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Abstract: In recent years, convolutional neural networks (CNNs) have been successfully used in image
recognition and image classification. General CNNs only use a single image as feature extraction.
If the quality of the obtained image is not good, it is easy to cause misjudgment or recognition error.
Therefore, this study proposes the feature fusion of a dual-input CNN for the application of face
gender classification. In order to improve the traditional feature fusion method, this paper also
proposes a new feature fusion method, called the weighting fusion method, which can effectively
improve the overall accuracy. In addition, in order to avoid the parameters of the traditional CNN
being determined by the user, this paper uses a uniform experimental design (UED) instead of the
user to set the network parameters. The experimental results show that in the dual-input CNN
experiment, average accuracy rates of 99.98% and 99.11% on the CIA and MORPH data sets are
achieved, respectively, which is superior to the traditional feature fusion method.

Keywords: convolutional neural network; gender classification; feature fusion; uniform experimental
design; AlexNet

1. Introduction

In recent years, the rapid rise of deep learning methods has become the most popular research topic.
Deep learning methods have been widely used in classification [1–3], identification [4–6], and target
segmentation [7–9]. Deep learning methods are superior to traditional image processing methods,
as they do not require the user to determine the capture of image features. They can extract features in
images through self-learning of convolutional and pooling layers in a network. Therefore, automatic
learning the interested features from the training images is considered to be a good method to replace
the features selected by the user. The most typical example is the feature learning and recognition
through the convolutional neural network (CNN). LeCun et al. proposed the first CNN architecture,
LeNet-5 [10], and applied this network to the handwriting recognition in the MNIST dataset. The used
images are grayscale, and the size of each image is 32 × 32. The recognition accuracy of LeNet-5
is better than those of other traditional image processing methods. Krizhevsky et al. [11] proposed
AlexNet and introduced GPU into deep learning. They also added Dropout [12] and ReLu [13] to the
deep neural network architecture to improve its recognition accuracy. Szegedy et al. [14] proposed
GoogleNet, and introduced the “Inception” structure into the network. The proposed inception is to
increase the breadth of the network—that is, use different convolution kernel sizes to extract different
features. In [14], they also used a 1 × 1 convolution operation to reduce the dimension, which can
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improve the accuracy when the network reduces the parameters. He et al. [15] proposed the residual
structure to directly map the features of the lower layer to the higher-level network—that is, the deeper
network has the representation capabilities close to the previous layers. Therefore, in the deep CNN,
the difficult trained problem of the network can be effectively solved.

In the above-mentioned methods, the convolutional neural network uses only a single input.
Therefore, some researchers began to study multi-input convolutional neural networks. Su et al. [16]
proposed a multi-view CNN for the classification of 3D models. By shooting 3D models, two-dimensional
pictures with different perspectives were taken as network inputs. Sun et al. [17] used a multi-input CNN
for flower grading. They used three different flower images as inputs, and fused the features through
convolution and pooling operations. Li et al. [18] developed a dual-input neural network architecture
for detecting coronary artery disease (CAD). They used Electrocardiogram and Phonocardiogram
signals as input of the network to extract different signal characteristics. Two signal characteristics are
combined to improve the accuracy of classification. These results prove that multi-input CNNs can
effectively improve the classification accuracy, and have a better performance than single-input CNNs.

Using multi-input CNNs will provide different features, and the advantage of each network
feature to improve the accuracy of the entire system is an extremely important task. How to properly
integrate these different features is an important issue, as the individual features obtained by multiple
networks have different interpretations of the same image. Some features obtained can allow the
network to determine the correct result, and some features obtained can also cause serious misjudgment.
In order to solve this problem, a multi-layer network fusion mechanism [19] is added to the output of a
feature network, which partially enhances or suppresses each of the original output features to perform
a fusion operation. Thus, multiple features can cooperate with each other and improve the overall
recognition rate. In multi-input CNNs, feature fusion techniques such as summation operation [20],
product operation [21], maximum operation [22] and concatenation operation [23] are often used.
Feature fusion is the integration of multiple different feature information in order to obtain more
prominent feature information. Different feature fusion methods will produce different performances.
Choosing a reasonable fusion method has important value for improving accuracy.

In the above-mentioned networks, the parameters designed by the user are not the optimal
parameters of CNNs. How to determine a convolutional neural network architecture and its parameters
requires continuous experimentation to learn. In the engineering field, there are two common methods
for optimizing parameters: the first is the Taguchi method [24,25], and the second is the uniform
experimental design (UED) [26,27]. If it is applied to more factors and levels, the number of experiments
is at least the square of the level. The UED has fewer experiments, and then uses multiple regression to
find the best parameters in the shortest time.

In this study, the feature fusion and parameter optimization of a dual-input CNN is proposed for
the application of face gender classification. In order to improve the traditional feature fusion method,
a new feature fusion method, called the weighting fusion method, is proposed and will effectively
improve the overall accuracy. In addition, in order to avoid the parameters of the traditional CNN
being determined by the user, this paper uses a UED instead of the user to set the network parameters.
Two data sets, including CIA and MORPH data sets, are used to evaluate the proposed method.

The remainder of the paper is organized as follows: Section 2 introduces the proposed dual-input
CNN with the feature fusion of weighting operation and the parameter optimization of UED; Section 3
illustrates the experimental results of a dual-input CNN using the CIA and MORPH datasets;
and Section 4 offers conclusions and future works in this study.

2. The Dual-Input Convolutional Neural Network

In this section, the dual-input convolutional neural network (Dual-input CNN) is introduced
and shown in Figure 1. The proposed dual-input CNN can arbitrarily construct its feature extraction
network. Three well-known CNN architectures commonly used by users are LeNet, AlexNet and
GoogleNet. AlexNet has two main characteristics: the first point is the use of a non-linear activation
function-ReLU with faster convergence speed; and the second point is that using Dropout in the
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first and second fully connected layers can effectively reduce the overfitting problem. However,
more complex problems still cannot be solved. Although GoogleNet can solve more complex problems,
it has a very deep architecture and requires a long training time. Based on the above analysis, this study
uses AlexNet with a moderate architecture length as the feature extraction network architecture. In the
dual-input CNN, two feature extraction AlexNet results are used for data fusion and then passed to
the subsequent fully connected layer.
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With regard to data fusion, this study proposes a weighting fusion method that assigns higher
weights to strong feature inputs. The weighting fusion result is obtained more effectively than the
concatenation method, sum method, product method and maximum method. Fusion function
f : xa

t , xb
t → yt is the fusion of two feature maps xa

t and xb
t at time t. yt is the fused feature value.

The different fusion methods will be described as follows.

2.1. The Basic Convolutional Neural Network Architecture

The basic CNN architecture is shown in Figure 2. It is mainly divided into four parts: a convolution
layer; pooling layer; fully connected layer; and activation function. In CNN, the convolutional layer,
pooling layer and activation function are mainly used for feature extraction, and the fully connected
network classifies the obtained features. The four layers will be described below.
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The following subsections describe the three important operations in the feature extraction section,
namely convolution, activation function and pooling.

2.1.1. Convolution Layer

The convolution mainly uses the mask of the convolution kernel to perform the convolution
operation on the input matrix by the sliding window method. The output matrix obtained has a
relative relationship with the convolution kernel size, stride size and padding size of the input matrix.
The output matrix is shown in the following formula

Wo =

[
(Wi − kw) + 2p

s

]
+ 1, Ho =

[
(Hi − kh) + 2p

s

]
+ 1 (1)

where Wo and Ho are the height and width of the output matrix, respectively; Wi and Hi are the height
and width of the input matrix, respectively; p is the number of padding cycles; and s is the stride
during the convolution kernel operation.

2.1.2. Pooling Layer

Pooling is mainly used to reduce the data dimension without losing too much important
information. There are two common pooling calculation methods. The first is maximum pooling,
which takes the maximum value in the mask as an output, and the others are not calculated. The second
is average pooling. The output is the average of all values in the mask.

2.1.3. Fully Connected Layer

A fully connected layer is a fully connected multi-layer neural network. All feature maps are
converted into a one-dimensional array as the network input of the fully connected layer. Finally,
the fully connected neural network is used for classification or prediction.

2.1.4. Activation Function

The activation function is divided into linear functions and non-linear functions. Non-linear
functions have better representation capabilities than linear functions. Therefore, non-linear functions
are more commonly used in general neural networks. Currently, ReLU is more commonly used as a
non-linear function. The ReLU function is shown in the following formula:

f (x) =
{

x, i f (x > 0)
0, otherwise

(2)

If the input x is greater than 0, the output is x; otherwise, the output is 0.

2.2. Network Parameter Optimization Using Uniform Experimental Design

The uniform experimental design (UED) uses multiple regression to find the optimal parameters.
The steps of UED will be explained as follows:

Step 1: Determine the affecting factor. Here, a convolutional neural network is taken as an
example, as shown in Figure 2. In the two convolutional layers, the affecting factors are selected as the
convolution kernel size, step size and padding size. There are six affecting factors in total.

After completing the factor selection and parameter setting, determine the number of experiments
according to the following equation

n > 2× S (3)

where n is the number of experiments and S is the number of affecting factors. The number of affecting
factors S is set to 6. If the number of experiments is less than 12, the uniformity will be poor. Therefore,
the number of experiments is set to 13.
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Step 2: After obtaining the number of experiments, use the following formula to calculate the
total number of rows in the uniform table

m = n− 1 (4)

where m is the total number of columns. Then, calculate the table information in the uniform table
according to the following formula xi, j.

xi, j = ( i× j ) Mod n (5)

where i = 1, 2, 3, . . .m and j = 1, 2, 3, . . . n. According to a uniform table Un(nm), m and n are set as 12
and 13. The initial uniform table is shown in Table 1.

Table 1. The initial uniform table U13(1312).

n
m

1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 4 6 8 10 12 1 3 5 7 9 11
3 3 6 9 12 2 5 8 11 1 4 7 10
4 4 8 12 3 7 11 2 6 10 1 5 9
5 5 10 2 7 12 4 9 1 6 11 3 8
6 6 12 5 11 4 10 3 9 2 8 1 7
7 7 1 8 2 9 3 10 4 11 5 12 6
8 8 3 11 6 1 9 4 12 7 2 10 5
9 9 5 1 10 6 2 11 7 3 12 8 4

10 10 7 4 1 11 8 5 2 12 9 6 3
11 11 9 7 5 3 1 12 10 8 6 4 2
12 12 11 10 9 8 7 6 5 4 3 2 1
13 13 13 13 13 13 13 13 13 13 13 13 13

Step 3: According to the initial uniform table, select the usage table of U13(1312), as shown in
Table 2. If the affecting factor is 6, select the 1, 2, 6, 8, 9 and 10 columns. The results are shown in the
grey background of Table 1.

Table 2. Usage table of U13(1312).

The Affecting Factors Columns

2 1 5

3 1 6 10
4 1 6 8 10
5 1 6 8 9 10
6 1 2 6 8 9 10
7 1 2 6 8 9 10 12

Step 4: Experiment and record the results.
Step 5: Find optimization parameters using multiple regression analysis

ε = Y − [ α0 +

f∑
i=1

α1iβi +

f∑
i=1

α2iβ
2
i +

f∑
i=1

α3iβ
3
i +

f−1∑
i=1

f∑
j=i+1

α4i jβiβ j ] (6)

where ε is error. When ε approaches 0, it means that its coefficient is the optimal weight. Then use
this optimal weight to find the optimization parameter, and obtain the optimal parameter result of
UED. f is the number of affecting factors. α0 is the constant, and α1i,α2i,α3i,α4i j are the coefficient of β.
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2.3. Feature Fusion Methods

This subsection will introduce five feature fusion methods, namely the traditional concatenation
method, the summation method, the product method, the maximum method and the proposed
weighting fusion method. In terms of feature fusion methods, the traditional concatenation method
is different from the other four methods. When two images are input as an example, the traditional
method has twice the input dimensions of the full connection network as the other four methods do.

2.3.1. The Traditional Concatenation Method

The concatenation function is ycat = f cat
(
xa, xb

)
. When two images are input as an example,

the outputs of two feature extraction networks are concatenated—that is, it is to stack different feature
elements together. The detailed calculation is as follows:

ycat
i, j,2d = xa

i, j,d and ycat
i, j,2d−1 = xb

i, j,d (7)

2.3.2. Summation Method

The summation function is ysum = f sum
(
xa, xb

)
. It calculates the same spatial position i and j of

each element in each feature, and the two feature maps on the feature channel d are added according to
the corresponding relationship. The detailed calculation is as follows:

ysum
i, j,d = xa

i, j,d + xb
i, j,d (8)

2.3.3. Product Method

The product function is yprod = f prod
(
xa, xb

)
. It calculates the product of the two feature maps

according to the corresponding relationship. At the same time, multiple sets of dot product fusion
results are used as the final fusion output. The detailed calculation is as follows:

yprod
i, j,d = xa

i, j,d·x
b
i, j,d (9)

2.3.4. Maximum Method

Similar to the product function, the maximum function is ymax = f max
(
xa, xb

)
. This uses the

elements in the two feature maps for comparison, and takes the large value as the output result.
The detailed calculation is as follows:

ymax
i, j,d = max

{
xa

i, j,d , xb
i, j,d

}
(10)

2.3.5. Proposed Weighting Method

The proposed weighting function is yweight = f weight
(
xa, xb

)
. It uses the backpropagation learning

method of the neural network to determine the input with a high degree of influence, and multiplies
this input by the appropriate weight (wa, wb) ratio. The range of the two weights is between 0 and 1,
and the sum of the weights is 1. The detailed calculation is as follows:

yweight
i, j,d = ( xa

i, j,d ×wa) +
(

xb
i, j,d ×wb

)
(11)

3. Experimental Results

In order to evaluate the proposed feature fusion and parameter optimization of the dual-input
convolutional neural network (Dual-input CNN), two face datasets, namely the CIA dataset and the
MORPH dataset, are used to verify the gender of the face image. In this experiment, two datasets
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perform an image increment. The increment mechanism is to increase the brightness, decrease the
brightness, rotate the image to the left and rotate the image to the right. The number of increment
images is five times the number of original images. The hardware specifications used in the experiments
are shown in Table 3.

Table 3. The hardware specifications used in the experiments.

Hardware Specifications

CPU Intel(R) Xeon(R) CPU E3-1225 v5 @ 3.30GHz
GPU Nvidia GTX1080-Ti 11GB

3.1. MORPH Dataset

The MORPH dataset is a face database that is mainly composed of Westerners. It has a wide
variety of people, and the age distribution ranges from 16 to 77. The images in the MORPH dataset
were incremented by performing the brightness reduction, brightness increase, rotate left and rotate
right operations, as displayed in Figure 3. Therefore, the amount of incremented data was five times
that of the original MORPH dataset. Table 4 shows the number of images before and after the increment.
In this table, the amount of data obtained after image increment was five times the amount of original
data, including male images from 46,659 to 233,295 and female images from 8492 to 42,460, respectively.
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Table 4. The number of images before and after the increment.

Male Female

The number of images before the increment 46,659 8492
The number of images after the increment 233,295 42,460

3.1.1. Accuracy Analysis Using Various Fusion Methods

According to different fusion methods (the concatenation method, the summation method, the
product method, the maximum method and the proposed weighting fusion method), the cross-
validations were performed to obtain a fairer accuracy rate. Recently, many researchers [28–30]
adopted three cross-validations for verifying their methods. Therefore, this study also used three
cross-validations to evaluate the accuracy comparison in MORPH dataset. As shown in Table 5, the
weighted fusion method proposed in this paper obtained the highest average accuracy rate of 99.11%.
Figure 4 is the average accuracy comparison using various feature fusion methods.
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Table 5. The accuracy comparison using various fusion methods in a MORPH dataset.

Concatenation Product Summation Maximum Weighting

Cross-validation 1 0.9766 0.9770 0.9871 0.9837 0.9912
Cross-validation 2 0.9742 0.9782 0.9871 0.9823 0.9914
Cross-validation 3 0.9795 0.9728 0.9867 0.9897 0.9908
Average accurate 0.9768 0.9757 0.9870 0.9852 0.9911
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3.1.2. Hybrid of the Weighting Fusion Method and UED

In this subsection, the uniform experimental design (UED) method uses multiple regression
analysis to find optimization parameters of two-input CNN based on a weighting fusion method.
Table 6 shows the affecting factors and levels of the two-input CNN. The affecting factors include the
convolution kernel size, stride size and padding size in the first and fifth convolution layers. Table 7
shows the initial parameters used for the uniform experiment table. Table 8 is the uniform experiment
table. This table can be obtained through the calculation steps in Section 2 for subsequent experiments.
Finally, the optimization network architecture is obtained.

Table 6. The affecting factors and levels of the two-input CNN.

Level
First-Layer Convolution Fifth-Layer Convolution

Kernel Stride Padding Kernel Stride Padding

1 9 2 0 3 1 1
2 11 4 1 5 2 2
3 13 - 2 7 - -

The proposed method combines the weighting fusion method and UED to achieve gender
classification in the MORPH dataset. Three cross-validation experiments are performed to obtain
a fairer accuracy rate. The accuracy rate of the eight sets in parameter experiments is 99.13%. The
optimal network architecture parameters from Table 9 are found and shown in Table 10. Finally, the
average accuracy of the gender classification accuracy of this optimized architecture is 99.26%. The
average accuracy of the optimized structure for gender classification of the MORPH dataset has indeed
improved by 0.13%.
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Table 7. The initial parameters used of the uniform experiment table.

UED
Experimental Parameter Set

First-Layer Convolution Fifth-Layer Convolution
Kernel Stride Padding Kernel Stride Padding

1 9 2 0 3 1 1
2 11 4 1 5 2 2
3 13 2 2 7 1 1
4 9 2 0 3 2 2
5 11 2 1 5 1 1
6 13 4 2 7 2 2
7 9 4 0 3 1 1
8 11 4 1 5 1 1
9 13 4 2 7 1 1

10 9 4 0 3 2 2
11 11 4 0 5 1 1
12 13 2 1 7 2 2
13 9 4 1 3 1 1

Table 8. The uniform experiment table of the two-input CNN.

UED
Experimental Parameter Set

First-Layer Convolution Fifth-Layer Convolution
Kernel Stride Padding Kernel Stride Padding

1 9 4 2 5 1 2
2 11 2 1 7 1 1
3 13 4 1 5 1 2
4 9 4 0 7 2 1
5 11 4 0 3 2 1
6 13 2 0 7 2 1
7 9 2 2 3 1 1
8 11 2 2 7 1 2
9 13 2 1 3 1 2

10 9 4 1 5 2 1
11 11 4 0 3 1 2
12 13 4 0 5 2 1
13 9 4 1 3 1 1

Table 9. Gender classification in the MORPH dataset using a hybrid of the weighting fusion method
and UED.

Cross-Validation 1
(%)

Cross-Validation 2
(%)

Cross-Validation 3
(%)

Average Accuracy
(%)

1 99.053508 99.098838 98.815978 98.989441
2 98.783340 98.828670 98.660042 98.757350
3 98.758955 98.727431 98.311907 98.598998
4 98.603833 98.661856 98.591141 98.618943
5 98.553063 98.621965 98.571195 98.582074
6 99.037189 98.991859 98.790593 98.939880
7 98.935649 98.884880 98.672735 98.831088
8 99.200377 99.182245 99.006364 99.129662
9 98.919331 98.913891 98.730757 98.854660
10 98.565756 98.616526 98.464216 98.548833
11 98.614712 98.545811 98.431579 98.530701
12 98.522239 98.558503 98.359051 98.479931
13 98.879440 98.892133 98.626525 98.796033

UED 99.291037 99.320049 99.162300 99.257795
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Table 10. The optimal network architecture parameters.

First-Layer Convolution Fifth-Layer Convolution

Kernel Stride Padding Kernel Stride Padding

Optimal Network Parameters 11 4 1 3 2 2

3.2. CIA Dataset

The CIA data set is a small face database collected by our laboratory. This database is mainly
Chinese. The age distribution is 6 to 80 years old, and is shown in Figure 5. Table 11 shows the number
of images before and after the increment.
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Table 11. The number of images before and after the increment in CIA.

Male Female

The number of images before the increment 1080 1007
The number of images after the increment 5400 5035

According to different fusion methods (the concatenation method, the summation method,
the product method, the maximum method and the proposed weighting fusion method), three
cross-validations were performed to obtain a fairer accuracy rate. As shown in Table 12, the weighted
fusion method proposed in this paper obtained the highest average accuracy rate of 99.98%.

Table 12. The accuracy comparison of various feature fusion methods in the CIA dataset.

Concatenation Product Summation Maximum Weighting

Cross-validation 1 0.9991 0.9420 0.9980 0.9995 1
Cross-validation 2 1 0.9511 0.9990 1 1
Cross-validation 3 0.9995 0.9205 0.9976 0.9995 0.9995
Average accurate 0.9995 0.9379 0.9982 0.9997 0.9998

4. Conclusions

In this study, the feature fusion and parameter optimization of a dual-input convolutional neural
network (Dual-input CNN) is proposed to achieve face gender classification. A new weighting fusion
method is proposed, which replaces the traditional feature fusion methods. Both the MORPH and
the CIA data sets are used for verifying the face gender classification. Experimental results prove
that the average accuracy of the proposed method in the MORPH dataset and the CIA dataset is
99.11% and 99.98%, respectively, and its performance is also better than the traditional feature fusion
method. In addition, in the MORPH data set, combined with the proposed weighting fusion method
and uniform experimental design (UED) to find the optimal parameter structure, the experimental
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results prove that the average accuracy of the MORPH data set reaches 99.26%, which is significantly
higher 0.13% than when the UED method is not used.

However, there are inevitably limitations on the proposed dual-input CNN. For example, only the
first and fifth convolution layers are used as affecting factors, and a dual-input CNN is discussed
in this study. Therefore, how to properly select the affecting factors and a multi-input CNN will be
considered in future works.
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