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Abstract: Energy consumption is increasing exponentially with the increase in electronic gadgets.
Losses occur during generation, transmission, and distribution. The energy demand leads to increase
in electricity theft (ET) in distribution side. Data analysis is the process of assessing the data
using different analytical and statistical tools to extract useful information. Fluctuation in energy
consumption patterns indicates electricity theft. Utilities bear losses of millions of dollar every year.
Hardware-based solutions are considered to be the best; however, the deployment cost of these
solutions is high. Software-based solutions are data-driven and cost-effective. We need big data for
analysis and artificial intelligence and machine learning techniques. Several solutions have been
proposed in existing studies; however, low detection performance and high false positive rate are
the major issues. In this paper, we first time employ bidirectional Gated Recurrent Unit for ET
detection for classification using real time-series data. We also propose a new scheme, which is
a combination of oversampling technique Synthetic Minority Oversampling TEchnique (SMOTE)
and undersampling technique Tomek Link: “Smote Over Sampling Tomik Link (SOSTLink) sampling
technique”. The Kernel Principal Component Analysis is used for feature extraction. In order to
evaluate the proposed model’s performance, five performance metrics are used, including precision,
recall, F1-score, Root Mean Square Error (RMSE), and receiver operating characteristic curve.
Experiments show that our proposed model outperforms the state-of-the-art techniques: logistic
regression, decision tree, random forest, support vector machine, convolutional neural network,
long short-term memory, hybrid of multilayer perceptron and convolutional neural network.

Keywords: non technical losses; gated recurrent unit; electricity theft; neural network; smart meter;
supervised learning; artificial intelligence; advance meter infrastructure
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1. Introduction

In the modern world, electricity utilization is increasing day by day. It is broadly categorized
into six main areas. These areas are residential, industrial, commercial, traction, agriculture, and other
activities [1]. More than 65% of energy is consumed by residential regions [2]. Traditional grid is
replaced with smart grid because it has some limitations, i.e., one-way communication, manual
monitoring and restoration, central distribution with few sensors, etc. [3], whereas in smart grid,
the information flows in two ways between the utility and the consumer [4,5]. It also helps utilities to
produce electricity according to the customer’s needs [6–8].

Electricity losses take place during generation, transmission, and distribution. There are two types
of losses: technical and non-technical [9]. Technical losses occur in the electrical system by internal
actions, for example, problem in the transformer or issue in the transmission lines [10]. Non-technical
Losses (NTL) occur in the electrical system by external actions, for example unknown and incorrect flow
of electricity, inaccurate meter readings, non-payment of bills by customers, and errors in maintaining
database records [11]. Electricity theft is one of the major causes of NTL. There are different types of
electricity theft including meter tampering or by passing, smart meter hacking, etc. [12]. Different
types of issues take place due to electricity theft like revenue loss, electricity surging, and heavy
load on electrical systems [13]. According to Zheng et al. [14], one-hundred million Canadian dollars
are wasted every year as a result of electricity theft. This loss of power supply can be enough for
77,000 users for a year.

We have mapped problems with proposed solutions as shown in Table 1.

Table 1. Mapping of problems with solutions.

S. No Problems Proposed Solution

1 Trapped in local minima Adam optimization
2 Time complexity of hybrid model BGRU single model
3 Imbalanced class SOSTLink method
4 Underfitting SOSTLink method
5 Missing values are not handled Imputation is performed
6 FPR is not calculated FPR is calculated

Recently, many authors proposed different approaches to solve these issues, which are broadly
classified into three main categories: Artificial Intelligence (AI) and Machine Learning (ML)-based,
State-based, and game theory-based systems. State-based approaches observe the structure in which
information is collected from different resources. However, the additional cost of hardware devices
is required to implement the model. Moreover, on site inspection is used to detect electricity theft.
However, it is not possible to inspect each user within a short period of time. In game theory-based
approaches, there is a game between utility and electricity theft [15]. However, these approaches have
high False Positive Rate (FPR) and low detection rate. The most challenging problem in game theory
based solutions is to defined the rules and interaction between players. On the other hand, the main
focus of machine learning and artificial intelligence based systems is to analyze the patterns of real
time series data. These systems extract useful information from a dataset by analyzing electricity
consumption patterns [16]. Any deviation or changes in the consumption patterns may lead to
electricity fraud case or illegal action [17,18]. Additional hardware devices are required to detect
theft, and these devices have high maintenance cost. Domain experts are required for data analysis
and final decision-making. Therefore, there is a need to develop automated electricity theft detection
method to overcome these issues [14]. Figure 1 shows the normal and abnormal consumption of
energy in two months (i.e., August and September 2016).

The main contributions of this research are summarized as follows.

• The problem of imbalanced data is solved by employing the Smote Over Sampling Tomik Link
(SOSTLink) sampling method.
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• Feature extraction is done by applying Kernel Principal Component Analysis (KPCA) that
reduces dimensionality.

• The Bidirectional Gated Recurrent Unit (BGRU) model is used as classifier, which is used to detect
NTL in smart grid.

• Finally, we have used suitable metrics to evaluate the performance of proposed model including
Receiver Operating Characteristic (ROC) curve, F1-score, precision, and recall.
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Figure 1. Two months electricity consumption data of a normal customer.

2. Literature Review

A detailed survey of existing studies are presented in this section. Zheng et al. [14], have proposed
wide and deep Convolutional Neural Network (CNN) to capture the periodicity from State Grid
Corporation of China (SGCC) dataset. However, the time complexity of wide and deep CNN model
is very high, being a hybrid model. The number of non-fraudulent customers is greater than the
number of fraudulent customers, which causes the class imbalance problem. The authors have addressed
the issue of class imbalance using large scale data in [19]. For this purpose, the authors proposed
Random undersampling Boosting (RusBoost) and Maximal Overlap Discrete Wavelet Packet Transform
(MODWPT) for classification using real smart meter data from commercial and industrial zones [19].
However, the limitation of random undersampling is the underfitting problem, biased selection of samples,
and removal of useful information from the majority class.

A metaheuristic technique, namely, the Binary Black Hole Algorithm (BBHA), is used to select
the most representative features using real time-series data collected from a Brazilian agency in [20].
However, challenges in BBHA include being stuck in local minima and class imbalance problem [21].
The authors have proposed a Clustering technique by Fast Search and Find of Density Peaks (CFSFDP)
combined with Maximum Information Coefficient (MIC) based on the method in [22]. They use an Irish
dataset of real smart meter project [23]. The dataset consists of residential, small and medium size
enterprises with 5000 customers within 500 days. However, observer meters are installed for smart
meter security. The installation and maintenance costs of hardware resources are very high.

Authors have combined K-means clustering and Deep Neural Network (DNN) to secure the
smart meter [17]. This combined approach is used to detect the anomalies in normal electricity usage of
Irish data. Razavi et al. [18] have proposed finite mixture clustering model and genetic programming
to discover new characteristics for theft detection. It is applied on the customer behavior trails from
2009–2010 in Ireland. The main concern of the study is feature engineering, rather than accurate
classification. However, it has high FPR, which leads to high on-site inspection cost.

A detailed literature review is presented in Table 2.
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Table 2. Overview of existing methodologies.

Problem Addressed Solution Proposed Dataset Limitations

One-dimensional data fails to
capture periodicity [14] Wide and deep CNN SGCC (2014–2016)

Computational complexity,
FPR is not calculated,
Imbalance class problem

Required label dataset with
additional information,
poor accuracy [22]

Combine two techniques.
MIC-CFSFDP

Irish CER smart
metering project

Additional hardware cost
FPR is not calculated, Low
detection accuracy

NTL detection [19] RusBoost and MODWPT Industrial and commercial
sectors in Honduras of China

Underfitting, time complexity
Selection of a biased sample,
loss of information

Feature
engineering required [21] BBHA Brazilian electricity

regulatory agency

Trapped in local minima, No
preprocessing, Imbalance
class problem

Hacking of smart meters [17] Combine two techniques.
K-means and DNN Irish (2012) Imbalance dataset

Smart meter hacking,
counterfeit the data [18]

Finite mixture model
clustering and a genetic
programming algorithm

Real time data from Ireland in
(2009–2010) High FPR

NTL detection and accuracy
is low [11]

Proposed a methodology
in which collected
data is represented as
image with the help of
deep learning.

power company in China. Imbalance class problem,
Selection of a biased sample

Electricity theft detection and
high FPR [24] LSTM Electricity load diagrams

(2011–2014)

High prediction error, High
delay time in anomaly occur
and detection

Loss between electricity usage
and electricity supply [25] Fuzzy logic Customers monthly

invoiced bills

Require experts for analyses,
Complex, Takes a lot of time
to develop Fuzzy rules

Less number of verified
customers in dataset,
due to which accuracy
is compromised [7]

GBTD Smart energy dataset by Irish Computationally expensive

ETD in IoT-based
network [26] SETs Data is collected from Aeon lab

named as Z-Wave based in UK
Additional hardware cost and
maintenance cost

NTL detection [27] Multiple Linear
Regression model

Ministry of Power distribution
based in India (2013)

Not explain the impact of
accurately detected users

Detection of energy theft in
utilities is a challenge [28]

Implement machine
learning technique in
utility company to detect
gap between generation
and consumption

Data is collected from leading
electricity provider in Spain

FPR is not calculated,
Imbalance dataset

NTL detection is performed
on synthetic data set to
achieve low FPR [29]

GK clustering
Data is collected from
commission for energy
regulation based in Irish

Class imbalance problem,
Need large data and experts,
Time complexity is high

NTL detection in Pakistan [30] ensemble bagged
tree-based algorithm MEPCO in Pakistan Computationally expensive

NTL detection [31] PNN and
Levenberg–Marquardt

Pennsylvania–New
Jersey–Maryland (PJM)
Largest power system
operator based in US

Accuracy is low, FPR is not
calculated, imbalance dataset

Not rank the customers
according to their
anomalous behavior [32]

XG Boost
Data is collected from
commercial and industrial
users of Endesa

Cannot handle large data,
High execution time,
memory hungry

NTL detection [33] CNN and RF

Data is collected from
sustainable energy authority
of Ireland and electricity
utility of London

Time complexity is high
because of hybrid model

Energy theft [34] Combines CNN and
LSTM for theft detection SGCC High execution time
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The authors have deployed a deep learning methodology in which data is represented
as an image [11]. This methodology is specifically designed to accommodate large scale data.
Many machine learning techniques have been applied for Electricity Theft Detection (ETD) including
the Long Short-Term Memory (LSTM) method proposed in [24]. LSTM is not only used for single
entity data, but it is also used to learn long-term dependency sequences. The data is collected from
electricity load diagrams duration of 2011–2014. However, the delay time occurs during the detection
of anomaly.

Spiri’c et al. [25] have proposed a fuzzy logic method to minimize the total loss. This method
determines the loss between electricity usage and supply. Fuzzy logic has some limitations such
as it requires large data for training, and expert team for creating fuzzy rules. This method is
time-consuming and complex, and it is not considered as an optimal solution. The authors have
proposed gradient boosting based method for ETD, which is composed of Extreme Gradient Boosting
(XGBoost), categorical boosting, and light boosting and uses Irish dataset [7]. These methods consume
more memory, time, and are unable to handle categorical data. Li et al. [26] have proposed Smart
Energy Theft System (SETS) in smart homes, which is an IoT-based solution for ETD. A peer-to-peer
computing-based method named multiple linear regression is used [27].

Coma-Puig et al. [28] have proposed NTL detection method for energy utility to observe loss
between generation, and distribution. Data is collected from leading electricity provider in Spain.
Viegas et al. [29] have proposed fuzzy Gustafson–Kessel (GK) clustering to detect NTL using a real
dataset. Saeed et al [30] have proposed ensemble bagged tree-based algorithm to detect NTL. The data
is collected from Multan Electric Power Company (MEPCO) in Pakistan. The bagging algorithm did
not not perform well because it causes an overfitting problem.

Ghasemi et al. [31] have proposed Probabilistic Neural Network (PNN), and Levenberg–Marquardt
method to detect two types of electricity thefts: first, where an individual consumes a portion of the
required energy illegally, and second, where an individual consumes all the required energy illegally.
The authors have proposed Extreme Gradient Boosting (EGB) trees to rank the customers according
to their anomalous consumption behavior in [32]. Data is collected from commercial, and industrial
users of Endesa. A hybrid model based on CNN and RF has been proposed by the Li et al. [33] to
detect NTL in smart grid. Real time-series data is collected from energy utility of Ireland and London.
Hasan et al. [34] have proposed a hybrid model of neural networks named as CNN and LSTM, using
the SGCC dataset, which is publicly available. Singh et al. [35] have proposed a Principal Component
Analysis (PCA) approximation to find the electricity theft. Data is collected from an Irish leading center
for qualitative data.

3. Problem Statement

Electricity theft is a serious issue for utilities due to billions of dollars lost annually. Many machine
learning approaches have been proposed to detect NTL. However, further research is needed to
encounter some important problems.

Zheng et al. [14] have proposed wide and deep CNN for ETD. However, the execution time is
high because it is a hybrid model. FPR is not calculated. Moreover, the imbalanced nature of the data
is not considered.

Avila et al. [19] have proposed RusBoost for NTL detection. However, important information
is lost due to random undersampling. Moreover, it requires high engagement of experts and
execution time.

Buzau et al. [36] have proposed a hybrid model which consists of LSTM and MLP to secure smart
grid from electricity theft. However, this requires high memory to capture anomalies in consumption
data. Furthermore, the execution time and FPR of LSTM is very high, which leads to high inspection
cost in ETD.
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4. Proposed Model

To solve the aforementioned problems, we propose a model which is a combination of KPCA
and BGRU. The proposed system model for ETD is shown in Figure 2, which is based on five
steps: data preprocessing using imputation and normalization, the problem of imbalanced data
is encountered using SOSTLink method, feature extraction using KPCA, bidirectional GRU for
classification, and performance metrics. Flow chart of proposed model is shown in Figure 3.

4.1. Electricity Consumption Data

The dataset released by SGCC is used in this research, which is publicly available [14].

4.2. Data Preprocessing

A data preprocessing step is important because the performance of a model not only depends on
algorithms, but also on the quality of data. Generally, real time-series data is noisy, inconsistent,
and incomplete (missing values), which increases the difficulty of mining useful information.
The SGCC dataset contains missing and incorrect values due to various factors like breakdown of
smart meter, unscheduled maintenance of data storage, and unreliable transmission measurement [14].
Consequently, to attain high performance in NTL detection, many preprocessing techniques have been
used in the literature. For that reason, we perform preprocessing using imputation and normalization.
To remove missing values, we use a simple imputation method. In this method, empty values are
considered as Not a Number (NaN) and their forward and backward values are checked. If these
values exist, NaN is replaced by the mean of these two numbers; otherwise, zero is replaced in all
empty fields. We normalize the data by applying MinMax normalization, which normalize the data
between 0 and 1. The formula of MinMax normalization is follows,

n =
(x− tmin)

tmax − tmin
(1)

where n represents newly generated values, x is the selected cell on which operations are performed,
tmin is the minimum value of the column, and tmax is the maximum value of the column.

Figure 2. Proposed system model.
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Figure 3. Flow chart of proposed system model.

4.3. Handling Imbalance Data

SGCC dataset causes model bias towards the majority class. Figure 4 shows that normal users
are greater in number as compared to abnormals, due to which the model misclassifies the minority
class. To address the imbalanced data problem, two methods are used in the literature: cost function
and sampling techniques. In this paper, we use the sampling technique. There are two types of
sampling techniques: random undersampling and random oversampling. In random undersampling,
some data points from the majority class are discarded and the majority class is made equal to the
minority class. This sampling technique requires less execution time but leads to the loss of important
information. In random oversampling, data points from the minority class are replicated randomly,
so no information is lost and both majority and minority classes are balanced.

In this paper, we propose SOSTLink, which is a combination of oversampling technique Synthetic
Minority Oversampling TEchnique (SMOTE) and undersampling technique Tomek Link. The SMOTE
algorithm is used for oversampling and Tomek Link is used for undersampling. SMOTE generates
data points by taking the means of two numbers from the minority class. For example, take an instance
of the minority class as (y1, y2), if its nearest neighbor is chosen as (y′1, y′2), then the generated data
points shown in Equation (2)

(y1, y2) = (y′1, y′2) + random(0, 1) (2)
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where,
X = (y′1 − y1), (y′2 − y2) (3)

0
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3000
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5000

6000

7000

8000

Electricity Theft

Figure 4. Normal data.

Random function provides a random number between 0 and 1. By applying SMOTE, minority
class data points are generated and balanced with the majority class. Figure 5 shows the data set after
applying SMOTE. However, it does not consider neighboring examples from other class. This can
increase overlapping of same class data, introduce additional noise, and keep its prediction away from
actual residential customers. Moreover, it cannot be applied to high-dimensional data. Tomek Link
is used for undersampling in case the observations near to the borderline of minority class are
removed [37]. The undersampling steps are as follows.

0
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6000

7000

8000

Normal User Electricity Theft

Figure 5. Data after applying Synthetic Minority Oversampling TEchnique (SMOTE) algorithm.

1. Read input from the dataset.
2. Minority samples are generated from input dataset.
3. Majority samples, which are nearest neighbors of minority observation, are also generated.
4. Combine both observation samples from majority and minority.
5. Delete all majority samples that are the nearest neighbor of minority samples.
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6. Now dataset is undersampled as observations from majority class are removed.

In our proposed SOSTLink, samples are generated in the minority class and samples are removed
from the majority class as shown in Figure 6. It corresponds to the desired ratio of the number of
samples in the minority class over the number of samples in the majority class.

0

1000

2000

3000

4000

5000

6000

Normal User Theft User

Figure 6. Smote Over Sampling Tomik Link (SOSTLink) sampling.

4.4. Feature Extraction using KPCA

Feature extraction is a process in which the most relevant features are extracted from the original
dataset. In the literature, many methods have been proposed for feature extraction. In this research,
we use KPCA for feature extraction. It extracts useful information from the entire dataset as much
as possible, without losing important information. It is a variant of Principal Component Analysis
(PCA) with kernel function. It uses a kernel function to project the dataset into a higher-dimensional
feature space, where it is linearly separable. To implement the KPCA algorithm, the following steps
are involved.

• The first step is the choice of kernel mapping k(xm, xn).
• Based on training data {xn, (n = 1, · · · , N)}, we get K.
• To get λi and ai, solve eigenvalue problem of K.
• For each given data point x, obtain its principal components in the feature space: ( f (x) · φi) =

∑N
n=1 a(i)n k(x, xn)

4.5. Bidirectional Gated Recurrent Unit for Classification

In traditional neural network and CNN models, weights are updated during backpropagation,
due to which the problem of vanishing gradient and exploding gradient occurs. To resolve these issues,
LSTM and GRU are used as advanced versions of the Recurrent Neural Network (RNN). However,
LSTM has some limitations over GRU. LSTM has more parameters, besides being time-consuming and
less efficient. It needs more data for generalization. Therefore, GRU is considered a better classification
model as compared to the traditional neural networks, CNN, and LSTM models. Figure 7 shows the
overall architecture of GRU.
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Figure 7. The overall architecture of the Gated Recurrent Unit (GRU).

GRU is proposed by Cho et al., which is the advanced version of RNN [38]. It easily learns
long-term dependencies and resolves the problem of vanishing gradient [39]. The structure of GRU
is slightly different from LSTM. LSTM consists of three gates, whereas GRU consists of two gates.
Update and reset are the two gates of GRU. The update gate is the combination of input and forget
gate of LSTM, and the reset gate is applied directly to the previous hidden state. Thus, GRU has
fewer parameters, faster training process, and requires less data for generalization. For short-term
dependencies, the reset gate is activated, and for long-term dependencies, the update gate is used.
GRU uses a combination of both gates, so input sequences are passed through the deep network
and all the gradients are kept. The relationship between the input and output gates is described in
Equations (4)–(7).

u(t) = σ(Wuxt + Wuht−1 + bu) (4)

h̄(t) = tanh(W.[rt] ∗ ht−1 + Wxt) (5)

h(t) = (1− u(t)) ∗ ht−1 + ut ∗ h̄t (6)

r(t) = σ(Wrxt + Wrht−1 + br) (7)

where r(t) is the reset gate, u(t) is update gate, and W is parameter. σ is the sigmoid function and tanh
is hyperbolic tangent function.

BGRU is used in [40] for natural language processing.We get our motivation from work in [40]
and used BGRU in our proposed model as shown in Figure 8. Bidirectional GRU is the latest version of
bidirectional RNN. To make a prediction of a current observation, it uses information from the previous
time step and forward time step. In GRU, information flows from left to right by computing each
value. The output of GRU is passed to BGRU as input. In the final prediction, information flows from
right to left starting from final time step and moving to the initial time step. In our proposed model,
we use five layers: GRU, BGRU, flatten, dropout, and dense. We use 100 neurons in GRU layer and
50 neurons in the bidirectional layer. Moreover, the flatten layer is used to convert multidimensional
data into one-dimensional data.

4.6. Study of Hyperparameters Used for Experiments

The performance of proposed model depends on its hyperparameters. We have achieved the
desired performance by selecting the optimal number of hidden layers. We perform a number of
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experiments by changing the value of alpha. We get the optimal value of alpha on a hit and trial basis.
As shown in Figure 4, data is transformed using Random Oversample Technique. Table 3 shows the
values of the hyperparameters.

S’i
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S’0

Si

GRU` GRU` GRU`

GRU

GRU` GRU`

X0

Y0

X1

Y1

X2

Y2

X3

Y3

Xi

Yi

GRU GRU GRU
GRU

Figure 8. Working of bidirectional Gated Recurrent Unit (GRU).

Table 3. Parameters of Bidirectional Gated Recurrent Unit (BGRU).

Parameters Values of BGRU Values of LSTM

Input Neuron 30,600 643,200
Activation Function Sigmoid Sigmoid
Number of Outputs 100 400

Epoch 25 25
Number of dense layer 101 401

Execution time 36s per iteration 73s per iteration

5. Experimental Results

A variable which is used to control the training process of BGRU is known as an epoch. In our
model, we run the program for 25 epochs. After the 17th epoch, the accuracy remains constant. On the
training data, accuracy gradually starts increasing and reaches 95%. While at testing, the accuracy slightly
fluctuates. The dataset has some zero values. At the 4th epoch, the BGRU trains over the batch containing
zero values, which causes overfitting. As shown in Figure 9, the accuracy of the proposed BGRU model
is 94%.
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Figure 9. BGRU accuracy.
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We also calculate the loss of the proposed model. For loss, we conduct 16 iterations. At each step,
loss decreases and reaches a 0.1 minimum at the training phase. At the testing phase, the minimum
loss is less then 0.2. Loss of training and testing data is the same. The selected batch at the 2nd to 4th
epoch consists of zero values; therefore, overfitting occurs at 4th iteration. Figure 10 indicates that the
proposed model performs well on training and testing data.
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0.6

L
o

s
s

Training and Test ing Loss
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Figure 10. BGRU log loss.

5.1. Performance Comparison

To evaluate the performance of proposed model, we compare BGRU with Decision Tree
(DT), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), CNN, LSTM,
and Multilayer Perceptron-Convolutional Neural Network (MLP-CNN).

5.1.1. Decision Tree

DT is also used for classification of energy theft. It has the power of decision-making in order to
perform NTL detection. It works for complex problems because of its high adaptability.

5.1.2. Support Vector Machine

SVM is a classification method that is used in literature for binary classification. In the literature,
many studies have compared their model with SVM.

5.1.3. Logistic Regression

Logistic Regression (LR) is a binary classification method which is equivalent to the single hidden
layer of neural network. Sigmoid activation function is used in LR, with values ranging from 0 to 1.

5.1.4. Random Forest

The building block of Random Forest (RF) is multiple DT. In recent studies, it is used to identify
thefts in power distribution. It has achieved better accuracy along with reducing overfitting issue.

5.1.5. Convolutional Neural Network

CNN is used to perform NTL detection. CNN is a multilayered deep learning model suitable for
complex problems.
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5.1.6. Long Short Term Memory

LSTM is a classifier used for theft detection, which learns temporal correlations from time series.
In LSTM, the input is given in a sequence to train the model. In existing studies, many authors compare
their classifiers with LSTM.

5.1.7. Multilayer Perceptron-Convolutional Neural Network

The Multilayer Perceptron Convolutional Neural Network (MLP-CNN) is a hybrid model,
in which MLP maps input data with output data and CNN is a deep learning model. We compare our
results with this model.

5.2. Performance Metrics

The objective of NTL detection is to minimize the inspection cost and maximize the electricity
theft detection. Performance metrics are computed from confusion matrix which is shown in Figure 11.
It is used to evaluate the performance of a classifier on test data. This matrix is appropriate when
we have a verified number of thefts in a dataset [41]. From this matrix, four possible outcomes are
generated. These outcomes are True Positive (T+), False Positive (F+), True Negative (T-), and False
Negative (F-). In T+, classifier correctly detects thefts as Fraudsters. In F+, normal users are detected as
theft by the classifier. In T-, normal users are correctly identified by classifier. Whereas in F-, thefts are
detected as normal users by the classifier. These outcomes are then used to calculate precision, recall,
and F1-score. In this research, we have used precision, F1-score, recall, and ROC curve [19].

Precision =
True+

True+ + False+
(8)

Recall =
True+

True+ + False−
(9)

F1− Score = (1 + β2)× Precision× Recall
β2 × Precision + Recall

(10)

ROC =
Recall + Speci f icity

2
(11)

False Positive True Positive

True Negative False Negative

Theft

Normal

Normal Theft

Predicted Class

Actual 

Class

Figure 11. Confusion matrix.
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Precision, recall, F1-score, ROC curve, and Root Mean Square Error (RMSE) are important metrics
for model evaluation. Table 4 and Figure 12 show the comparison of existing techniques with proposed
model based on different performance metrics. The precision value of CNN is 0.65, which is lowest
among all models, while BGRU has the highest precision value which is 0.80. Likewise, the precision
values of LR, RF, and SVM are 0.72, 0.72, and 0.69, respectively. Similarly, the lowest recall valve is 0.58 for
SVM and 0.89 for the proposed model which is highest recall value. Recall values of LR, RF, and CNN are
0.73, 0.70, and 0.73, respectively. The F1-score of BGRU, LR, RF, SVM, and CNN is 0.85, 0.65, 0.60, 0.56,
and 0.85, respectively.

Table 4. Performance metrics.

Models Precision Recall F1-Score ROC Curve RMSE

LR 0.72 0.73 0.65 0.73 0.33
RF 0.72 0.70 0.60 0.70 0.40

SVM 0.69 0.58 0.56 0.57 0.31
DT 0.75 0.71 0.72 0.70 0.22

CNN 0.65 0.73 0.85 0.65 0.22
LSTM 0.72 0.71 0.72 0.82 0.21

MLP-CNN 0.71 0.67 0.68 0.81 0.23
Our Proposed BGRU 0.80 0.89 0.85 0.86 0.04

FPR is considered as an important performance metric. In FPR, normal users are classified as
theft, which raises the model’s misclassification rate. If FPR is high, the inspection cost is also high.
The objective of NTL detection is to minimize the inspection cost. We have calculated the FPR of
benchmark models as shown in Figure 13. The proposed model has the lowest FPR of 0.06, whereas
SVM has the highest FPR.

The ROC curve is another performance metric for classification problems. It tells us how confident
our model is to differentiate between the normal and theft users. Figure 13 shows the ROC curve of
the proposed BGRU model. The value of ROC curve is 0.86 of BGRU model. The score of ROC curve
improved greatly by applying the SOSTLink method.

We also calculate the RMSE of our proposed model and also for comparison techniques. RMSE
gives relatively high weights to large errors and it is very useful when large errors are undesirable.
It takes the average of root square of errors. The formula of RMSE is as follows,

RMSE =
√

Σn
i=1(ai − bi)2 (12)

ROC Precision Recall F1-score
Performance Metrics

0.0

0.2

0.4

0.6

0.8

Sc
or
es LR

RF
SVM
CNN
LSTM
DT
MLP-CNN
BGRU

Figure 12. Comparison of BGRU with other techniques.
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Figure 13. Comparison of BGRU with ther techniques in terms of False Positive Rate (FPR).

RMSE calculates the distance between acutal sample and predictied sample. The RMSE of BGRU
is 0.044, which is lowest as compared to other existing deep learning models as shown in Figure 14;
however, the RMSE of RF is highest at 0.400.

DT SVM LR RF CNN LSTM MLP-CNN BGRU
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RM
SE

Figure 14. Comparison of BGRU with other techniques in term of Root Mean Square Error (RMSE).

The existing techniques have low ROC curve as compared to the proposed model. ROC curve
of CNN is 0.65, LR is 0.73, SVM is 0.57, LSTM is 0.82, MLP-CNN is 0.81, and RF is 0.70, respectively.
Figures 15–22 show the experimental results of comparative techniques in terms of ROC. Among seven
different theft detection algorithms, the BGRU algorithm performs better as compared to traditional
machine learning approaches.
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Figure 15. Receiver Operating Characteristic (ROC) curve of BGRU.
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Figure 16. ROC curve of Support Vector Machine (SVM).
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Figure 17. ROC curve of Decision Tree (DT).
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Figure 18. ROC curve of Logistic Regression (LR).
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Figure 19. ROC curve of Random Forest (RF).
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Figure 20. ROC curve of Long Short-Term Memory (LSTM).
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Figure 21. ROC curve of ROC curve of CNN.
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Figure 22. ROC curve of Multilayer Perceptron-Convolutional Neural Network (MLP-CNN).

The execution time of BGRU and the other existing deep learning models is shown in Figure 23,
where execution time of LSTM is 30 min and execution time of MLP-CNN is 25 min. BGRU has the
lowest execution time recorded as 15 min. This shows that BGRU is more efficient as compared to
LSTM and MLP-CNN.
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Figure 23. Execution time of BGRU and other deep learning techniques.



Appl. Sci. 2020, 10, 3151 19 of 21

6. Conclusions

Electronic gadgets are growing rapidly, and because of this demand for electricity is increasing day by
day. Losses occurs during generation, transmission, and distribution. In the literature, many studies have
been proposed to deal with non-technical losses. However, still there is need to improve FPR and a better
balancing technique to achieve good results. In this paper, first we remove missing values by imputation
method and normalized the data by applying MinMax normalization. Second, we propose SOSTLink
sampling technique, which is hybrid of two sampling techniques SMOTE and Tomik Link for balancing
the imbalance data. Finally, we used bidirectional GRU for classification of NTL detection by analyzing
the electricity consumption patterns of consumers. In order to evaluate the model performance, we use
five performance evaluation metrics using real electricity consumption dataset of SGCC. Dataset consists of
customer identification number, flag, and features. There are 1035 features that are the daily consumption of
electricity. We compare the proposed system model with other existing techniques like, SVM, RF, LR, LSTM,
CNN, and MLPCNN and show that our BGRU outperforms these techniques.

In future work, we will integrate other methods with BGRU to yield better results. Moreover,
we will apply the BGRU model in other areas such as bank fraud and other theft detection problems.
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