
applied  
sciences

Article

Solution Behavior in the Vicinity of Characteristic
Envelopes for the Double Slip and Rotation Model

Yao Wang 1,2, Sergei Alexandrov 3,4 and Elena Lyamina 5,6,*
1 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology,

Harbin 150001, China; yao_wang86@163.com
2 School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
3 Ishlinsky Institute for Problems in Mechanics RAS, Moscow 119526, Russia; sergei_alexandrov@spartak.ru
4 Federal State Autonomous Educational Institution of Higher Education, South Ural State

University (national research university), Chelyabinsk 454080, Russia
5 Division of Computational Mathematics and Engineering, Institute for Computational Science,

Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
6 Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
* Correspondence: lyaminaea@tdtu.edu.vn; Tel.: +84-2837755024

Received: 28 January 2020; Accepted: 20 March 2020; Published: 6 May 2020
����������
�������

Abstract: The boundary conditions significantly affect solution behavior near rough interfaces. This
paper presents general asymptotic analysis of solutions for the rigid plastic double slip and rotation
model in the vicinity of an envelope of characteristics under plane strain and axially symmetric
conditions. This model is used in the mechanics of granular materials. The analysis has important
implications for solving boundary value problems because the envelope of characteristics is a natural
boundary of the analytic solution. Moreover, an envelope of characteristics often coincides with
frictional interfaces. In this case, the regime of sticking is not possible independently of the friction
law chosen. It is shown that the solution is singular in the vicinity of envelopes. In particular, the
profile of the velocity component tangential to the envelope is described by the sum of the constant
and square root functions of the normal distance to the envelope in its vicinity. As a result, some
components of the strain rate tensor approach infinity. This finding might help to develop an efficient
numerical method for solving boundary value problems and provide the basis for the interpretation
of some experimental results.

Keywords: pressure-dependent plasticity; double slip and rotation model; envelope of characteristics;
singularity; asymptotic analysis

1. Introduction

Models of pressure-dependent plasticity based on the Mohr–Coulomb yield criterion are widely
used for describing deformation of granular materials and soil [1,2]. Boundary conditions for the flow
of granular materials are attracting considerable interest due to their effect on solution behavior [3–10].
In the case of hyperbolic models, the envelope of characteristics is a natural boundary of the analytic
solution. The envelope of characteristics often coincides with frictional interfaces. A distinguished
feature of this boundary condition is that the regime of sliding occurs independently of the friction
law chosen. In the case of pressure-dependent plasticity, such solutions have been found in [11–13].
In these works, the double shearing model proposed in [14] has been adopted. The solutions given
in [11–13] show that the velocity field is singular (some derivatives approach infinity in the vicinity of
envelopes).

The present paper deals with the rigid plastic double slip and rotation model under plane strain
and axial symmetry conditions [15]. The solutions found in [11,12] are also solutions for this model if
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the intrinsic spin involved in the double slip and rotation model vanishes. Other singular solutions for
the rigid plastic double slip and rotation model have been derived in [16,17].

General asymptotic analyses of the singular behavior of solutions help to develop efficient
numerical methods for solving boundary value problems and provide the basis for the interpretation
of some experimental results. In the case of rigid plastic solids, such analyses have been carried out
in [18] for isotropic perfectly plastic material, [19] for anisotropic perfectly plastic material, and [20] for
a model that is used in the mechanics of polymers. These findings show that the exact asymptotic
representation of solutions near envelopes of characteristics is affected by the shape of the yield surface
and other constitutive equations. This paper supplies the exact asymptotic representation of solutions
near envelopes of characteristics for the double slip and rotation model.

The applied aspect of the present paper is twofold. Firstly, the behavior of soil–structure interfaces
is very important for predicting the overall response of soil–structure systems. It is known that
a very narrow layer of soil adjacent to the structure controls the shearing deformation near the
interface. Several models have been proposed for describing the behavior of material within this
layer. One group of models introduces special constitutive equations in the vicinity of soil–structure
interfaces (for example, [21–23]). The other group treats the interface layer as a geometric surface
subject to certain physical conditions (for example, [24–26]). The exact asymptotic representation of
solutions found in the present paper can be used in conjunction with the approach adopted in models
of the first group. Secondly, suitable interface elements should be used to accurately simulate the
behavior of material near soil–structure interfaces via the finite element method [27,28]. The present
paper demonstrates that the solution may be singular. Therefore, traditional linear approximations
with finite elements, for example [28], are not capable of representing the real solution. The exact
asymptotic representation of solutions found can be used in conjunction with the extended finite
element method [29].

2. Basic Equations

The double slip and rotation model is a model of pressure-dependent plasticity [15]. The version of
the model considered in the present paper is rigid/plastic (i.e., the elastic portion of strain is neglected).
The constitutive equations of the model are a pressure-dependent yield criterion and a flow rule.
The present paper deals with the Mohr–Coulomb yield criterion. The flow rule has been formulated
in [15].

2.1. Plane Strain Deformation

Let (x1, x2) be an orthogonal coordinate system in planes of flow. The x2− coordinate curves are
straight (Figure 1). Then, it is possible to assume with no loss of generality that the scale factor of these
coordinate curves is unity. The scale factor of the x1− coordinate lines may be represented as

H1 = 1 +
x2

R(x1)
. (1)

Here R(x1) is the radius of curvature of the x1−coordinate curve determined by the equation x2 = 0
(S–line in Figure 1). The equilibrium equations referred to the coordinate system chosen are [30]

∂σ11

∂x1
+

[
1 +

x2

R(x1)

]
∂σ12

∂x2
+

2σ12

R(x1)
= 0,

[
1 +

x2

R(x1)

]
∂σ22

∂x2
+
∂σ12

∂x1
+

(σ22 − σ11)

R(x1)
= 0. (2)

Here, Equation (1) has been used. Furthermore, σ11, σ22 and σ12 are the stress components referred to
the (x1, x2)− coordinate system.
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Figure 1. Orthogonal coordinate system (x1, x2) near a given curve (S–line) under plane
strain conditions.

As usual, it is convenient to introduce the following stress variables:

p = −
1
2
(σ11 + σ22), q =

1
2

√
(σ11 − σ22)

2 + 4σ2
12 > 0. (3)

Then, the Mohr–Coulomb yield criterion reads

q− p sinφ = k cosφ. (4)

Here k is the cohesion and φ is the angle of internal friction. Both are material constants. Let ψ be the
orientation of the major principal stress σ1 relative to the x1− direction (Figure 2). Then, using (3), the
stress components referred to the (x1, x2)− coordinate system are expressed as

σ11 = −p + q cos 2ψ, σ22 = −p− q cos 2ψ, σ12 = q sin 2ψ. (5)

Substituting (5) into (2) leads to

−
∂p
∂x1

+ cos 2ψ ∂q
∂x1
− 2q sin 2ψ ∂ψ

∂x1
+

[
1 + x2

R(x1)

]
sin 2ψ ∂q

∂x2
+

2q cos 2ψ
[
1 + x2

R(x1)

]
∂ψ
∂x2

+
2q sin 2ψ

R(x1)
= 0,

−

[
1 + x2

R(x1)

](
∂p
∂x2

+ cos 2ψ ∂q
∂x2

)
+ 2q

[
1 + x2

R(x1)

]
sin 2ψ ∂ψ

∂x2
+ sin 2ψ ∂q

∂x1
+

2q cos 2ψ ∂ψ
∂x1
−

2q cos 2ψ
R(x1)

= 0.

(6)

One can eliminate p in these equations using (4). As a result,(
cos 2ψ− 1

sinφ

) ∂q
∂x1
− 2q sin 2ψ ∂ψ

∂x1
+

[
1 + x2

R(x1)

]
sin 2ψ ∂q

∂x2
+

2q cos 2ψ
[
1 + x2

R(x1)

]
∂ψ
∂x2

+
2q sin 2ψ

R(x1)
= 0,

−

[
1 + x2

R(x1)

](
cos 2ψ+ 1

sinφ

) ∂q
∂x2

+ 2q
[
1 + x2

R(x1)

]
sin 2ψ ∂ψ

∂x2
+ sin 2ψ ∂q

∂x1
+

2q cos 2ψ ∂ψ
∂x1
−

2q cos 2ψ
R(x1)

= 0.

(7)
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The flow rule is [15]

ξ11 + ξ22 = 0, ξ12 cos 2ψ−
1
2
(ξ11 − ξ22) sin 2ψ+ (ω12 + Ω) sinφ = 0. (8)

Here ξ11, ξ22 and ξ12 are the strain rate components referred to the (x1, x2)− coordinate system.
Furthermore, ω12 is the only non-zero spin component and Ω is the intrinsic spin due to grain rotation.
In general, the latter is an unknown variable which is governed by the equation of rotational motion.
For the objective of the present paper it is sufficient to assume that Ω may be represented by a Taylor
series in the vicinity of x2 = 0. Using the first equation in (8) the second equation can be rewritten as

ξ12 cos 2ψ− ξ11 sin 2ψ+ (ω12 + Ω) sinφ = 0. (9)

The strain rate and spin components are expressed as

ξ11 =
(
∂u1
∂x1

+ u2
R(x1)

)[
1 + x2

R(x1)

]−1
, ξ22 = ∂u2

∂x2
,

2ξ12 = ∂u1
∂x2

+
(
∂u2
∂x1
−

u1
R(x1)

)[
1 + x2

R(x1)

]−1
, 2ω12 = ∂u1

∂x2
−

(
∂u2
∂x1
−

u1
R(x1)

)[
1 + x2

R(x1)

]−1
.

(10)

Here u1 and u2 are the velocity components referred to the (x1, x2)− coordinate system. Substituting
(10) into (8) and (9) yields

∂u1
∂x1

+
[
1 + x2

R(x1)

]
∂u2
∂x2

= − u2
R(x1)

,( cos 2ψ
sinφ − 1

)
∂u2
∂x1

+
( cos 2ψ

sinφ + 1
)[

1 + x2
R(x1)

]
∂u1
∂x2
−

2 sin 2ψ
sinφ

∂u1
∂x1

=

2u2 sin 2ψ
R(x1) sinφ −

(sinφ−cos 2ψ)u1
R(x1) sinφ − 2Ω

[
1 + x2

R(x1)

]
= 0.

(11)

2.2. Axisymmetric Deformation

Let (x1, x2) be an orthogonal coordinate system in the generic plane of a cylindrical coordinate
system (r, θ, z) and γ is the angle between the r-axis and the x1− direction measured from the r-axis
anticlockwise (Figure 3). As in the case of plane strain deformation, the x2− lines are straight. Then,
the scale factor of these coordinate lines are unity and the scale factor of the x1− coordinate lines is
given by (1). The solution is independent of θ. Moreover, the circumferential velocity and the shear
stresses σ1θ and σ2θ vanish everywhere. The non-trivial equilibrium equations are [30]
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∂σ11
∂x1

+
[
1 + x2

R(x1)

]
∂σ12
∂x2

+
(σ11−σθθ)

r
∂r
∂x1

+ σ12

[(
1 + x2

R(x1)

)
∂r

r∂x2
+ 2

R(x1)

]
= 0,

∂σ22
∂x2

+
[
1 + x2

R(x1)

]−1
∂σ12
∂x1

+
(σ22−σθθ)

r
∂r
∂x2

+
(σ22−σ11)
R(x1)+x2

+
(
1 + x2

R(x1)

)−1
σ12

r
∂r
∂x1

= 0.
(12)

It follows from the geometry of Figure 3 that ∂r/∂x1 = (1 + x2/R(x1)) cosγ and ∂r/∂x2 = − sinγ.
Then, the equations in (12) become

∂σ11
∂x1

+
[
1 + x2

R(x1)

]
∂σ12
∂x2

+
(σ11−σθθ)

r

[
1 + x2

R(x1)

]
cosγ+ σ12

[
2

R(x1)
−

(
1 + x2

R(x1)

)
sinγ

r

]
= 0,

∂σ22
∂x2

+
[
1 + x2

R(x1)

]−1
∂σ12
∂x1
−

(σ22−σθθ) sinγ
r +

(σ22−σ11)
R(x1)+x2

+
σ12 cosγ

r = 0.
(13)
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There are several flow regimes associated with difference faces and edges of the Mohr–Coulomb
yield criterion (Figure 4). One of the principal stresses is the circumferential stress σθθ. The other
principal stresses are denoted as σ1 and σ2. It is assumed that σ1 > σ2. In this case, there are two
regimes in which the hypothesis of Haar and von Karmen, that σ1 = σθθ or σ2 = σθθ, is satisfied. These
regimes correspond to point A and F in Figure 4. Using (3) the yield criterion can be represented as

σθθ = −p−mq, q = p sinφ+ k cosφ (14)

where m = +1 for regime A, and m = −1 for regime F. The equations in (5) are valid. Substituting (5)
and the first equation in (14) into (13) yields

−
∂p
∂x1

+ cos 2ψ ∂q
∂x1
− 2q sin 2ψ ∂ψ

∂x1
+

[
1 + x2

R(x1)

](
sin 2ψ ∂q

∂x2
+ 2q cos 2ψ ∂ψ

∂x2

)
+[

1 + x2
R(x1)

]
(cos 2ψ+m)q cosγ

r +
[

2
R(x1)

−

(
1 + x2

R(x1)

)
sinγ

r

]
q sin 2ψ = 0,

−
∂p
∂x2
− cos 2ψ ∂q

∂x2
+ 2q sin 2ψ ∂ψ

∂x2
+

[
1 + x2

R(x1)

]−1(
sin 2ψ ∂q

∂x1
+ 2q cos 2ψ ∂ψ

∂x1

)
+

(cos 2ψ−m)q sinγ
r −

2q cos 2ψ
R(x1)+x2

+
q sin 2ψ cosγ

r = 0.

(15)
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One can eliminate p here using the second equation in (14). Then, the equations in (15) become(
cos 2ψ− 1

sinφ

) ∂q
∂x1
− 2q sin 2ψ ∂ψ

∂x1
+

[
1 + x2

R(x1)

](
sin 2ψ ∂q

∂x2
+ 2q cos 2ψ ∂ψ

∂x2

)
+[

1 + x2
R(x1)

]
(cos 2ψ+m)q cosγ

r +
[

2
R(x1)

−

(
1 + x2

R(x1)

)
sinγ

r

]
q sin 2ψ = 0,

−

(
cos 2ψ+ 1

sinφ

) ∂q
∂x2

+ 2q sin 2ψ ∂ψ
∂x2

+
[
1 + x2

R(x1)

]−1(
sin 2ψ ∂q

∂x1
+ 2q cos 2ψ ∂ψ

∂x1

)
+

(cos 2ψ−m)q sinγ
r −

2q cos 2ψ
R(x1)+x2

+
q sin 2ψ cosγ

r = 0.

(16)

The flow rule is

ξ11 + ξ22 + ξθθ = 0, ξ12 cos 2ψ−
1
2
(ξ11 − ξ22) sin 2ψ+ (ω12 + Ω) sinφ = 0. (17)

Here ξθθ is the circumferential strain rate. The equations in (10) are valid. Moreover, ξθθ = ur/r where
ur is the radial velocity. It follows from the geometry of Figure 3 that ur = u1 cosγ− u2 sinγ. Using
this equation and (10) it is possible to transform (17) into

∂u1
∂x1

+
[
1 + x2

R(x1)

]
∂u2
∂x2

=
(u2 sinγ−u1 cosγ)

r

[
1 + x2

R(x1)

]
−

u2
R(x1)

,( cos 2ψ
sinφ − 1

)
∂u2
∂x1

+
( cos 2ψ

sinφ + 1
)[

1 + x2
R(x1)

]
∂u1
∂x2
−

sin2ψ
sinφ

∂u1
∂x1

+[
1 + x2

R(x1)

]
sin 2ψ
sinφ

∂u2
∂x2

=
(cos 2ψ−sinφ)u1

R(x1) sinφ +
sin 2ψu2

R(x1) sinφ − 2Ω
[
1 + x2

R(x1)

]
.

(18)
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    +

+ + − + =            

 ∂ ∂ ∂− − + + + ∂ ∂ ∂   
( )

( )

1 1

1 2

2 cos 2

cos 2 sin 2 cos 2 sin 2 cos 0.

q q
x x

m q q q
r R x x r

ψψ

ψ γ ψ ψ γ

 ∂ ∂+ + ∂ ∂ 
−

− + =
+

 (15)

One can eliminate p here using the second equation in (14). Then, the equations in (15) become 

( )

( )
( )

( ) ( )

( )

2

1 1 1 2 2

2 2

1 1 1

2

2 2 1

1cos 2 2 sin 2 1 sin 2 2 cos 2
sin

cos 2 cos 2 sin1 1 sin 2 0,

1cos 2 2 sin 2 1
sin

xq qq q
x x R x x x

m qx x q
R x r R x R x r

xq q
x x R x

ψ ψψ ψ ψ ψ
φ

ψ γ γ ψ

ψψ ψ
φ

     ∂ ∂ ∂ ∂− − + + + +     ∂ ∂ ∂ ∂     
    +

+ + − + =            

  ∂ ∂− + + + +  ∂ ∂   
( )

( )

1

1 1

1 2

sin 2 2 cos 2

cos 2 sin 2 cos 2 sin 2 cos 0.

q q
x x

m q q q
r R x x r

ψψ ψ

ψ γ ψ ψ γ

−
  ∂ ∂+ +  ∂ ∂  

−
− + =

+

 (16)

The flow rule is 

( ) ( )11 22 12 11 22 12
10, cos 2 sin 2 sin 0.
2θθξ ξ ξ ξ ψ ξ ξ ψ ω φ+ + = − − + + Ω =  (17)

Here θθξ  is the circumferential strain rate. The equations in (10) are valid. Moreover, ru rθθξ =  
where ru  is the radial velocity. It follows from the geometry of Figure 3 that 1 2cos sinru u uγ γ= − . 
Using this equation and (10) it is possible to transform (17) into 

Figure 4. Mohr–Coulomb yield locus under axially symmetric conditions.

3. Characteristic Analysis

3.1. Plane Strain Deformation

Multiplying the first equation in (7) by cos 2ψ, the second by sin 2ψ and summing gives(
1−

cos 2ψ
sinφ

)
∂q
∂x1
−

sin 2ψ
sinφ

[
1 +

x2

R(x1)

]
∂q
∂x2

+ 2q
[
1 +

x2

R(x1)

]
∂ψ

∂x2
= 0. (19)

Multiplying the first equation in (7) by sin 2ψ, the second by − cos 2ψ and summing gives

sin 2ψ
sinφ

∂q
∂x1
−

(
1 +

cos 2ψ
sinφ

)[
1 +

x2

R(x1)

]
∂q
∂x2

+ 2q
∂ψ

∂x1
=

2q
R(x1)

. (20)
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Assume that S – curve in Figure 1 is a characteristic curve. Then, ψ = ±(π/4 + φ/2) on this
curve [14]. In particular, ∂ψ/∂x1 = 0. Equation (20) supplies the characteristic relation in the form

± cotφ
∂q
∂x1
−

2q
R(x1)

= 0. (21)

In the proceeding, it is assumed that S – curve in Figure 1 is an envelope of characteristics.
Therefore, Equation (21) is not satisfied even though ψ = ±(π/4 + φ/2) on this curve. It is possible
only if ∣∣∣∣∣ ∂q

∂x2

∣∣∣∣∣→∞ (22)

as x2 → 0 . In this case, the second term in (20) reduces to the expression 0 · ∞ at x2 = 0.

3.2. Axisymmetric Deformation

Multiplying the first equation in (16) by cosψ, the second by sinψ and summing gives(
1−

cos 2ψ
sinφ

)
∂q
∂x1
−

sin 2ψ
sinφ

[
1 +

x2

R(x1)

]
∂q
∂x2

+ 2q
[
1 +

x2

R(x1)

]
∂ψ

∂x2
= F1. (23)

Multiplying the first equation in (16) by sinψ, the second by − cosψ and summing gives

sin 2ψ
sinφ

∂q
∂x1
−

(
1 +

cos 2ψ
sinφ

)[
1 +

x2

R(x1)

]
∂q
∂x2

+ 2q
∂ψ

∂x1
= F2. (24)

The terms F1 and F2 include no derivatives.
Assume that S – curve in Figure 3 is a characteristic curve. Then, ψ = ±(π/4 + φ/2) on this

curve [31]. In particular, ∂ψ/∂x1 = 0. Equation (24) supplies the characteristic relation in the form

± cotφ
∂q
∂x1

= F2. (25)

In the proceeding, it is assumed that S – curve in Figure 3 is an envelope of characteristics.
Therefore, Equation (25) is not satisfied even though ψ = ±(π/4 + φ/2) on this curve. It is possible
only if ∣∣∣∣∣ ∂q

∂x2

∣∣∣∣∣→∞ (26)

as x2 → 0 . In this case, the second term in (24) reduces to the expression 0 · ∞ at x2 = 0.

4. Asymptotic Analysis

The asymptotic analysis below is based on the assumptions that all stress and velocity components
are bounded everywhere and all derivatives with respect to x1 are bounded everywhere, and the
solution is represented by power series in x2 near the curve x2 = 0 (Figures 1 and 3).

4.1. Plane Strain Deformation

Let ψ f be the value of ψ at x2 = 0. For definiteness, it is assumed that ψ f = π/4 + φ/2. The case
ψ f = −(π/4 + φ/2) can be treated in a similar manner. The condition (22) requires that

q = q0 + q1xα2 + o
(
xα2

)
(27)

as x2 → 0 and
0 < α < 1. (28)
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Here q0 and q1 are independent of x2. The first term in (19) is bounded. Therefore, Equations (27) and
(19) combine to give

ψ = ψ f +ψ1xα2 + o
(
xα2

)
(29)

as x2 → 0 . Turning to Equation (20), the first and third terms of this equation are bounded. The term
on its right-hand side is also bounded. Therefore, the second term must be bounded as x2 → 0 .
Expanding cos 2ψ in the Taylor series in the vicinity of ψ = ψ f one gets

1 +
cos 2ψ
sinφ

= −2 cotφ
(
ψ−ψ f

)
+ o

[(
ψ−ψ f

)]
(30)

as ψ→ ψ f . Using (27), (29) and (30) the second term in (20) is represented as(
1 +

cos 2ψ
sinφ

)[
1 +

x2

R(x1)

]
∂q
∂x2

= −2αq1ψ1 cotφx2α−1
2 + o

(
x2α−1

2

)
(31)

as x2 → 0 . Substituting (27), (29) and (31) into (20) shows that x2α−1
2 = O

(
xα2

)
or x2α−1

2 = O(1) as
x2 → 0 . The former yields α = 1, which contradicts (28). The latter results in

α =
1
2

. (32)

Then, (27) and (29) become

q = q0 + q1
√

x2 + o
(√

x2
)

and ψ = ψ f +ψ1
√

x2 + o
(√

x2
)

(33)

as x2 → 0 , respectively. The distribution of p neat the curve is readily found from (4) and (33) as

p =
q0 − k cosφ

sinφ
+

q1

sinφ
√

x2 + o
(√

x2
)

(34)

as x2 → 0 .
It is now necessary to demonstrate that (33) is compatible with the plastic flow rule. The velocity

components are represented as

u1 = U0 + U1xβ2 + o
(
xβ2

)
and u2 = V0 + V1xλ2 + o

(
xλ2

)
(35)

as x2 → 0 . Here U0, U1, V0 and V1 are independent of x2. Moreover, β > 0 and λ > 0. The first
equation in (11) shows that ∂u2/∂x2 = O(1) as x2 → 0 . Therefore λ = 1, and the second equation in
(34) becomes

u2 = V0 + V1x2 + o(x2) (36)

as x2 → 0 . Substituting (30), (33), (35) and (36) into the second equation in (11) results in

2ψ1V1β cotφ
√

x2xβ−1
2 = O(x2) (37)

as x2 → 0 . It follows from this equation that β = 1/2 and the first equation in (35) becomes

u1 = U0 + U1
√

x2 + o
(√

x2
)

(38)

as x2 → 0 .
To the best of the authors’ knowledge, two semi-analytical solutions for the double slip and

rotation are available [16,17]. The asymptotic analysis of these solutions shows that they satisfy
(33), (34), (36) and (38). Several semi-analytic solutions for the double-shearing model, which is
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another widely used model of pressure-dependent plasticity, have been derived in [11–13] and [16].
The asymptotic analysis of these solutions also shows that they satisfy (33), (34), (36), and (38).

4.2. Axisymmetric Deformation.

It is seen from (19), (20), (23) and (24) that the left-hand sides of the equations under plane strain and
axial symmetry coincide. The right-hand sides of these equations have no effect on asymptotic analysis.
Therefore, the equations in (33) and (34) are valid for axisymmetric deformation. The circumferential
stress is readily determined from the first equation in (14).

Turning to the velocity equations in (18), the derivative ∂u2/∂x2 in the second equation can be
eliminated using the first equation. As a result,

∂u1
∂x1

+
[
1 + x2

R(x1)

]
∂u2
∂x2

=
(u2 sinγ−u1 cosγ)

r

[
1 + x2

R(x1)

]
−

u2
R(x1)

,( cos 2ψ
sinφ − 1

)
∂u2
∂x1

+
( cos 2ψ

sinφ + 1
)[

1 + x2
R(x1)

]
∂u1
∂x2
−

2 sin 2ψ
sinφ

∂u1
∂x1

+

=
[
1 + x2

R(x1)

]
(u1 cosγ−u2 sinγ) sin 2ψ

r sinφ +
(cos 2ψ−sinφ)u1

R(x1) sinφ +
2u2 sin 2ψ
R(x1) sinφ − 2Ω

[
1 + x2

R(x1)

]
.

(39)

The left-hand sides of these equations coincide with the corresponding left-hand sides of the equations
in (11). Therefore, Equations (36) and (38) are also valid.

5. Conclusions

The exact asymptotic representation of solutions in the vicinity of envelopes of characteristics has
been found for the double slip and rotation model under plane strain and axially symmetric conditions.
This representation coincides with the behavior of specific solutions found in [11–13,16,17]. This
representation also coincides with that for isotropic rigid plastic solids obeying an arbitrary smooth
yield criterion [18], and for some anisotropic yield criteria [19]. It is seen from Equations (33), (34) and
(38) that the stress and velocity fields are singular in the vicinity of the envelope of characteristics, in the
sense that some derivatives of the stress and velocity components approach infinity near the envelope.

The applied aspect of the asymptotic representation of solutions derived in the present paper is
twofold. Firstly, as known from other models of rigid plasticity, numerical solutions using traditional
finite elements do not converge if the exact solution is described by equations similar to (33), (34)
and (38) [32,33]. The asymptotic representation given in (33), (34) and (38) can be used in conjunction
with the extended finite element method, outlined in [29], for developing an accurate numerical
approach for solving corresponding boundary value problems.

Secondly, the asymptotic representation given in (33), (34) and (38) can be used in conjunction
with models for soil–structure interfaces [21–23]. In particular, an envelope of characteristics usually
coincides with the interface between a structure and material, for example between a structure and soil.
In this case, experiment confirms some mathematical features of the general theoretical solution. If an
envelope of characteristics coincides with the interface then the regime of sliding occurs independently
of the friction law chosen. This means that the friction stress is independent of the roughness of the
contact surface. It is in general known that the surface roughness affects the material behavior near
the interface [34,35]. However, this effect is usually significant only if the surface roughness is small
enough. For example, in the case of the interface between Yongdinghe sand and low carbon steel the
friction stress is practically independent of the surface roughness if Rn > Rcr = 0.1 where Rn is the
relative interface roughness and Rcr is its critical value [35]. In [35], the soil–structure interfaces are
classified as smooth or rough depending on the value of Rn. When Rn < Rcr the interface is smooth.
If Rn > Rcr then the interface is rough. In the latter case, strain localization occurs near the interface.
This feature of material behavior is in agreement with (38) as this equation predicts that the shear
strain rate approaches infinity as x2 → 0 . Moreover, it has been found in [35] that the residual friction
angle is close to the internal friction angle of sand if Rn > Rcr. This feature is in agreement with the
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second equation in (33). Therefore, it is reasonable to assume that the condition that an envelope of
characteristics coincides with the soil–structure interface is adequate when Rn > Rcr. In this case, it is
natural to expect the similarity between the behavior of soil and interface. This similarity has been
investigated in [23].
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