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Featured Application: The featured potential application of this article is to encourage the
maxillofacial surgeons to decide which type of alloy to use for the osteosynthesis plates based on
the information presented and to guide the clinicians and influence their decision regarding the
necessity of removal.

Abstract: Titanium alloys are known for their biological, mechanical and chemical properties,
which have successfully expanded their use in the maxillofacial field. The internal fixation using
titanium miniplates and screws offer a new perspective for the treatment of trauma and in orthognathic
surgery and maxillofacial oncology. Although, titanium is highly recommended for its excellent
biocompatibility, recent research has focused on identifying the potential local and general implications
of the interactions between the human tissue and the metallic particles. This present review aims
to outline the existing tissue changes, cellular alterations and future perspectives regarding the use
of titanium-based alloys as osteosynthesis materials, taking into consideration the existing present
debate whether the routinely removal of these materials should be an indication.
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1. Introduction

Maxillofacial fractures represent a common pathology and a continuous challenge for clinicians.
Among this particular pathology, the most frequent are the mandibular fractures that imply particular
attention regarding the treatment by achieving a proper functionality and aesthetic outcome through
the reconstruction of the local anatomy, occlusion and functional activity [1]. Injuries in this segment
include hard and soft tissue alterations that could occur from the frontal area to the mandible [2].
This region is the most exposed to trauma and the fractures can be localized at one or more bones from
the maxillofacial area. The mechanism that produces the fracture, the direction and the magnitude
determine the pattern and characteristics of the fracture line. The aetiology of these fractures includes a
wide range of violence trauma, road traffic accidents, sport injuries, falls or work-related injuries [2,3].

1.1. Epidemiology of Maxillofacial Fractures

The maxillofacial fractures epidemiology is different based on the lifestyle, geographic area,
cultural and socio-economic factors [4,5]. The statistics show that trauma in the maxillofacial area
represents 35–45% from all trauma categories [6]. The fact that this type of trauma is associated with a
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high morbidity rate, important aesthetic implications, severe functional alterations and a high influence
upon the social life means that the maxillofacial fractures are characterized as a growing public health
problem expanding worldwide [3].

The importance of understating completely the cause and the potential mechanism that produces
the fracture in the facial area, as well as the severity grade and surrounding affected tissues, play an
important role in deciding the proper treatment plan, the correct approach and the potential intra- and
post-operative complications [7]. Research showed that the most frequent fracture in the maxillofacial
area are the mandible fractures–1743 (42%), zygoma fractures (24%), orbital fractures (16%), nose
fractures (9%), Le Fort fractures (5%), naso-orbito-ethmoidal fractures (1%) [3–8].

1.2. Treatment Options

Treatment of the maxillofacial fractures varies based on the type of fracture, the localization
and the implication of the surrounding tissue. Studies often compare the two types of treatment
options—the closed reduction and the open reduction—using rigid internal fixation, each of them
presenting advantages and disadvantages [9]. A proper outcome after the treatment of the fractures
in this area is based on a stable fixation with a correct reduction and reposition of the fragments,
efficient fixation that offers an optimal environment for healing, remodelling and revascularization of
the area [10]. The surgical approach is the primary option when the existing fracture determines severe
dysfunction, disfigurement and extension of the fracture site. Furthermore, the internal bone fixation
approach using miniplates and screws is recommended when the intermaxillary immobilization is
difficult for the patient or it has contraindications to be performed [11]. As an election material,
titanium miniplates and screws proved an asset for the surgical treatment with a high biocompatibility
that quickly found its use in traumatology, orthognathic surgery and maxillofacial oncology [1].

1.3. Healing and Repairing Process

The healing process is based on the intervention of the bone tissue, the bone marrow’s cells,
the periosteum and the soft tissue [12]. The homeostasis of the bone tissue is kept by the interactions
of the osteoblasts, osteoclasts, bone-lining cells and osteocytes, all of them being responsible for the
remodelling process [13]. When an interruption in the normal process occurs due to various causes,
the aim is to regain the normal function of the tissue. A special category of cells that were discovered
in the bone marrow have the power to differentiate into various other cell types, and among them
are osteoblasts and chondrocytes. These cells are the mesenchymal stem cells (MSC), and they are
defined through several specific surface markers (CD73, CD90 and CD105) [14]. Multiple studies have
been conducted and the results revealed an important characteristic of the MSC—a characteristic that
offers them a crucial role in the regenerative and reparative process of several adult tissues (bone,
muscles, neuronal cells). The immunomodulatory effects of the MSC as proangiogenic, prosurvival
and antiapoptosis properties transform them into an important adjuvant in tissue engineering and
regenerative medicine [14]. In the oral cavity, the oral-derived stem cells (ODSC) can be obtained from
the extracted teeth, mainly from the fresh dental pulp. Offering such an easy approach in the oral
environment, this type of mesenchymal stem cells has gained the attention of researchers for further
studies [15]. Also, similar cell populations have been identified in the periodontal ligament, dental
follicle and gingival tissue with remarkable regenerative potential [16–18]. Further clinical studies that
examined the oral bone formation after the removal of periapical cysts, describe the implication of
stem-like cells in the local regenerative process, suggesting their presence in the granulation tissue [19].
These results could influence and change the perspective of bone regeneration in the maxillofacial
region after the excision of cystic pathology. Multiple studies focus on reporting the existing relationship
between the mesenchymal stem cells and bone tissue regeneration. The implication of the TGFβ1 gene
in the differentiation process influences the mesenchymal stem cell’s pathway to either an osteogenic or
adipogenic cell. The use of PRP blood clot or vitamin D associated with dental-derived mesenchymal
stem cells promoted the osteogenic process in the reported studies [20]. Taking into consideration the
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high potential of the oral cavity’s tissues to provide mesenchymal stem cells that can develop into
different types of tissue, the path of regenerative medicine encountered a new challenge. The oral
mesenchymal stem cells are the target, possessing immunomodulatory molecules that have direct
action upon the healing process and the inflammatory alterations.

Another possibility that promotes bone healing and regeneration in preclinical and clinical trials
is the involvement of growth factors. The results revealed that for the expected results, the dose
of growth factors is very high in order to accomplish the desired outcome, generating extreme cell
multiplication [21]. In order to accelerate the bone regeneration, nanomaterials could be an option as
the dimension is similar to the bone and the shape facilitates the local bioactivity, improving the bone
growth. Several studies have revealed that a certain nanotopography of the inserted bone implants
can influence bone regeneration. Also, nanomaterials can serve as matrices for the stem cells in order
to obtain osteolineage, that could permit their differentiation [21]. Results have been obtained when
bioactive coating of the implants occurred. Using titanium implants associated with bioactive coating
proved to determine new bone growth at the interface. Nanoengineered biomaterials that target the
regenerative potential of the bone tissue and promote the osteoblastic activity can be added to the
implanted scaffold in order to stimulate and accelerate local healing.

Dental pulp stem cells (DPSCs) offer the change of using an autologous source in order to trigger
and influence the regenerative process. The studies performed on culture cells with the association
of human platelet lysate (PL) replacing the animal serum were a success. Human platelet lysate is
biocompatible, generating no risk of viral transmission or contamination [22]. The dental pulp stem
cells have osteogenic and angiogenic potential, with multiple differentiation possibilities. The study
conducted by Marrazo et al. [22] analysed in vitro the effects that the added human platelet lysate had
upon the dental pulp stem cells. The results showed a higher rate of the cell viability and proliferation
when PL in concentration 1% was used, in comparison to the normal protocol that uses foetal bovine
serum (FBS).

The medical procedures contribute to the solution of recreating a proper environment in order
to regain the morpho-functional characteristics, to offer optimal conditions for the integration and
the local remodelling process with the help of material substitutes. The term of biomedical devices
refers to the replacement of the missing tissues using tested materials that can successfully fulfil all
the desiderates of the specific area, maintaining a good interaction with the surrounding tissues [23],
as shown in Table 1.

Table 1. Characteristics of metals used in maxillofacial reconstructions.

Property Description

Elasticity Module The amount of force required to break the material
Shear Stress The amount of force required to break the material in a sliding type vector

Tensile Strength The resistance of breaking under various tensions
Yield Strength The amount of force required to deform the material

The osteosynthesis method in the maxillofacial field desires to regain the functionality and
morphology of the bones, creating an optimal environment for the osteogenic process with the
help of different materials that are biocompatible. The present review aims to evaluate the use of
titanium alloys in maxillofacial osteosynthesis under various forms, the advantages and disadvantages
that accompany their use and their long-term implications in relation with the surrounding tissues.
Taking into consideration the important properties that titanium possesses, the existing studies still
debate if the titanium alloys materials could be left or should be removed after a period of time due to
possible alterations in the surrounding tissue and body fluids.
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2. Titanium Alloys Used in Osteosynthesis

The medical approach regarding the pathology that regards the bone tissue by disrupting
its continuity is based on the fixation of the bone segments by using various materials. Usually,
titanium plates and screws contribute to the internal fixation in maxillofacial osteotomies and fractures.
Among the important properties that such a material needs to possess in order to fulfil its functions
are tensile strength and hardness [24]. Osteosynthesis treatment was improved once the titanium
alloys were introduced as a first option materials in the maxillofacial fractures [25]. Ti-6Al-4V (TAV),
Ti-GAl-7Nb (TAN) and Ti-6Al-4V ELI (TAV ELI) are the most frequently used titanium alloys in the
fabrication of miniplates and various orthopaedic devices due to the fact that they possess an α and β

microstructure [26], as displayed in Table 2.

Table 2. Titanium alloys used in medical field.

Pure Titanium (Grade 1,2,3,4)

Ti–6Al–4V ELI (α + β type) (titanium-4 aluminium-4 vanadium Extra-Low Interstitial)
Ti-6Al-4V (α + β type) (titanium-6 aluminium-4 vanadium)

Ti–6Al–7Nb (α + β type) (titanium-6 aluminium- 7 niobium)

Ti–5Al–2.5Fe (β rich, α + β type) (titanium- 5 aluminium- 2,5 iron)
Ti–5Al–3Mo–4Zr (α + β type) (titanium- 5 aluminium-3 molibdem-4 zirconium)

Ti–15Mo (β type) (titanium- 15 molibdem)
Ti–15Mo–5Zr–3Au (β type) (titanium- 15 molibden- 5 zirconium- 3 gold)

Ti–15Sn–4Nb–2Ta–0.2Pd (α + β type) (titanium- 15 stanium- 4niobium- 2 tantalum- 0,2 palladium)

Ti–15Zr–4Nb–2Ta–0.2Pd (α + β type) (titanium-15 zirconium-4 niobium-2 tantalum-0,2 palladium)
Ti–15Mo–3Nb (β type) (titanium-15 molibdem-3 niobium)

Ti–12Mo–6Zr–2Fe (β type) (titanium-12 molibdem-6 zirconium-2 iron)
Ti–35.3Nb–5.1Ta–7.1Zr (β type) (titanium-35,3 niobium-5,1 tantalum-7,12 zirconium)

Titanium has the desired mechanical properties in order to serve as an internal rigid fixation
material, taking into consideration also the fact that it is characterized by a high degree of
biocompatibility [27]. The goal in the osteosynthesis treatment was to overcome all the limitations that
other materials had in the past by introducing all the advantages that the titanium alloys possess [28].
Research showed that for the biocompatibility of the titanium the oxide layer that forms on its surface
is responsible [28] for helping the integration process. The pure titanium can be classified into four
groups based on their oxygen composition, with grade 4 containing the most amount on oxygen (0.4%)
and grade 1 the least amount (0.18%) [29]. The α and β titanium alloys are the standard combination
that offer excellent mechanical properties, biocompatibility and resistance to corrosion. Recently,
studies have focused on the single β titanium alloys based on the fact that their process can be directed
in order to modify the properties and improve the corrosion resistance, to lower the elasticity modulus
and to influence the notch resistance [26].

Alloys based on titanium are classified as nontoxic materials that are popular for their good
biological response [30,31], except those that have vanadium in their componence, since this material
seems to have a cytotoxic potential.

Several in vivo studies conducted on animals proved the fact that although vanadium determined
a cytotoxic response, the overall biocompatibility of Ti-6Al-4V alloys is similar to the ones without
vanadium [32].

The surface of titanium alloys are covered in an oxide layer that confers resistance to corrosion and
offers acceptable biological properties. The surface oxide films are mainly consisting of stable oxides
like TiO2, Al2O3, Zr2O5 and MoO3. These types of oxides assure the insolubility in various biological
fluids, which facilitates the biocompatibility for the titanium alloys. Research proved that Ti-15Mo
and the CP titanium had the best resistance to corrosion towards a solution-based phosphate buffered
saline, and Ti-6Al-7Nb and Ti-6Al-4V were the best alloy combination with remarkable corrosion and
sliding wear resistance [33]. The applications of the titanium alloys are indicated by their properties,
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such as fatigue strength, wear, stress resistance and corrosion resistance—properties that dictate the
proper use in various clinical situations.

Bone osteosynthesis treatment uses metallic miniplates and screws that can sustain and replace
all the functions of the facial bones. Titanium alloys have quickly become the best alternative that
can provide a good contour of the replaced bone structure, having ideal resistance, elasticity, tensile
strength and biocompatibility [33–35]. The titanium composition provides an important biocompatible
characteristic that determines the activation of the osteointegration process with the apposition of bone
tissue in the reconstructed area.

3. General and Local Implications of Titanium Alloys

The main target of the bone healing process near a fracture sites is based on a proper vascularization,
a correct repositioning of the bone fragments and an optimal immobilization using an adequate
material [36]. Currently, the most popular approach for this type of intervention are the metallic
miniplates and screws, avoiding in this way the maxilla–mandibular fixation [37]. The advantages
of this type of treatment include an early recovery with a functional masticatory function and an
improved aesthetic outcome. Over time, studies mentioned several potential disadvantages related to
their lifelong remanence in relation with the tissues, the most common being the possible sensibility
disturbances [38], growth disturbances, impediments in radiotherapy irradiation [39] or situations
when the miniplates become palpable [40,41].

Research outlined the fact that certain postoperative complications related to the mandible fracture
surgical treatment were encountered in 20–26% of the interventions [42,43]. Multiple complications can
occur after this type of treatment, of which the nonunion of the fracture site, osteomyelitis, infections
and dehiscence are the most frequent [44,45]. Also, implications directly related to the titanium
miniplates and screws were reported—failures related to the fracture of the miniplates or the loosening
of the screws [42].

General and local implication while using titanium alloys for the osteosynthesis treatment in
the maxillofacial area have been the subject of many studies, leaving an important question mark
regarding their use, their potential influences upon the human body and their routinely removal.

3.1. Inducing Oxidative Stress and Cell Damage

Titanium alloys miniplates and screws have multiple advantages associated with the treatment of
maxillofacial trauma, orthognathic surgery or oncological reconstructive treatment. However, several
studies raise an important question regarding reported negative outcomes [46,47]. Research has
investigated the hypothesis that the chronic inflammation around titanium alloys miniplates and
screws can induce an increased production of reactive nitrogen species and oxygen-free radicals [48–50].
The problem associated with the activation of the reactive oxygen species and the production of
reactive nitrogen ones is the damage that follows, affecting the normal cell function and influencing
the production of the proinflammatory mediators with a consequence upon the growth, differentiation
and apoptosis functions of the normal cells [51]. As far as it was investigated, oxidative stress is one
of the inductive mechanisms of the titanium toxicity [52], but the exact amount of damage that it
can produce cannot yet be quantified. A study was conducted by Borys et al. [1], being the only one
that aimed to evaluate the effect that titanium alloys materials used for osteosynthesis had upon the
redox balance found at the placement of the material and upon the systemic health. The results of
the study showed that several of the oxidative damage products were increased in the mandibular
periosteum of patients with mandibular fractures that were treated with titanium alloy osteosynthesis
materials compared to the control group. The results showed that the advanced glycation end products
(AGE) fluorescence was increased in the mandibular periosteum of the target group compared to
the control, the advanced oxidation protein products (AOPP) and 4-HNE levels were significantly
higher also in the target group. At the same time, the concentration of 8-OHdG in the target group
compared to the control showed similar values [1]. In the same study, the evaluation of the antioxidant
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defence mechanisms showed that the catalase (CAT) activity was lower in the mandibular periosteum
of the target group and higher in the erythrocytes of the same group compared to the control one [1].
Also, the superoxide dismutase (SOD) activity showed an increased value in the evaluated group
compared to the healthy one, while it showed no influence upon the erythrocytes. The uric acid
(UA) concentration was higher both in the periosteum and plasma of the patients with mandibular
fractures when compared to the controls [1]. These results suggest an increased imbalance of the redox
homeostasis and oxidative stress management associated to the patients with mandibular fractures
that were treated with titanium alloys miniplates and screws. The alterations could be identified in
the periosteum nearby the titanium alloys by an increased level of lipid metabolism and oxidative
protein products in comparison to the healthy control group. Several changes related to the activity of
enzymatic and nonenzymatic antioxidants were also observed in the erythrocytes and plasma of the
target group.

A study conducted by Wang et al. [53] outlined the fact that the released titanium ions from
the materials could influence the osteoclasts and phagocytes to increase the production of reactive
oxidative species and reactive nitrogen species. Through this mechanism the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase activity is higher, producing a large number of free radicals.
The high level of reactive oxygen species can influence the beginning of an inflammatory process near
the titanium material [52–55].

An imbalance in the normal redox value can determine a high production of free radicals
and peroxides, causing damage upon all cell components, especially DNA. Besides local side effects,
oxidative stress can be a cause for neurodegenerative conditions. Involving the oral cavity, the alterations
of the small nerve fibres of the oral mucosa have been reported, inducing dysgeusia and burning
pain [56]. A study conducted by Tatullo et al. [56] reveals the fact that an increased level of oxygen
reactive species was identified in the study group, suggesting a direct implication in the pathogenesis
of the described oral pain.

The disturbance of the redox balance and the production of excessive oxidative alterations in the
cells can highly influence the remodelling process in patients treated for mandibular fractures [52,57].
What determines the perturbance of this process is the fact that the correct healing depends on the
action of osteoblasts and osteoclasts, thus it is a process that is influenced by various components,
especially collagen proteins [58]. Titanium based alloys are responsible for the infiltration of titanium
ions and the increased production of cytokines, the activation the osteoclasts, and starting an osteolysis
action [59]. Another important implication is upon the fibroblasts, as collagen type 1 synthesis is
inhibited by inducing a genomic alteration [60,61].

3.2. Influence upon the Serum Metal Levels

As described, the oxide layer formed on titanium alloys materials can suffer over time, and can even
be degraded by chemical or electrical corrosion [62]. This specific action can determine the formation
and release of active metallic compound into the bloodstream. Although, titanium is considered as
biocompatible, this possible consequence has not been yet fully investigated and the response of the
human body has not been completely elucidated [63]. Research conducted by Ferguson et al. [64]
outlined the fact that metal debris have been found in patients that underwent orthopaedic surgery—a
fact that raised an important doubt regarding the potential unknown consequences [64]. Taking into
consideration the fact that the maxillofacial field frequently used titanium-based alloys devices for
various pathologies, this aspect in an important actual concern.

A study conducted by Mercuri et al. [62] included a number of 30 subjects that had implanted
different titanium-based alloys devices, including miniplates and screws, for at least one year. The aim
of the study was to identify if any changes existed in the metal concentration of the serum of these
subjects. The results showed that in the blood of five subjects included in the study, the levels of cobalt
in the serum was higher in three subjects, the level of chromium was higher in two subjects and only
one subject showed a higher level of titanium and chromium.
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The existence of metallic debris that are secondary to the implantation of metallic devices has
gained attention in the past years. The presence of titanium, chromium, cobalt and other metallic
components can play an important role in the failure of the metallic devices by negatively influencing
their strength [65]. Studies showed that the contribution of monocytes by their development into
osteoclasts can determine local loosening of the metallic devices [66,67].

Zaffe et al. [68] in their study used optical microscopy to examine titanium-based alloys devices
that had been removed from 28 patients after they underwent maxilla-facial surgery. Their conclusion
was that in the nearby connective tissue, the blood cells contained high titanium levels, and that
the release of the titanium ended when bone deposits covered the titanium surfaces. Another study
performed by Meningaud et al. [69] aimed to examine the surrounding soft tissue after the removal of
titanium plates, and their results revealed that titanium was released into the soft tissue during the
osteosynthesis procedure, but its levels remained constant and it was characterized as being inert,
as shown in Table 3.

3.3. Modifications of the Surrounding Tissue

Although titanium is described as having a good acceptance, the long-term interaction between it
and the surrounding tissue is still debated and unclear [70]. Taking into consideration the potential
consequences, the removal of the titanium-based materials after the healing is complete is still a
subject of many research topics. The release of metal in the tissue is explained to be secondary to
contamination, corrosion or during the insertion or removal manoeuvres [71–73]. A study performed
by Meningaud et al. [69] concluded that the metal that was released from the titanium plates used for
maxillofacial osteosynthesis is associated with the surgical part of the process. And the metal that has
been released during the time that the plates were in situ was a minor quantity.

Langford et al. [74] conducted a study in which they analysed the surface of retrieved titanium
plates and the surrounding tissue after their removal. After the analysis, they identified deposits of
silica and aluminium on the surface, suggesting that a contamination might have occurred during the
manufacture process by polishing the titanium plate, through atmospheric contamination or during
the autoclaving process before their intraoperatory use. Overall, the conclusions of their research
pointed out the fact that the surgical manipulation and the existing defects of manufacture are a more
probable source of potential metal release in the tissue [74]. Other studies also reported the existence of
silica and aluminium on the titanium plates surface and in the nearby soft tissue [75–77]. The potential
influence of aluminium has been reported in several studies and associated with the incidence of
osteomalacia, Parkinson’s and Alzheimer’s diseases [78].

In their study, Armencea et al. [79] aimed to examine and quantify the microscopic changes that
occur in the soft tissue that covers the titanium plates used for osteosynthesis, in order to identify any
presence of metallic deposits. After examining the soft tissue samples that were in contact with the
titanium plates, they concluded that in all cases, the titanium plates were covered in fibrotic tissue,
without any inflammatory signs. A dark-grey pigmentation was visually observed in the majority
of the samples (16 out of 20), and under microscopic examination pigmented debris were found in
all the soft tissue samples [79]. Other studied presented that titanium particles can be transported
with the help of the lymphatic vessels into the local lymph nodes [80]. However, Bessho et al. in their
study reported also the encounter of titanium particles in the lungs, kidneys, spleen and liver [80].
Metallic particles in the adjacent soft tissue were also reported by Acero et al. [81], finding after optical
microscopic examination, pigmented deposits of a dark brown colour, having intra and extracellular
localization. Pigmentation of the nearby connective tissue of a black-grey colour was observed also
by Nakamura et al. [82], in seven of the enrolled patients in their study. The samples were analysed,
and the results showed that the pigmented deposits could be found both intracellular and extracellular,
surrounded by an apparent foreign body reaction, as shown in Table 3.
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Research showed that metallic particles can be transferred into the surrounding soft tissue as a
result of corrosion, defect of manufacture, mechanical damage during insertion or removal, surface
contamination or while in situ during a wear process [74–83].

3.4. Generating an Immuno-Inflammatory Response

Several research papers focused on the encountered immune–inflammatory response generated
by the titanium plates and screws used for osteosynthesis. Existent results that suggest an association
between titanium alloys and a secondary local osteolysis have gained the attention and became a
concern. In relation with the area where the titanium screws and plates became loose, an analysis of
the tissue sample revealed an important implication of the macrophages in the surrounding fibrous
tissue [84].

In the study performed by Katou et al. [84] the aim was to investigate the immune–inflammatory
response of the soft tissue surrounding the titanium-based alloys used for osteosynthesis and the
potential role of the macrophage’s infiltration. Their results revealed that an important layer of fibrous
connective tissue was formed with a loose outer part that contained blood vessels. Near the blood
vessels, an important number of macrophages-like cells that contained fine metal particles were
identified. The performed immunohistochemical analysis showed that the tissue samples examined
contained CD68, CD11c, CD11a, CD11b, CD8, CD4, CD54, CD62P positive cells. The identified
macrophages showed alteration that induced their lysis followed by their death. The results of the
research point to the existence of a mild–moderate inflammatory condition. This was the first research
that outlined an immune–inflammatory response and a fibrous encapsulation near titanium miniplates.

Rae et al. [85] in a study performed on mice, reported that in case of the presence of titanium
particles that were injected into the knee joint, no remarkable tissue reaction was present, although
that human fibroblasts exposed to pure titanium released a certain amount lactate dehydrogenase,
inducing cell alterations.

Several existent reports also suggest that the macrophages that have phagocytized titanium
particles can influence the further release of immune mediators that have a direct action upon the
bone resorption and the failure of the titanium devices by their secondary loosening [86–90]. Also,
the macrophages release cytokines (b-FGF, IL-1, TGF-β) that stimulate the fibroblasts to produce more
collagen, which subsequently contributes to the fibrous encapsulation, as shown in Table 3 [91,92].

3.5. Allergic Reactions Associated with Titanium-Based Alloys

Titanium alloys are popular for their high biocompatibility [93,94] and tolerance in relation
with the human tissue. The large use in the osteosynthesis field with positive outcomes
assured the titanium-based alloys a well-deserved first place in surgical reconstructive treatment.
Recent studies have focused on reporting several aspects regarding cases that describe developed
allergic symptomatology in relation with titanium-based alloys. One explanation could be the fact that
the advancement made in materials technology produced titanium-based products with an increased
quantity of titanium, sensitizing the human body.

Thomas et al. [95] published a case report regarding a patient that had developed an allergic
reaction—an eczema after an osteosynthesis procedure using a titanium-based material. In this case,
the patch test revealed no reactions, and only after an examination of the blood samples, the lymphocytes
showed an active response towards TiO2.

Another case report belonging to Egusa et al. [96] described the existence of a facial eczema
in relation to a titanium dental implant. The patients underwent the lymphocyte transformation
tests (LLT)—tests that have been newly recognized to be precise for the testing for metal sensitivity,
including titanium [97–99]. The results showed a reaction towards TiCl3. The removal of the implants
determined the remission of the symptomatology.

Cases of titanium allergy are still rarely reported, and it is not recognized as an expected interaction.
The most used titanium-based alloys consist of titanium dioxide with a major impact in reconstructive
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medicine based on their multiple advantages. An increased usage of these alloys determined an
inevitable exposure of the human body. Although, while the positive allergic reactions are proven to
be against titanium reagents, no patient until recently has developed a positive allergic reaction to only
one titanium reagent. Taking into consideration the facts, it is safe to conclude that the incidence is low
in comparison to the exposure to other metals, and titanium can be considered a low risk material.
Still, changes could potentially arise in the future, as the increased exposure to these types of materials
alters the human body response as a consequence.

Table 3. Studies focused on titanium-based alloys and their implications.

Reference Titanium-Based
Alloys Type of Study Samples Implications and Conclusions

Borys et al. [1] Ti4Al4V In vivo

Soft tissue
sample

(periosteum)
Blood sample

- Increased superoxide dismutase (SOD) activity
(redox biomarker) in erythrocytes in the study
group compared to the control ->increased
antioxidant defence
- Increase in uric acid (UA) concentration both in
tissue and blood of the study group compared to
the control ->increased antioxidant defence
- Increased tacrolimus (TAC) level in the tissue
sample of the target group compared to the
control ->increased oxidant status
- decreased oxidative stress index (OSI) value in
both blood and tissue samples of the study group
in comparison to the control ->increased
oxidant status
- increase of advanced glycation end products
(AGE) fluorescence in the tissue sample
(periosteum) of the study group ->oxidative
damage product
- increased advanced oxidation protein products
(AOPP) concentration in the tissue sample
(periosteum) of the study group than in the
control one ->oxidative damage product

Wang et al. [51] TiO2 In vivo Blood sample

- elevated enzymes aspartate
transaminase/alanine transaminase (ALT/AST)
levels in the study group
- lactate dehydrogenase (LDH) and
alpha-hydroxybutyrate dehydrogenase
(HBDH) increased levels in the study group
compared to the control one

Yang et al. [57] TiVaAl In vitro

HF19 cells (that
were put in

contact with the
alloy)

- toxicity and an influence upon the clonogenic
survival after the interaction with the
metal debris

Mercuri et al.
[60] Ti-6Al-4V In vivo Blood sample - high levels of cobalt, chromium and titanium

in the study group compared to the control one

Zaffe et al. [66] Titanium In vivo

Removed
titanium

miniplates
Soft tissue

sample covering
the miniplates

- high amount of titanium in the surrounding
soft tissue
- erythrocyte and lymphocyte had a higher
titanium content than the surroundings

Meningaud et al.
[67] Titanium In vivo Soft tissue

sample

titanium levels had large variations, from 4–8000
µg/g, and apparently with increased
concentrations in orthognathic surgery

Langford et al.
[72] Titanium In vivo

Removed
titanium

miniplates

- identification of signs of surgical damage on
the removed plates
- local contamination with aluminium and silica
- the removed plates did not show any signs
of corrosion

Armencea et al.
[77] CpTi In vivo

Removed
titanium

miniplates
Soft tissue

sample

- lack of inflammatory signs in the soft
tissue samples
- the presence of dark-grey pigmentation
- the presence of fibrosis in the soft tissue in
various degrees
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Table 3. Cont.

Reference Titanium-Based
Alloys Type of Study Samples Implications and Conclusions

Acero et al. [79] Titanium In vivo

Removed
titanium

miniplates
Hard and soft
tissue sample
covering the
miniplates

- a good healing of the surrounding bone (direct
attachment of vital bone to the titanium
miniplate)
- dark staining of the examined soft tissue
- histological signs of fibrosis in the examined
soft tissue
- defects and irregularities of the plates when
examined using scanning electron microscope
(SEM) analysis, probably due to the
substance loss

Katou et al. [82] Titanium In vivo

Soft tissue
sample

surrounding the
titanium
miniplate

- macroscopically dark pigmentation was visible
in all cases
- the histological examination revealed the
presence of fibrous connective tissue with
macrophages-like cells that contained metal
particles
-presence of CD68-positive cells, CD11c-positive
cells, CD11a-positive cells, CD11b-positive cells,
CD4, CD8, CD62P and CD54
- the first report that outlined the existence of an
immune–inflammatory reaction

Lalor et al. [86] TiAlV In vivo

Tissue sample
from the interface

bone–titanium
plate

- all the examined sample contained metal debris
and T lymphocytes (OKT11) and macrophages
were present

Maloney et al.
[89]

Titanium
Titanium-

aluminium
In vitro Fibroblasts

- when exposed to titanium and
titanium-aluminium, fibroblasts showed no
increase of ion concentrations
- when exposed to only titanium metallic
particles, the fibroblasts showed a ruffled
membrane and filopodia
- when exposed to titanium–aluminium metallic
debris, fibroblasts showed no modifications

4. To Remove Titanium-Based Osteosynthesis Materials or not: A Present Debate

The removal of titanium-based alloys used in maxillofacial osteosynthesis is still an open dispute.
The causes that imply the use of osteosynthesis materials in maxillofacial surgery are multiple and the
proper treatment targets the regain of various functions. Titanium devices are composed of titanium
alloy or fully titanium that assure good biological and physical properties [100].

They have been used for rigid internal fixation and have been considered a ‘gold standard’ since
1978 [101]. However, sometimes complications did occur, such as infection, screw loosening, material
exposure, dark staining of the local tissue, and chronic inflammation that determined the removal
of the material. Still, the routinely removal of the titanium-based alloys used for osteosynthesis is
a controversial matter. Several studies focused on outlining the negative influences upon the local
and general health, suggesting that a new protocol regarding the management of the osteosynthesis
materials should be taken into consideration. More authors consider that routine removal is mandatory
in order to avoid potential implications. Katou et al. [84] concluded that a certain immune–inflammatory
response was present near the titanium materials that were used in the treatment of mandibular
fractures, and the metallic particles that were released had a contribution to the persistence of the
inflammation. Other authors speculated a potential carcinogenic effect of the titanium materials by
presenting cases of malignant tumours of the surrounding tissue [102].

The retrospective study conducted by Yu et al. [103] reviewed 2325 cases that were treated for
maxillofacial fractures using titanium-based materials. Among these patients, 2162 (92.99%) did
not have the titanium osteosynthesis materials removed and 163 patients had them removed for
symptomatic (5.25%) and asymptomatic (1.76%) reasons. Taking into consideration that this study was
based on a large number of patients and a long-term follow-up (ten years), the conclusion would be
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that there is no need to routinely remove the titanium materials and the indications for removal are
strictly in relation with the existence of complications. The most common encountered complications
identified were infection, exposure, loosening of the screws or discomfort.

Although, the clinical performance of titanium is widely recognized, there are still questions
regarding the long-term relations with the tissue and the possible consequences. The removal of
titanium-based materials is indicated when complications are associated, and the asymptomatic
removal is still a discussed alternative [104]. Most reports express a clear concern towards the
persistence of the titanium plates and the occurrence of corrosion [74]. Several studied report the
dark pigmentation of the surrounding tissue, the mechanical wear, and the mechanical disruption
during the insertion manoeuvres as being accompanied by local metal release that could potentially
disseminate in other organs [74,105,106].

The finite element analysis (FEA) is useful to predict the stress distribution, the possible fracture
localizations based on the design, and the material of the plate [107]. The masticatory muscles generate
tension and compression of the jawbone during the physiological movements. In order to perform
osteosynthesis, the main concern is to assure a correct load of force and distribution of stress in the
interface between bone and implant. Zielinski et al. [108] conducted an in vitro study on polyurethane
mandibles that aimed to mechanically test all designs of osteosynthesis plates used for high neck
condylar mandibular fractures Their results showed that the specific designed plates for this type of
fractures were weaker in comparison to the use of two straight plates, and loosening of the screws
occurred in the distal fragment. In conclusion, the shape of the plate is also a factor that must be
considered, taking into account the muscle insertions and the generated tension.

The study that belongs to Pinto et al. [104] aimed to evaluate the microscopic structure and the
chemical composition of the titanium plates and screws that were retrieved from the osteosynthesis
sites. Their conclusion regarding the examination of the titanium devices plead for the therapeutic
option of not removing them except in the cases with observed clinical indications, as the modifications
did not affect the local tissue. Sukegawa et al. [109] concluded that the removal of titanium plates and
screws used for orthognathic surgery is mainly either as a consequence of local infection or the desire
of the patient. The routine plate removal is based in the fact that once the local healing is accomplished,
the titanium materials could become a potential source of further complications [110] and the patients
need to be aware of the necessity of a long-term follow-up. This aspect was discussed and included in
the recommendation of the Strasbourg Osteosynthesis Group in 1991 [111], suggesting that once the
plate accomplished its role, the removal is desired in order to avoid any possible complications.

5. Discussion

In the present review, our purpose was to identify the potential implications that titanium-based
alloys used for maxillofacial osteosynthesis could have upon the local and general health. Titanium is
considered, and remains to be, a good alternative to other existing materials due to its high biological
acceptance, mechanical and chemical characteristics. Maxillofacial fractures represent a frequent and
challenging pathology in the clinical practice, requiring adequate treatment that establishes a proper
function, continuity and aesthetic outcome. Internal bone fixation that uses miniplates and screws has a
high impact upon the treatment, especially in the cases that have contraindications for the orthopaedic
approach [11]. Titanium alloys miniplates and screws are routinely used in the reconstructive treatment
in traumatology, orthognathic surgery and maxillofacial oncology.

The advantages that the titanium-based alloy miniplates and screws used for osteosynthesis have
are well-known but, the long-term impact has yet to be established. Recent research has focused on
examining both the tissue surrounding the miniplates and the removed titanium materials in order to
evaluate possible existing consequences. Although until recently the removal of the titanium devices
has only been indicated when complications are associated with infection and exposure, the local
cellular impact of the metallic particles is an actual concern [46]. Several studies reported that during
the removal of the miniplates, the surrounding tissue presented a dark staining, proving the infiltration
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of metallic particles [79,81,83]. Further research affirmed the fact that these titanium particles can
be easily transported via the lymphatic system into the local lymph nodes [80], and even to other
organs [80].

An existing local reaction was reported, and an immuno-inflammatory reaction was identified
in the fibrous connective tissue deposits. Titanium was reported to induce an increased level of
oxygen-free radicals, sustaining the start of an oxidative stress process. This aspect was evaluated by
Borys et al. [1], outlining the existence in the examined samples with altered protective mechanisms.
Allergic reactions associated with titanium-based alloys are rare, and among them facial eczema was
encountered [95,96].

The insecurity towards these types of materials used in maxillofacial osteosynthesis and their
persistence in relation to human tissue determined clinicians to remove them once their purpose
was accomplished.

Taking into consideration the ongoing debate and implications related to the use of this type of
alloy, scientists developed a new category of bioresorbable and bioactive materials as an alternative for
the metal plates. Different types of bioresorbable materials such as polyglycolic acid (PGA), polylactic
acid (PLLA), copolymers of PGA and PLLA, and hydroxyapatite incorporated in PLLA allow and
stimulate the formation of new bone tissue, generating no mutagenic action [41]. Although their main
advantage represented by the biodegradation characteristic is very appealing, the comparison studies
between the two categories of materials—metallic alloys and bioresorbable—do not have enough
follow-up. With higher refracture rates, weakness, and loss of implant strength, the decision of using
bioresorbable materials is an important task for surgeons [39].
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