 2017. LightGBM and XGBoost both support parallel arithmetic, but LightGBM is more powerful
than the previous XGBoost model, with a fast training speed and less memory occupation, which can
reduce the communication cost of parallel learning. LightGBM is mainly featured by the decision tree
algorithm based on gradient-based one-side sampling (GOSS), exclusive feature bundling (EFB), and a
histogram and leaf-wise growth strategy with a depth limit.

Appl. Sci. 2020, 10, 3227 3 of 16

The basic idea of GOSS (gradient-based one-side sampling) is to keep all of the large gradient
samples and to perform random sampling on the small gradient samples according to proportion.
The basic idea of the EFB (exclusive feature bundling) algorithm is to divide the features into a smaller
number of mutually exclusive bundles, that is, it is impossible to find an accurate solution in polynomial
time. Therefore, what it uses is an approximate solution, that is, a small number of sample points that
are not mutually exclusive are allowed between features (for example, some corresponding sample
points are not non-zero at the same time). Allowing a small part of conflict can obtain a smaller number
of feature bundles, which further improves the computational effectiveness [18].

The basic idea of the histogram algorithm is to discretize continuous floating point features into k
integers, and to construct a histogram with a width of k at the same time. When the data are traversed,
statistics is accumulated in the histogram with the discretized value as index. After the data are traversed
once, the histogram accumulates the required volume of statistics, and then the optimal segmentation
point can be found through traverse according to the discrete value in the histogram, as shown in Figure 1:

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 17

The basic idea of GOSS (gradient-based one-side sampling) is to keep all of the large gradient
samples and to perform random sampling on the small gradient samples according to proportion.
The basic idea of the EFB (exclusive feature bundling) algorithm is to divide the features into a
smaller number of mutually exclusive bundles, that is, it is impossible to find an accurate solution
in polynomial time. Therefore, what it uses is an approximate solution, that is, a small number of
sample points that are not mutually exclusive are allowed between features (for example, some
corresponding sample points are not non-zero at the same time). Allowing a small part of conflict
can obtain a smaller number of feature bundles, which further improves the computational
effectiveness [18].

The basic idea of the histogram algorithm is to discretize continuous floating point features
into k integers, and to construct a histogram with a width of k at the same time. When the data are
traversed, statistics is accumulated in the histogram with the discretized value as index. After the
data are traversed once, the histogram accumulates the required volume of statistics, and then the
optimal segmentation point can be found through traverse according to the discrete value in the
histogram, as shown in Figure 1:

Figure 1. Schematic diagram of the histogram algorithm.

Most of the learning algorithm tree of decision tree is generated by the level-wise growth
method, such as XGBoost, as shown in Figure 2:

Figure 2. Schematic diagram of level wise strategy growth tree.

LightGBM uses a leaf-wise growth strategy with a depth limit to find a leaf node with the
largest split gain in all of the current leaf nodes, then splits, and so on, as shown in Figure 3:

Figure 3. Schematic diagram of leaf-wise strategy growth tree.

Compared with the level-wise growth strategy, leaf-wise tree growth can reduce large errors
and achieve a higher accuracy, thereby providing solutions to many problems. For example, Xile
Gao used Stacked Denoising Auto Encoder (SDAE) and LightGBM models to recognize human
activity [19]; Sunghyeon Choi employed a random forest, XGBoost model, and LightGBM model to
predict solar energy output [20]; João Rala Cordeiro forecasted children’s height using a XGBoost

Figure 1. Schematic diagram of the histogram algorithm.

Most of the learning algorithm tree of decision tree is generated by the level-wise growth method,
such as XGBoost, as shown in Figure 2:

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 17

The basic idea of GOSS (gradient-based one-side sampling) is to keep all of the large gradient
samples and to perform random sampling on the small gradient samples according to proportion.
The basic idea of the EFB (exclusive feature bundling) algorithm is to divide the features into a
smaller number of mutually exclusive bundles, that is, it is impossible to find an accurate solution
in polynomial time. Therefore, what it uses is an approximate solution, that is, a small number of
sample points that are not mutually exclusive are allowed between features (for example, some
corresponding sample points are not non-zero at the same time). Allowing a small part of conflict
can obtain a smaller number of feature bundles, which further improves the computational
effectiveness [18].

The basic idea of the histogram algorithm is to discretize continuous floating point features
into k integers, and to construct a histogram with a width of k at the same time. When the data are
traversed, statistics is accumulated in the histogram with the discretized value as index. After the
data are traversed once, the histogram accumulates the required volume of statistics, and then the
optimal segmentation point can be found through traverse according to the discrete value in the
histogram, as shown in Figure 1:

Figure 1. Schematic diagram of the histogram algorithm.

Most of the learning algorithm tree of decision tree is generated by the level-wise growth
method, such as XGBoost, as shown in Figure 2:

Figure 2. Schematic diagram of level wise strategy growth tree.

LightGBM uses a leaf-wise growth strategy with a depth limit to find a leaf node with the
largest split gain in all of the current leaf nodes, then splits, and so on, as shown in Figure 3:

Figure 3. Schematic diagram of leaf-wise strategy growth tree.

Compared with the level-wise growth strategy, leaf-wise tree growth can reduce large errors
and achieve a higher accuracy, thereby providing solutions to many problems. For example, Xile
Gao used Stacked Denoising Auto Encoder (SDAE) and LightGBM models to recognize human
activity [19]; Sunghyeon Choi employed a random forest, XGBoost model, and LightGBM model to
predict solar energy output [20]; João Rala Cordeiro forecasted children’s height using a XGBoost

Figure 2. Schematic diagram of level wise strategy growth tree.

LightGBM uses a leaf-wise growth strategy with a depth limit to find a leaf node with the largest
split gain in all of the current leaf nodes, then splits, and so on, as shown in Figure 3:

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 17

The basic idea of GOSS (gradient-based one-side sampling) is to keep all of the large gradient
samples and to perform random sampling on the small gradient samples according to proportion.
The basic idea of the EFB (exclusive feature bundling) algorithm is to divide the features into a
smaller number of mutually exclusive bundles, that is, it is impossible to find an accurate solution
in polynomial time. Therefore, what it uses is an approximate solution, that is, a small number of
sample points that are not mutually exclusive are allowed between features (for example, some
corresponding sample points are not non-zero at the same time). Allowing a small part of conflict
can obtain a smaller number of feature bundles, which further improves the computational
effectiveness [18].

The basic idea of the histogram algorithm is to discretize continuous floating point features
into k integers, and to construct a histogram with a width of k at the same time. When the data are
traversed, statistics is accumulated in the histogram with the discretized value as index. After the
data are traversed once, the histogram accumulates the required volume of statistics, and then the
optimal segmentation point can be found through traverse according to the discrete value in the
histogram, as shown in Figure 1:

Figure 1. Schematic diagram of the histogram algorithm.

Most of the learning algorithm tree of decision tree is generated by the level-wise growth
method, such as XGBoost, as shown in Figure 2:

Figure 2. Schematic diagram of level wise strategy growth tree.

LightGBM uses a leaf-wise growth strategy with a depth limit to find a leaf node with the
largest split gain in all of the current leaf nodes, then splits, and so on, as shown in Figure 3:

Figure 3. Schematic diagram of leaf-wise strategy growth tree.

Compared with the level-wise growth strategy, leaf-wise tree growth can reduce large errors
and achieve a higher accuracy, thereby providing solutions to many problems. For example, Xile
Gao used Stacked Denoising Auto Encoder (SDAE) and LightGBM models to recognize human
activity [19]; Sunghyeon Choi employed a random forest, XGBoost model, and LightGBM model to
predict solar energy output [20]; João Rala Cordeiro forecasted children’s height using a XGBoost

Figure 3. Schematic diagram of leaf-wise strategy growth tree.

Compared with the level-wise growth strategy, leaf-wise tree growth can reduce large errors and
achieve a higher accuracy, thereby providing solutions to many problems. For example, Xile Gao used
Stacked Denoising Auto Encoder (SDAE) and LightGBM models to recognize human activity [19];
Sunghyeon Choi employed a random forest, XGBoost model, and LightGBM model to predict solar
energy output [20]; João Rala Cordeiro forecasted children’s height using a XGBoost model and
LightGBM model [21]; Ma Xiaojun et al. adopted a LightGBM model and XGBoost model to predict

Appl. Sci. 2020, 10, 3227 4 of 16

the default of P2P network loans [22]; Chen Cheng et al. used LightGBM and a multi-information
fusion model to predict the interaction between proteins [23]; and Vikrant A. Dev applied a LightGBM
model to stratum lithology classification [24].

The following is the introduction to the theory of the LightGBM model’s objective function: yi
is the objective value, i is the predicted value, T represents the number of leaf nodes, q denotes the
structure function of the tree, and w is the leaf weight.

The objective function is as follows:

Obj(t) =
n∑

i=1
l(yi, ŷ(t)i) +

t∑
i=1

Ω(fi)

=
n∑

i=1
l(yi, ŷ(t−1)

i + ft(xi)) +
t∑

i=1
Ω(fi)

(1)

Logistic loss:
L(θ) =

∑
i

[yi ln(1 + e−ŷi) + (1− yi) ln (1 + e)ŷi] (2)

Use the Taylor expansion to define the objective function:

f (x + ∆x) � f (x) + f ′(x)∆x +
1
2

f ′′ (x)∆x2 (3)

At this time, the objective function is the following:

Obj(t) =
n∑

i=1

[l(yi, ŷ(t−1)) + gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω(ft) (4)

Among:
gi = ∂

ŷ(t−1)
i

l(yi, ŷ(t−1)), hi = ∂2
ŷ(t−1)

i

l(yi, ŷ(t−1)) (5)

Use the accumulation of n samples to traverse all of the leaf nodes:

Obj(t) �
n∑

i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω(f(t)) (6)

where Ij is the sample set in leaf node j, namely:

G j =
∑

i∈I j
gi, H j =

∑
i∈I j

hi (7)

Therefore:

Obj(t) =
T∑

j=1
[(
∑

i∈I j
gi)w j +

1
2 (

∑
i∈Ii

h j + λ)w2
j]

=
T∑

j=1
[G jw j +

1
2 (H j + λ)w2

j]
(8)

The partial derivative of the output Wj of the jth leaf node is obtained, and the minimum value is
obtained as follows:

∂
∂w j

[(
∑

i∈I j
gi)w j +

1
2
(
∑

i∈I j
hi + λ)w2

j] =
∑

i∈I j
gi + (

∑
i∈I j

hi + λ)w j (9)

Solution:

w j = −
G j

H j + λ
(10)

Appl. Sci. 2020, 10, 3227 5 of 16

When the structure of the q (x) tree is determined, the function Lt(q) is obtained, as follows:

Lt(q) =
T∑

j=1
G jw j +

1
2 (H j + λ)w2

j

=
T∑

j=1
[G j(−

G j
H j+λ

) + 1
2 (H j + λ)(−

G j
H j+λ

)
2
]

=
T∑

j=1
−

G2
j

H j+λ
+ 1

2

G2
j

H j+λ

= − 1
2

T∑
j=1

G2
j

H j+λ

(11)

The calculated gain is the following:

G =
1
2
[

G2
L

HL + λ
+

G2
R

HR + λ
−

(GL + GR)
2

HL + HR + λ
] (12)

2.2. Bayesian Hyper-Parameter Optimization Algorithm

The basic idea of the Bayesian hyper-parameter optimization algorithm is to establish a substitute
function based on the evaluation result of the past objective to find the minimum value of the objective
function. The substitute function established in this process is easier to optimize than the original objective
function, and the input value to be evaluated is selected by applying a certain standard to the proxy
function [25]. Although the genetic algorithm is currently widely used in the parameter optimization of
machine learning [26–29], its disadvantages are also obvious, such as a poor ability of local search, many
control variables, a complicated process, and no determined termination rules. The random searching
algorithm is a traditional parameter optimization algorithm in machine learning [30]. It uses random
sampling within the search range for parameter optimization, but the effect is poor when the dataset is
small. In contrast, Bayesian hyper-parameter optimization takes the result of the previous evaluation into
account when trying another set of hyper-parameters, and has a simpler process of optimizing model
parameters than the genetic algorithm, which can save a lot of time.

The HY_LightGBM model proposed in this paper uses one of the Bayesian optimization libraries
in Python, Hyperopt, which uses Tree Parzen Estimation (TPE) as the optimization algorithm.

The optimization process of the Bayesian optimization algorithm is shown in Figure 4.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17

2

1

2

1

2 2

1

2

1

1() ()
2

1= [() ()()]
2

1
2

1
2

T

t j j j j
j

T
j j

j j
j j j

T
j j

j j j

T
j

j j

L q G w H w

G G
G H

H H

G G
H H

G
H

λ

λ
λ λ

λ λ

λ

=

=

=

=

= + +

− + + −
+ +

= − +
+ +

= −
+

∑

∑

∑

∑

(11)

The calculated gain is the following:
2 2 2()1 []

2
L R L R

L R L R

G G G GG
H H H Hλ λ λ

+
= + −

+ + + +
(12)

2.2. Bayesian Hyper-Parameter Optimization Algorithm

The basic idea of the Bayesian hyper-parameter optimization algorithm is to establish a
substitute function based on the evaluation result of the past objective to find the minimum value of
the objective function. The substitute function established in this process is easier to optimize than
the original objective function, and the input value to be evaluated is selected by applying a certain
standard to the proxy function [25]. Although the genetic algorithm is currently widely used in the
parameter optimization of machine learning [26–29], its disadvantages are also obvious, such as a
poor ability of local search, many control variables, a complicated process, and no determined
termination rules. The random searching algorithm is a traditional parameter optimization
algorithm in machine learning [30]. It uses random sampling within the search range for parameter
optimization, but the effect is poor when the dataset is small. In contrast, Bayesian hyper-parameter
optimization takes the result of the previous evaluation into account when trying another set of
hyper-parameters, and has a simpler process of optimizing model parameters than the genetic
algorithm, which can save a lot of time.

The HY_LightGBM model proposed in this paper uses one of the Bayesian optimization
libraries in Python, Hyperopt, which uses Tree Parzen Estimation (TPE) as the optimization
algorithm.

The optimization process of the Bayesian optimization algorithm is shown in Figure 4.

start

Define objective
function

Definition domain space is the
value range of parameters

Construct
substitution function

Get the optimal
parameters

End

Figure 4. Flow chart of parameter optimization. Figure 4. Flow chart of parameter optimization.

Appl. Sci. 2020, 10, 3227 6 of 16

By defining the objective function, domain space, and constructing the substitution function,
the optimal parameters were finally obtained, with mean square error (MSE) as the evaluation indicator.
The obtained optimal parameters were input into the LightGBM model to further improve the prediction
ability of the model.

2.3. Improved LightGBM Model Based on Bayesian Hyper-Parameter Optimization Algorithm

The experiment was conducted on a computer with Intel I5 8400 2.8 GHz six-core six-thread
central processing unit (CPU), 16G random-access memory (RAM), and Windows 10 operating system.
The simulation platform is Pycharm, and Python was used for programming, with sklearn, pandas,
and numpy libraries adopted.

Because LightGBM has many parameters, the manual adjustment of parameters will be complicated,
and considering its parameters have a great impact on experimental results, it is particularly necessary
to use Bayesian hyper-parameter optimization algorithm for parameter optimization. The Hyperopt
used in this paper is one of the Bayesian optimization libraries in Python. It is also a class library used
in distributed asynchronous algorithm configuration in Python, with a faster speed and better effect in
finding the optimal parameters of the model than the traditional parameter optimization algorithms.

The specific steps are as follows:

(1) Divide the dataset into training set and test set, process the missing values, analyze the weight of
the influence of the eigenvalues on the results, delete useless eigenvalues, and delete outliers;

(2) Use the Bayesian hyper-parameter optimization algorithm for the parameter optimization of the
LightGBM model, and the HY_LightGBM model is constructed and trained;

(3) Use the HY_LightGBM model for prediction and output the prediction results.
(4) The specific experimental process is shown in Figure 5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17

By defining the objective function, domain space, and constructing the substitution function,
the optimal parameters were finally obtained, with mean square error (MSE) as the evaluation
indicator. The obtained optimal parameters were input into the LightGBM model to further
improve the prediction ability of the model.

2.3. Improved LightGBM Model Based on Bayesian Hyper-Parameter Optimization Algorithm

The experiment was conducted on a computer with Intel I5 8400 2.8GHz six-core six-thread
central processing unit (CPU), 16G random-access memory (RAM), and Windows 10 operating
system. The simulation platform is Pycharm, and Python was used for programming, with sklearn,
pandas, and numpy libraries adopted.

Because LightGBM has many parameters, the manual adjustment of parameters will be
complicated, and considering its parameters have a great impact on experimental results, it is
particularly necessary to use Bayesian hyper-parameter optimization algorithm for parameter
optimization. The Hyperopt used in this paper is one of the Bayesian optimization libraries in
Python. It is also a class library used in distributed asynchronous algorithm configuration in Python,
with a faster speed and better effect in finding the optimal parameters of the model than the
traditional parameter optimization algorithms.

The specific steps are as follows:

(1) Divide the dataset into training set and test set, process the missing values, analyze the
weight of the influence of the eigenvalues on the results, delete useless eigenvalues, and
delete outliers;

(2) Use the Bayesian hyper-parameter optimization algorithm for the parameter optimization
of the LightGBM model, and the HY_LightGBM model is constructed and trained;

(3) Use the HY_LightGBM model for prediction and output the prediction results.
(4) The specific experimental process is shown in Figure 5.

start

Input data
set

Divide the data set into training set and test
set

Delete characteristic values with more
missing values

Delete eigenvalues that have no effect on
experimental results

Delete outliers

Using Bayesian super parameter optimization algorithm to
optimize the parameters of the model, after obtaining the

parameters, training and prediction are carried out

Output
forecast
results

End

Figure 5. Experiment flow chart.

Figure 5. Experiment flow chart.

2.4. Data Preprocessing

The dataset in this paper is the diabetes data from September to October 2017 in a grade-three
first-class hospital, provided by the Tianchi competition platform as the data source, with a total of
7642 pieces of data and 42 eigenvalues, As shown in Table 1. The eigenvalues include the following:

Appl. Sci. 2020, 10, 3227 7 of 16

Table 1. Introduction to eigenvalues.

Eigenvalue Name Eigenvalue Name Explanation (Unit)

ID Physical examination personnel ID

Gender Male/female

Age Age

Date of physical examination Date of physical examination

Aspartate aminotransferase Aspartate aminotransferase (U/L)

Alanine aminotransferase Alanine aminotransferase (U/L)

Alkaline phosphatase Alkaline phosphatase (U/L)

R-Glutamyltransferase R-Glutamyltransferase (U/L)

Total protein Total serum protein (g/L)

Albumin Serum albumin (g/L)

Globulin Globulin (g/L)

White ball ratio Ratio of albumin to globulin

Triglyceride Serum triglyceride (mmol/L)

Total cholesterol Total cholesterol in lipoproteins (mmol/L)

High density lipoprotein cholesterol High density lipoprotein cholesterol (mg/dl)

LDL cholesterol LDL cholesterol (mg/dl)

Urea Urea (mmol/L)

Creatinine Products of muscle metabolism in human body (µ mol/L)

Uric acid Uric acid (umol/L)

Hepatitis B surface antigen Hepatitis B surface antigen (ng/mL)

Hepatitis B surface antibody Hepatitis B surface antibody (mIU/mL)

Hepatitis B e antigen Hepatitis B e antigen (PEI/mL)

Hepatitis B e antibody Hepatitis B e antibody (P/mL)

Hepatitis B core antibody Hepatitis B core antibody (PEI/mL)

Leukocyte count Leukocyte count (×109/L)

RBC count RBC count (×1012/L)

Hemoglobin Hemoglobin (g/L)

Hematocrit Hematocrit

Mean corpuscular volume Mean corpuscular volume (fl)

Mean corpuscular hemoglobin Mean corpuscular hemoglobin (pg)

Mean corpuscular hemoglobin concentration Mean corpuscular hemoglobin concentration (g/L)

Red blood cell volume distribution width Red blood cell volume distribution width

Platelet count Platelet count (×109/L)

Mean platelet volume Mean platelet volume (fl)

Platelet volume distribution width Platelet volume distribution width (%)

Platelet specific volume Platelet specific volume (%)

Neutrophils Neutrophils (%)

Lymphocyte Lymphocyte (%)

Monocyte Monocyte (%)

Eosinophils Eosinophils (%)

Basophilic cell Basophilic cell (%)

Blood glucose Blood glucose level (mg/dl)

In this paper, the dataset was divided, with 6642 pieces of data as the training set, and the remaining
1000 pieces of data as the test set.

Appl. Sci. 2020, 10, 3227 8 of 16

Firstly, the missing values in the original dataset were analyzed to obtain the proportion of the
missing data. It can be seen from Figure 6 that the missing proportion of five basic features—hepatitis B
surface antigen, hepatitis B surface antibody, hepatitis B core antibody, hepatitis B e antigen, and hepatitis B
e antibody—is over 70%, significantly exceeding the missing proportion of other basic features. Therefore,
these features with large missing values were deleted, and those with smaller missing values were filled
with medians.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17

features—hepatitis B surface antigen, hepatitis B surface antibody, hepatitis B core antibody,
hepatitis B e antigen, and hepatitis B e antibody—is over 70%, significantly exceeding the missing
proportion of other basic features. Therefore, these features with large missing values were deleted,
and those with smaller missing values were filled with medians.

Figure 6. Feature missing scale.

Secondly, the weight of the influence of the data features was analyzed. The weight of the
eigenvalues can be obtained through related functions. According to the eigenvalue weight of each
item, the eigenvalues that have no effect on the results can be found. By processing the invalid
eigenvalues, the accuracy of the experiment can be further improved. It can be seen from Figure 7
that the date of medical examination and gender have no practical influence on the prediction
results of the model. It can be known through common sense that ID also has no impact on the
experimental results, so these features were deleted.

Figure 6. Feature missing scale.

Secondly, the weight of the influence of the data features was analyzed. The weight of the eigenvalues
can be obtained through related functions. According to the eigenvalue weight of each item, the eigenvalues
that have no effect on the results can be found. By processing the invalid eigenvalues, the accuracy of the
experiment can be further improved. It can be seen from Figure 7 that the date of medical examination
and gender have no practical influence on the prediction results of the model. It can be known through
common sense that ID also has no impact on the experimental results, so these features were deleted.

Again, to analyze the correlation coefficient of each eigenvalue, the darker the color, the stronger
the correlation. From Figure 8, we can see the correlation between each eigenvalue.

Appl. Sci. 2020, 10, 3227 9 of 16
Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17

Figure 7. Eigenvalue influence weight graph.

Again, to analyze the correlation coefficient of each eigenvalue, the darker the color, the
stronger the correlation. From Figure 8, we can see the correlation between each eigenvalue.

Figure 8. Matrix thermodynamic diagram of the eigenvalue correlation coefficient.

Figure 7. Eigenvalue influence weight graph.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17

Figure 7. Eigenvalue influence weight graph.

Again, to analyze the correlation coefficient of each eigenvalue, the darker the color, the

stronger the correlation. From Figure 8, we can see the correlation between each eigenvalue.

Figure 8. Matrix thermodynamic diagram of the eigenvalue correlation coefficient. Figure 8. Matrix thermodynamic diagram of the eigenvalue correlation coefficient.

Appl. Sci. 2020, 10, 3227 10 of 16

Finally, the basic features and the distribution of the blood glucose levels were learned, which can
provide a more intuitive reference for feature engineering. The blood glucose values were used as the
Y-axis coordinates and the other basic features as the X-axis coordinates. Each basic feature and the
distribution of the blood glucose value were listed for analysis, as shown in Figure 9, where aspartate
aminotransferase and the distribution of blood glucose are displayed. It can be seen from the figure
that the distribution of the blood glucose value in aspartate aminotransferase included outliers, so the
outliers were deleted. The outliers of the remaining features were also deleted.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17

Finally, the basic features and the distribution of the blood glucose levels were learned, which
can provide a more intuitive reference for feature engineering. The blood glucose values were used
as the Y-axis coordinates and the other basic features as the X-axis coordinates. Each basic feature
and the distribution of the blood glucose value were listed for analysis, as shown in Figure 9, where
aspartate aminotransferase and the distribution of blood glucose are displayed. It can be seen from
the figure that the distribution of the blood glucose value in aspartate aminotransferase included
outliers, so the outliers were deleted. The outliers of the remaining features were also deleted.

Figure 9. Scatter diagram of aspartate aminotransferase and blood glucose value.

2.5. Parameter Optimization Based on Bayesian Hyper-Parameter Optimization Algorithm

The optimal parameters of the LightGBM model were found by the Bayesian hyper-parameter
optimization algorithm. Firstly, Hyperopt’s own function was used to define the parameter space,
then the model and score acquirer were created, and finally, MSE was used as the evaluation
indicator to obtain the optimal parameters of the LightGBM model. The optimal parameters of the
LightGBM model obtained through the Bayesian hyper-parameter optimization algorithm are
shown in Table 2.

Table 2. The optimal parameters of the LightGBM model.

Parameter Name Default
Value

Optimal
Parameters Parameter Implication

learning_rate 0.1 0.052 Learning rate
n_estimators 10 376 Number of basic learners

min_data_in_leaf 20 18 The smallest possible record tree for a leaf
bagging_fraction 1 0.9 Data scale for each iteration

feature_fraction 1 0.5 Proportion of randomly selected features in
each iteration

Figure 9. Scatter diagram of aspartate aminotransferase and blood glucose value.

2.5. Parameter Optimization Based on Bayesian Hyper-Parameter Optimization Algorithm

The optimal parameters of the LightGBM model were found by the Bayesian hyper-parameter
optimization algorithm. Firstly, Hyperopt’s own function was used to define the parameter space,
then the model and score acquirer were created, and finally, MSE was used as the evaluation indicator
to obtain the optimal parameters of the LightGBM model. The optimal parameters of the LightGBM
model obtained through the Bayesian hyper-parameter optimization algorithm are shown in Table 2.

Table 2. The optimal parameters of the LightGBM model.

Parameter Name Default Value Optimal Parameters Parameter Implication

learning_rate 0.1 0.052 Learning rate
n_estimators 10 376 Number of basic learners

min_data_in_leaf 20 18 The smallest possible record tree for a leaf
bagging_fraction 1 0.9 Data scale for each iteration
feature_fraction 1 0.5 Proportion of randomly selected features in each iteration

2.6. Blood Glucose Prediction by HY_LightGBM Model

Through the data preprocessing in Sections 2.4 and 2.5 and the Bayesian hyper-parameter optimization
algorithm, the optimal parameters of the LightGBM model were determined and input into the LightGBM
model for training and prediction. The blood glucose values output by it and the blood glucose values
in the test set were evaluated by three evaluation indicators, namely: mean square error (MSE), root
mean square error (RMSE), and determination coefficient R2 (R-Square).

Appl. Sci. 2020, 10, 3227 11 of 16

2.7. Evaluation Indicators

The performance of the blood glucose prediction model was evaluated by the following three
indicators: mean square error (MSE), root mean square error (RMSE), and determination coefficient R2
(R-Square). These are commonly used in regression tasks, and the smaller the mean square error (MSE)
and the root mean square error (RMSE) value, the more accurate the prediction results.

MSE =
1

2n

n∑
i=1

(
yi − ŷi

)2

(13)

RMSE =

√√√
1

2n

n∑
i=1

(
yi − ŷi

)2

(14)

Rsquaed= 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi −
−
yi)

2
(15)

3. Experimental Results and Discussion

3.1. Experimental Results

After the parameter optimization of the LightGBM model by the Bayesian hyper-parameter optimization
algorithm, the parameters of the LightGBM model obtained were set as follows: the learning_rate was 0.052
and the number of basic learners n_estimators was 376. The minimum row tree that the leaf may have,
the tree min_data_in_leaf, is 18. The ratio of data used in each iteration bagging_fraction was 0.9, and the
ratio of randomly selected features in each iteration feature_fraction was 0.5. This set of optimal
parameters of the LightGBM models were input into the LightGBM model to predict the blood glucose
value. The experimental results are shown in Table 3. The scatter diagram of the actual blood glucose
values and the predicted blood glucose values is shown in Figure 10.

Table 3. Prediction results of HY_LightGBM model.

Model Name MSE RMSE R-Square Training Time

HY_LightGBM 0.5961 0.7721 0.2236 26.7938 s
Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17

Figure 10. Scatter diagram of prediction results of HY_LightGBM model.

It can be found from Table 3 that the HY_LightGBM model had a mean square error of 0.5961,
a root mean square error of 0.7721, a determination coefficient of 0.2236, and a training time of
26.7938 s in the prediction of the blood glucose values.

3.2. Comparative Experiments

Two groups of comparative experiments were set in the study. The first group of comparative
experiments was as follows: comparing the HY_LightGBM model optimized by the Bayesian
hyper-parameter optimization algorithm with the LightGBM model, the XGBoost model, and the
CatBoost model without parameter optimization. The second group of the comparative
experiments was as follows: the comparison among the LightGBM model with parameter
optimization by genetic algorithm, the LightGBM model with parameter optimization through
random searching algorithm, and the LightGBM model with parameter optimization by the
Bayesian hyper-parameter optimization algorithm used in this study. The comparative experiments
verified the improvement in the prediction accuracy of the HY_LightGBM model optimized by the
Bayesian hyper-parameter optimization algorithm and the feasibility of the HY_LightGBM model.

3.2.1. Comparison between the HY_LightGBM Model and LightGBM Model

This experiment verified the effectiveness of the Bayesian hyper-parameter optimization
algorithm for improving the LightGBM model by comparing the LightGBM model optimized by
the Bayesian hyper-parameter optimization algorithm with the LightGBM model without
parameter optimization. The optimal parameters found by the Bayesian hyper-parameter
optimization algorithm were input into the LightGBM model, and the prediction result of the
improved HY_LightGBM model was compared with that of the LightGBM model. The specific
experimental results are shown in Table 4 and Figure 11.

Table 4. Prediction performance comparison between the HY_LightGBM model and LightGBM
model.

Model Name MSE RMSE R-Square Training Time
LightGBM 0.6159 0.7848 0.1978 3.5039 s

HY_LightGBM 0.5961 0.7721 0.2236 26.7938 s

Figure 10. Scatter diagram of prediction results of HY_LightGBM model.

Appl. Sci. 2020, 10, 3227 12 of 16

It can be found from Table 3 that the HY_LightGBM model had a mean square error of 0.5961,
a root mean square error of 0.7721, a determination coefficient of 0.2236, and a training time of 26.7938 s
in the prediction of the blood glucose values.

3.2. Comparative Experiments

Two groups of comparative experiments were set in the study. The first group of comparative
experiments was as follows: comparing the HY_LightGBM model optimized by the Bayesian hyper-
parameter optimization algorithm with the LightGBM model, the XGBoost model, and the CatBoost
model without parameter optimization. The second group of the comparative experiments was as
follows: the comparison among the LightGBM model with parameter optimization by genetic algorithm,
the LightGBM model with parameter optimization through random searching algorithm, and the LightGBM
model with parameter optimization by the Bayesian hyper-parameter optimization algorithm used in
this study. The comparative experiments verified the improvement in the prediction accuracy of the
HY_LightGBM model optimized by the Bayesian hyper-parameter optimization algorithm and the
feasibility of the HY_LightGBM model.

3.2.1. Comparison between the HY_LightGBM Model and LightGBM Model

This experiment verified the effectiveness of the Bayesian hyper-parameter optimization algorithm
for improving the LightGBM model by comparing the LightGBM model optimized by the Bayesian
hyper-parameter optimization algorithm with the LightGBM model without parameter optimization.
The optimal parameters found by the Bayesian hyper-parameter optimization algorithm were input
into the LightGBM model, and the prediction result of the improved HY_LightGBM model was
compared with that of the LightGBM model. The specific experimental results are shown in Table 4
and Figure 11.

Table 4. Prediction performance comparison between the HY_LightGBM model and LightGBM model.

Model Name MSE RMSE R-Square Training Time

LightGBM 0.6159 0.7848 0.1978 3.5039 s
HY_LightGBM 0.5961 0.7721 0.2236 26.7938 sAppl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17

Figure 11. Performance comparison between HY_LightGBM and LightGBM.

The experiment demonstrated that although the LightGBM model optimized by the Bayesian
hyper-parameter optimization algorithm takes a little more time than the LightGBM model without
parameter optimization, it significantly outperforms the LightGBM model without any parameter
optimization in terms of prediction accuracy.

3.2.2. Comparison between HY_LightGBM Model and Other Classification Models

In order to further verify the prediction performance of the HY_LightGBM model, two other
models of the same type were selected for comparison, namely the XBGoost model and the
CatBoost model. The experiment confirmed that the HY_LightGBM model has a significantly
higher prediction accuracy than the other two models of the same type. The experimental results
are shown in Table 5 and Figure 12.

Table 5. Performance comparison of the other models.

Model Name MSE RMSE R-Square Training Time
HY_LightGBM 0.5961 0.7721 0.2236 26.7938 s

XBGoost 0.6284 0.7927 0.1815 6.2837 s
CatBoost 0.6483 0.8051 0.1556 73.3301 s

Figure 12. Performance comparison chart of HY_LightGBM, XGBoost, and CatBoost.

Figure 11. Performance comparison between HY_LightGBM and LightGBM.

Appl. Sci. 2020, 10, 3227 13 of 16

The experiment demonstrated that although the LightGBM model optimized by the Bayesian
hyper-parameter optimization algorithm takes a little more time than the LightGBM model without
parameter optimization, it significantly outperforms the LightGBM model without any parameter
optimization in terms of prediction accuracy.

3.2.2. Comparison between HY_LightGBM Model and Other Classification Models

In order to further verify the prediction performance of the HY_LightGBM model, two other
models of the same type were selected for comparison, namely the XBGoost model and the CatBoost
model. The experiment confirmed that the HY_LightGBM model has a significantly higher prediction
accuracy than the other two models of the same type. The experimental results are shown in Table 5
and Figure 12.

Table 5. Performance comparison of the other models.

Model Name MSE RMSE R-Square Training Time

HY_LightGBM 0.5961 0.7721 0.2236 26.7938 s
XBGoost 0.6284 0.7927 0.1815 6.2837 s
CatBoost 0.6483 0.8051 0.1556 73.3301 s

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17

Figure 11. Performance comparison between HY_LightGBM and LightGBM.

The experiment demonstrated that although the LightGBM model optimized by the Bayesian
hyper-parameter optimization algorithm takes a little more time than the LightGBM model without
parameter optimization, it significantly outperforms the LightGBM model without any parameter
optimization in terms of prediction accuracy.

3.2.2. Comparison between HY_LightGBM Model and Other Classification Models

In order to further verify the prediction performance of the HY_LightGBM model, two other
models of the same type were selected for comparison, namely the XBGoost model and the
CatBoost model. The experiment confirmed that the HY_LightGBM model has a significantly
higher prediction accuracy than the other two models of the same type. The experimental results
are shown in Table 5 and Figure 12.

Table 5. Performance comparison of the other models.

Model Name MSE RMSE R-Square Training Time
HY_LightGBM 0.5961 0.7721 0.2236 26.7938 s

XBGoost 0.6284 0.7927 0.1815 6.2837 s
CatBoost 0.6483 0.8051 0.1556 73.3301 s

Figure 12. Performance comparison chart of HY_LightGBM, XGBoost, and CatBoost. Figure 12. Performance comparison chart of HY_LightGBM, XGBoost, and CatBoost.

The experiment proved that the LightGBM model optimized by the Bayesian hyper-parameter
optimization algorithm used in this paper is significantly superior to the XGBoost model and CatBoost
model in prediction accuracy.

3.2.3. Comparison of Parameter Tuning among Bayesian Hyper-Parameter Optimization Algorithm,
Genetic Algorithm, and Random Searching Algorithm

This experiment verified the feasibility of the Bayesian hyper-parameter optimization algorithm
for parameter optimization by comparing the performance of genetic algorithm, random searching
algorithm, and the Bayesian hyper-parameter optimization algorithm in the parameter optimization.
The parameters obtained by genetic algorithm were as follows: learning_rate was 0.05, the number of
basic learners n_estimators was 400, the minimum row tree that the leaf may have min_data_in_leaf 60,
the data ratio used in each iteration bagging_fraction 0.9, and the ratio of randomly selected features in
each iteration feature_fraction 0.5.

Appl. Sci. 2020, 10, 3227 14 of 16

The parameters obtained by the random searching algorithm were as follows: learning_rate
0.05, the number of basic learners n_estimators 370, the minimum row tree that the leaf may have
min_data_in_leaf 36, the data ratio used in each iteration bagging_fraction 0.9, and the ratio of randomly
selected features in each iteration feature_fraction 0.98, as shown in Table 6.

Table 6. Parameters obtained from parameter optimization of genetic algorithm.

Parameter Name GA_LightGBM RS_LightGBM

learning_rate 0.05 0.05
n_estimators 400 370

min_data_in_leaf 60 36
bagging_fraction 0.9 0.9
feature_fraction 0.5 0.98

The prediction results obtained by the LightGBM model optimized by the genetic algorithm and
random searching algorithm, that is, the GA_LightGBM and RS_LightGBM model, were compared
with those of the LightGBM model optimized by the Bayesian hyper-parameter optimization algorithm,
and the comparison results are shown in Table 7 and Figure 13 respectively.

Table 7. Comparison of GA_LightGBM, RS_LightGBM, and HY_LightGBM.

Model Name MSE RMSE R-Square

GA_LightGBM 0.6116 0.7821 0.2033
RS_LightGBM 0.6094 0.7806 0.2063
HY_LightGBM 0.5961 0.7721 0.2236

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17

The experiment proved that the LightGBM model optimized by the Bayesian hyper-parameter
optimization algorithm used in this paper is significantly superior to the XGBoost model and
CatBoost model in prediction accuracy.

3.2.3. Comparison of Parameter Tuning among Bayesian Hyper-Parameter Optimization Algorithm,
Genetic Algorithm, and Random Searching Algorithm

This experiment verified the feasibility of the Bayesian hyper-parameter optimization
algorithm for parameter optimization by comparing the performance of genetic algorithm, random
searching algorithm, and the Bayesian hyper-parameter optimization algorithm in the parameter
optimization. The parameters obtained by genetic algorithm were as follows: learning_rate was 0.05,
the number of basic learners n_estimators was 400, the minimum row tree that the leaf may have
min_data_in_leaf 60, the data ratio used in each iteration bagging_fraction 0.9, and the ratio of
randomly selected features in each iteration feature_fraction 0.5.

The parameters obtained by the random searching algorithm were as follows: learning_rate
0.05, the number of basic learners n_estimators 370, the minimum row tree that the leaf may have
min_data_in_leaf 36, the data ratio used in each iteration bagging_fraction 0.9, and the ratio of
randomly selected features in each iteration feature_fraction 0.98, as shown in Table 6.

Table 6. Parameters obtained from parameter optimization of genetic algorithm.

Parameter Name GA_LightGBM RS_LightGBM
learning_rate 0.05 0.05
n_estimators 400 370

min_data_in_leaf 60 36
bagging_fraction 0.9 0.9
feature_fraction 0.5 0.98

The prediction results obtained by the LightGBM model optimized by the genetic algorithm
and random searching algorithm, that is, the GA_LightGBM and RS_LightGBM model, were
compared with those of the LightGBM model optimized by the Bayesian hyper-parameter
optimization algorithm, and the comparison results are shown in Table 7 and Figure 13
respectively.

Table 7. Comparison of GA_LightGBM, RS_LightGBM, and HY_LightGBM.

Model Name MSE RMSE R-Square
GA_LightGBM 0.6116 0.7821 0.2033
RS_LightGBM 0.6094 0.7806 0.2063
HY_LightGBM 0.5961 0.7721 0.2236

Figure 13. Comparison chart of the predicted performance of HY_LightGBM, GA_LightGBM, and
RS_LightGBM.

The experiment demonstrated that the LightGBM model optimized by the Bayesian hyper-
parameter optimization algorithm achieves significantly better prediction results than the LightGBM
model optimized by the genetic algorithm and random searching algorithm.

4. Conclusions

This paper proposes an improved LightGBM prediction model based on the Bayesian hyper-parameter
optimization algorithm, namely the HY_LightGBM model, where Bayesian hyper-parameter optimization
was employed to find the optimal parameter combination for the model, which improved the prediction

Appl. Sci. 2020, 10, 3227 15 of 16

accuracy of the LightGBM model. The experiments proved that the method proposed in this paper
achieves a higher prediction accuracy than the XGBoost model and CatBoost model, and has higher
efficiency than the genetic algorithm and random searching algorithm.

The previous measurement of the blood glucose value needs to measure each person’s blood
glucose value one by one, which requires a lot of manpower and material resources. After training,
the model will no longer need the characteristic value of the blood glucose value. It can directly predict
the blood glucose value of the physical examination personnel through the HY_LightGBM model and
other physical examination indicators of the physical examination personnel.

The HY_LightGBM model, with a strong generalization ability, can also be applied to other types
of auxiliary diagnosis and treatment, but the overall performance can be further improved. The next
work will focus on the further optimization of the model using the idea of model fusion to improve the
prediction accuracy of the model.

Author Contributions: Conceptualization, T.W.; methodology, T.W.; software, T.W.; validation, T.W.; formal
analysis T.W.; investigation, T.W.; resources, T.W.; writing (original draft preparation), T.W.; writing (review and
editing), T.W., Y.W.; visualization, T.W.; supervision, T.W.; project administration, T.W.; funding acquisition, Y.W.
All authors have read and agree to the published version of the manuscript.

Funding: This research is supported by the key R & D plan of Gansu Province (18YF1GA060).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. American Diabetes Association. Standards of Medical Care in Diabetes—2019. Diabetes Care 2019, 42, S1–S2.
[CrossRef] [PubMed]

2. Kerner, W.; Brückel, J. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp. Clin. Endocrinol.
Diabetes 2014, 122, 384–386. [CrossRef] [PubMed]

3. Cho, N.; Shaw, J.; Karuranga, S.; Huang, Y.; Fernandes, J.D.R.; Ohlrogge, A.; Malanda, B. IDF Diabetes Atlas:
Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138,
271–281. [CrossRef] [PubMed]

4. WHO.int. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed
on 26 March 2020).

5. Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global healthcare expenditure on
diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [CrossRef]

6. Tripathi, B.; Srivastava, A. Diabetes mellitus complications and therapeutics. Med. Sci. Monit. 2006, 12,
RA130–RA147.

7. He, J. Blood Glucose Concentration Prediction Based on Canonical Correlation Analysis. In Proceedings of
the 38th China Control Conference, Guangzhou, China, 27–30 July 2019; pp. 1354–1359.

8. Yu, D.; Liu, Z.; Su, C.; Han, Y.; Duan, X.; Zhang, R.; Liu, X.; Yang, Y.; Xu, S. Copy number variation in plasma
as a tool for lung cancer prediction using Extreme Gradient Boosting (XGBoost) classifier. Thorac. Cancer
2020, 11, 95–102. [CrossRef]

9. Cenggoro, T.; Mahesworo, B.; Budiarto, A.; Baurley, J.; Suparyanto, T.; Pardamean, B. Features Importance in
Classification Models for Colorectal Cancer Cases Phenotype in Indonesia. Procedia Comput. Sci. 2019, 157,
313–320. [CrossRef]

10. Chang, W.; Liu, Y.; Xiao, Y.; Yuan, X.; Xu, X.; Zhang, S.; Zhou, S. A Machine-Learning-Based Prediction
Method for Hypertension Outcomes Based on Medical Data. Diagnostics 2019, 9, 178. [CrossRef]

11. Azeez, O.; Wang, Q. XGBoost Model for Chronic Kidney Disease Diagnosis. IEEE/ACM Trans. Comput. Biol.
Bioinform. 2019. [CrossRef]

12. Chang, W.; Liu, Y.; Xiao, Y.; Xu, X.; Zhou, S.; Lu, X.; Cheng, Y. Probability Analysis of Hypertension-Related
Symptoms Based on XGBoost and Clustering Algorithm. Appl. Sci. 2019, 9, 1215. [CrossRef]

13. Wang, B.; Feng, H.; Wang, F. Application of cat boost model based on machine learning in prediction of
severe HFMD. Chin. J. Infect. Control 2019, 18, 18–22.

14. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd
International Conference on Knowledge Discovery and Data Mining; ACM: New York, NY, USA, 2016; pp. 785–794.

http://dx.doi.org/10.2337/dc19-Sint01
http://www.ncbi.nlm.nih.gov/pubmed/30559224
http://dx.doi.org/10.1055/s-0034-1366278
http://www.ncbi.nlm.nih.gov/pubmed/25014088
http://dx.doi.org/10.1016/j.diabres.2018.02.023
http://www.ncbi.nlm.nih.gov/pubmed/29496507
https://www.who.int/news-room/fact-sheets/detail/diabetes
http://dx.doi.org/10.1016/j.diabres.2010.01.026
http://dx.doi.org/10.1111/1759-7714.13204
http://dx.doi.org/10.1016/j.procs.2019.08.172
http://dx.doi.org/10.3390/diagnostics9040178
http://dx.doi.org/10.1109/TCBB.2019.2911071
http://dx.doi.org/10.3390/app9061215

Appl. Sci. 2020, 10, 3227 16 of 16

15. Rani, S.; Suri, B.; Goyal, R. On the Effectiveness of Using Elitist Genetic Algorithm in Mutation Testing.
Symmetry 2019, 11, 1145. [CrossRef]

16. Fernández, J.; López-Campos, J.; Segade, A.; Vilán, J. A genetic algorithm for the characterization of
hyperelastic materials. Appl. Math. Comput. 2018, 329, 239–250. [CrossRef]

17. Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
18. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. Lightgbm: A highly efficient gradient

boosting decision tree. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA,
USA, 2017; pp. 3146–3154.

19. Gao, X.; Luo, H.; Wang, Q.; Zhao, F.; Ye, L.; Zhang, Y. A Human Activity Recognition Algorithm Based on
Stacking Denoising Autoencoder and LightGBM. Sensors 2019, 19, 947. [CrossRef]

20. Choi, S.; Hur, J. An Ensemble Learner-Based Bagging Model Using Past Output Data for Photovoltaic
Forecasting. Energies 2020, 13, 1438. [CrossRef]

21. Cordeiro, J.R.; Postolache, O.; Ferreira, J.C. Child’s Target Height Prediction Evolution. Appl. Sci. 2019, 9, 5447.
[CrossRef]

22. Ma, X.; Sa, J.; Wang, D.; Yu, Y.; Yang, Q.; Niu, X. Study on a prediction of p2p network loan default based
on the machine learning lightgbm and xgboost algorithms according to different high dimensional data
cleaning. Electron. Commer. Res. Appl. 2018, 31, 24–39. [CrossRef]

23. Cheng, C.; Qing, M.; Zhang, Q.; Ma, B. LightGBM-PPI: Predicting protein-protein interactions through
LightGBM with multi-information fusion. Chemom. Intell. Lab. Syst. 2019, 191, 54–64. [CrossRef]

24. Dev, V.A.; Eden, M.R. Formation lithology classification using scalable gradient boosted decision trees.
Comput. Chem. Eng. 2019, 128, 392–404. [CrossRef]

25. Letham, B.; Karrer, B.; Ottoni, G.; Bakshy, E. Constrained bayesian optimization with noisy experiments.
Bayesian Anal. 2019, 14, 495–519. [CrossRef]

26. Zhou, T.; Lu, H.; Wang, W.; Yong, X. GA-SVM based feature selection and parameter optimization in
hospitalization expense modeling. Appl. Soft Comput. J. 2018, 75, 323–332.

27. Ma, C.; Yang, S.; Zhang, H.; Xiang, M.; Huang, Q.; Wei, Y. Prediction models of human plasma protein
binding rate and oral bioavailability derived by using GA–CG–SVM method. J. Pharm. Biomed. Anal. 2008,
47, 677–682. [CrossRef] [PubMed]

28. Raman, M.; Somu, N.; Kirthivasan, K.; Liscano, R.; Sriram, V. An efficient intrusion detection system based on
hypergraph—Genetic algorithm for parameter optimization and feature selection in support vector machine.
Knowl. Based Syst. 2017, 134, 1–12. [CrossRef]

29. Su, B.; Wang, Y. Genetic algorithm based feature selection and parameter optimization for support vector
regression applied to semantic textual similarity. J. Shanghai Jiaotong Univ. (Sci.) 2015, 20, 143–148. [CrossRef]

30. Putatunda, S.; Rama, K. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-
Parameter Optimization of XGBoost. In Proceedings of the 2018 International Conference on Signal Processing and
Machine Learning (SPML ’18); Association for Computing Machinery: New York, NY, USA, 2018; pp. 6–10.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/sym11091145
http://dx.doi.org/10.1016/j.amc.2018.02.008
http://dx.doi.org/10.3390/s19040947
http://dx.doi.org/10.3390/en13061438
http://dx.doi.org/10.3390/app9245447
http://dx.doi.org/10.1016/j.elerap.2018.08.002
http://dx.doi.org/10.1016/j.chemolab.2019.06.003
http://dx.doi.org/10.1016/j.compchemeng.2019.06.001
http://dx.doi.org/10.1214/18-BA1110
http://dx.doi.org/10.1016/j.jpba.2008.03.023
http://www.ncbi.nlm.nih.gov/pubmed/18455346
http://dx.doi.org/10.1016/j.knosys.2017.07.005
http://dx.doi.org/10.1007/s12204-015-1602-2
http://dx.doi.org/10.1145/3297067.3297080
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	LightGBM Model
	Bayesian Hyper-Parameter Optimization Algorithm
	Improved LightGBM Model Based on Bayesian Hyper-Parameter Optimization Algorithm
	Data Preprocessing
	Parameter Optimization Based on Bayesian Hyper-Parameter Optimization Algorithm
	Blood Glucose Prediction by HY_LightGBM Model
	Evaluation Indicators

	Experimental Results and Discussion
	Experimental Results
	Comparative Experiments
	Comparison between the HY_LightGBM Model and LightGBM Model
	Comparison between HY_LightGBM Model and Other Classification Models
	Comparison of Parameter Tuning among Bayesian Hyper-Parameter Optimization Algorithm, Genetic Algorithm, and Random Searching Algorithm

	Conclusions
	References

