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Abstract: In this study, singular integral solutions were studied to investigate scattering of Rayleigh
waves by subsurface cracks. Defining a wave scattering model by objects, such as cracks, still can be
quite a challenge. The model’s analytical solution uses five different numerical integration methods:
(1) the Gauss–Legendre quadrature, (2) the Gauss–Chebyshev quadrature, (3) the Gauss–Jacobi
quadrature, (4) the Gauss–Hermite quadrature and (5) the Gauss–Laguerre quadrature. The study
also provides an efficient dynamic finite element analysis to demonstrate the viability of the wave
scattering model with an optimized model configuration for wave separation. The obtained analytical
solutions are verified with displacement variation curves from the computational simulation by
defining the correlation of the results. A novel, verified model, is proposed to provide variations in
the backward and forward scattered surface wave displacements calculated by different frequencies
and geometrical crack parameters. The analytical model can be solved by the Gauss–Legendre
quadrature method, which shows the significantly correlated displacement variation with the FE
simulation result. Ultimately, the reliable analytic model can provide an efficient approach to solving
the parametric relationship of wave scattering.

Keywords: finite element simulation; infinite element; wave propagation; wave scattering;
correlation coefficient

1. Introduction

The propagation of disturbances known as wave propagation in solids has been studied in many
branches of physical science and engineering. Wave propagation carries energy (e.g., kinetic and
potential energies) through a solid medium and energy transmission over a radiation pattern is through
the motion of particles in the wave motion phenomenon. Although wave motion in elastic solids is
well-studied, adequately defining a wave scattering model by objects such as cracks still can be quite
a challenge.

Over the past decades, crack evaluations using a wave scattering approach in nondestructive
evaluations (NDEs) have gained much attention [1,2]. Many researchers in the early 1980s offered
analytical solutions to define and explain the scattered surface waves caused by cracks (e.g., subsurface
cracks) [3–5]. A vertical subsurface crack is considered capable of generating an efficiently scattered
field since the crack is one of the most influential damages of surface wave propagation. The analytical
model of a vertical subsurface crack [3] is obtained by establishing an integral representation for the
scattered field expressed in terms of the fundamental potentials first introduced by Lapwood [6].
Furthermore, numerical methods have been devised to solve the singular integral equations of the
analytical model. For example, the Gauss–Chebyshev quadrature rule as a numerical method was
adopted by Erdogan and Gupta [7]. Understanding the numerical solution of a singular integration is
vital to providing an accurate and reliable solution to the analytical wave scattering model. Such studies
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have focused on scattered wave motions presented in relation to the displacement variations caused
by different frequencies and geometrical crack parameters. Based on this approach, a well-defined
relationship can be developed to evaluate causes and estimate behavioral patterns in cracks. Although
using the relationship between displacement variations and frequencies can lead to evaluate cracks
by solving the inverse problem, research is needed to verify displacement variations in the existing
analytical solutions.

Meanwhile, high-performance computers and simulation software have facilitated efficient wave
modeling studies [8,9], which perform with experimental studies under the constraints of time,
environment, sources, etc. Several methods have been conducted to simulate the mechanical wave
propagation in solid mediums. Among them, finite element (FE) simulation is widely used for higher
accuracy and adaptability. Hassan and Veronesi [8] performed a comparative study of FE simulation of
wave propagation and laser interferometry experiment with a cracked steel plate to show the reliability
of FE simulation. FE results allow simulation of waveform change between the incident wave and
scattered wave based on the resultant crack(s). One challenge of FE simulation of wave propagation
is that it requires a large-sized simulation model to avoid wave reflection at the model’s boundary.
Furthermore, the model should have enough distance between the wave source and listening nodes
to obtain pure waveforms (e.g., surface wave). Typically, a minimized model has been designed to
streamline computational efficiency. Oh and his colleagues [10] conducted practical FE simulations
using a damper and energy-absorbing element known as an infinite element to minimize the model
size. They proposed a combination of damper and infinite element with a required absorbing thickness
and damping factor, so dampers could prevent wave reflection.

Both analytical and simulation methods (e.g., FE) are powerful approaches for wave modeling,
which aim to predict or provide a specific parametric relationship in a system (e.g., variations of
a scattered wave amplitude by different frequencies and crack sizes). The simulation method is
beneficial when a complex wave model is needed (e.g., complicated geometry and various incident
waves). In addition, an analytical model has applicability limitations needing corrections of some
factors (e.g., nonlinearity, wave amplitude-dependent) [11,12]. However, an analytical method is still a
powerful approach to calculate the wave model needs rapidity to provide computational efficiency.
This is especially true when the simulation model has become too time-consuming and requires heavy
computations. Thus, use of a reliable analytical model can significantly save efforts and provide an
efficient approach to solving the parametric relationship of wave scattering. Furthermore, beyond
the computational benefit, an analytical method is helpful in understanding the fundamental wave
propagation through a mathematical formulation that is derived from wave motion and elastodynamic
theory [13].

In this study, we investigate the existing analytical model of the displacement variations of
scattered surface waves, and study different numerical integration methods for the proposed analytical
model. We also introduce an efficient dynamic FE analysis to demonstrate the viability of the
wave scattering model with an optimized model configuration for wave separation. Finally, we
verify the analytical model with the FE simulation results uniquely. To solve the singular integral
equations in the analytical model, five different numerical integration methods of Gaussian quadrature
were considered: the Legendre quadrature (GLEQ), the Gauss–Chebyshev quadrature (GCQ), the
Gauss–Jacobi quadrature (GJQ), the Gauss–Hermite quadrature (GHQ) and the Gauss–Laguerre
quadrature (GLAQ). The obtained displacement variation curves from the analytical models are
compared and verified with FE simulation results by defining the correlation of the curves.

2. Analytical Model

The analytical model of the wave scattering is defined in Section 2. The aim of the theoretical
model is to calculate the displacement variation subject to the crack geometry and incident wave
frequencies in a homogeneous, isotropic and linearly elastic solid medium on the half-plane condition
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defined as the set of points (x, y) in the Cartesian plane with y ≥ 0. The subsurface crack is formed,
as shown in Figure 1, with varying a and b parameters.
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Figure 1. Illustration of subsurface crack on the two-dimensional x − y half-plane. a is the distance
between the ground and the top of the crack tip, b is the distance between the ground and the bottom
of the crack tip and r and θ are components of the polar coordinate. The image shows the directions of
the incident waves and scattered waves influenced by different a and b distances.

2.1. Derivation of Displacement Potentials.

The displacement field as the final theoretical model can be expressed as two potential functions,
a scalar potential ϕ(x, y) and a vector potential ψ(x, y) by Helmholtz decomposition [14]:

u = ∇ϕ+∇×ψ (1)

where u is the displacement field of scattered waves and ∇ is the Nabla or Del operator. Computing the
displacement potentials is the main part of defining the theoretical scattering model. The displacement
field is defined in the z-invariant condition. The waves in the half-plane are z-invariant waves where
all functions are dependent on the z-direction. The displacement potentials are defined in the scattered
field and satisfy a radiation condition of the elliptic boundary-value problem by Wickham [15] as the
equation including the exponential and small ‘o’ functions:

ϕ = A±e±ikRx−(kR
2
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) (2)

where A and B are constant; kR, kL and kT are the Rayleigh wavenumbers, longitudinal waves and
transverse waves, respectively. r and θ are the components of the polar coordinate (r, θ). The ± signs
denote forward direction, + and backward direction, −. The part including the polar coordinate in the
Equation (2) is ignored since the incident wave angle is 90 degrees. The coefficient A and B satisfy the
equation and are given as:

A+/B+ = −A−/B− =
(
2kR

2
− kT

2
)
/2ikR(kR

2
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1/2
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The constant B can be obtained by Equation (3) when the constant A can be calculated as an
explicit formula given Achenbach’s approach [16], which can be expressed as:
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(
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2
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The components of integration in Equation (4) are given as:∫ b

a
dy

{
±dy(y)P(y) + idx(y)Q(y)

}
(8)

where, dy(y) and dx(y) are the displacement functions in y-direction and x-direction, respectively. The
displacement functions can be obtained by Hooke’s law, d = F/K, where d is a displacement matrix, F
is a force matrix and K is a stiffness matrix. The force matrix can be computed by the stress field given
by Achenbach [3] as:

σxx = −2µARikR
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where µ is Poisson’s ratio.
The stiffness matrix is obtained by the equations representing the Hankel function, which is a

Bessel function of the third kind.
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where H(1)
3 is the third order of the first kind of Hankel function, H(1)

1 is the first order of the first kind
of Hankel function and

H∗(ρ,±π/2) = ±
∞∑

k=0

ρ
(
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2i
π
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(11)

whereρ is a density andψ(k + 1) is a digamma function of a complex variable obtained by differentiating
the logarithm of a gamma function.

2.2. Numerical Integral Solutions of an Analytical Model

The ultimate objective of this study is to calculate and verify displacement variations, which
is defined by the ratio of displacements as scattered wave and incident wave occurrences. The
displacements are calculated from the potentials derived by the singular integral Equation (4) Notably,
numerical integration methods are key to solve the analytical model to provide reliable and accurate
displacement variation. Five Gaussian quadrature numerical integration methods are employed:
GLEQ, GCQ, GJQ, GHQ and GLAQ.

The key to the Gaussian quadrature method is to define the node (x) and weight (w), which is the
additional coefficient known as “weight” at the element and given by the weight function, to calculate
integration in numerically as described in Equation (12). The rule of integration is stated as
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∫ 1

−1
f (x)dx ≈

n∑
i=1

f (xi)wi (12)

where f (x) is a continuous function, f (xi) is a dependent variable at a discrete node xi and wi is the
weight function at the discrete node xi.

To define the node or the reference point in the x coordinate, an orthogonal polynomial is utilized.
Depending on the applied orthogonal polynomial, the five numerical integration methods are classified.
The Gauss–Legendre quadrature is the simplest integration problem by Legendre polynomials on
[−1, 1], and the weight function is:

wi =
2

(1− xi2)[P′n(xi)]
2 (13)

where Pn(x) is the Legendre polynomial, which is the solution of the Legendre differential equation(
1− x2

)
y′′ − 2xy′ + n(n + 1)y = 0.

The Gauss–Chebyshev quadrature uses Chebyshev polynomials with respect to the weight
function, which is given as:

wi =
√
(1− x2) (14)

The Gauss–Jacobi quadrature is for an approximate integral with the Jacobi polynomials and
weight function expressed as:

wi = (1− x)α(1 + x)β (15)

where f is a smooth function on [−1, 1] and α, β > −1. The interval [−1, 1] can be replaced by any other
interval by a linear transformation. The Gauss–Hermite quadrature is a form of Gaussian quadrature
for approximating the value of integrals of the following kind,

∫ +∞

−∞
e−x f (x)dx and the weight function

is given as:

wi =
2n−1n!

√
π

n2[Hn−1(xi)]
2 (16)

where Hn(x) is a Hermite polynomial, which is the solution to Hermite’s differential equation,
y′′ − 2xy′ + 2ny = 0.

The Gauss–Laguerre quadrature is an extension of the Gaussian quadrature method for
approximating the value of integrals for the following kind

∫ +∞

0 e−x f (x)dx and the weight function is:

wi =
xi

(n + 1)2[Ln+1(xi)]
2 , (17)

where Ln(x) is the Laguerre polynomial, which gives the solution to Laguerre’s equation of a
second-order linear differential equation, xy′′ + (1− x)y′+ ny = 0. Weight functions of each numerical
integration method are described in Table 1.

Table 1. Weight function of integral methods.

Integral Method Weight Function

Gauss–Legendre quadrature wi =
2

(1−xi2)[P’n(xi)]
2

Gauss–Chebyshev quadrature wi =
√
(1− x2).

Gauss–Jacobi quadrature wi = (1− x)α(1 + x)β

Gauss–Hermite quadrature wi =
2n−1n!

√
π

n2[Hn−1(xi)]
2

Gauss–Laguerre quadrature wi =
xi

(n+1)2[Ln+1(xi)]
2
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3. Computational Simulations Model

The computational simulations, especially the finite element (FE) analysis, is the most widely
used method to solve field problems using a numerical approach. In this study, the FE modeling is
performed to verify analytical models solved with different numerical integral methods. The model
will simulate the wave propagation in the solid media, including the vertical subsurface crack with
different frequencies of incident waves. In detail, the cracks are designed by the different ‘a’ values
and a/b ratios. Three values of the parameter ‘a’ to simulate subsurface crack in those depths are
12 mm, 18 mm and 24 mm cracks, as denoted in Table 2. The selected parameters are typical sizes
in the field area. In addition, two a/b ratios with 0.1 and 0.2 are considered to design the internal
crack. The increase in the a/b ratio indicates the decrease in crack sizes. These ratios are selected to
compare with the existing analytical solution [3]. In addition, the proposed analytical model will be
verified with the FE simulation. Each case has a different wavenumber range. A total of 177 FE models
are simulated. A total of 150 FE models are designed for 6 different crack geometry cases simulated
varying different frequency ranges. For example, there are 27 models for C12–0.1 case for simulating
different frequencies described in Table 2. Twenty-seven FE models out of 177 are designed for no
crack case.

Table 2. Designed crack geometry and simulation numbers by the wavenumber range.

Case a (mm) a/b Crack Size, b − a (mm) Number of Model

C12–0.1 12 0.1 108 27
C12–0.2 12 0.2 48 27
C18–0.1 18 0.1 162 25
C18–0.2 18 0.2 72 25
C24–0.1 24 0.1 216 23
C24–0.2 24 0.2 96 23

3.1. Model Description

Typically, an FE simulation requires a large-sized simulation model to avoid unexpected waves
reflected from the boundary; otherwise, it will show considerable computation time. Several
researchers [10] have conducted the FE simulation with damper and energy-absorbing elements
(i.e., infinite elements) to reduce the size of the model. The study of FE simulation with damper and
infinite element recommends 10 damping zones in an 0.4–0.6/length (distance between wave source
and boundary) with 1000 to 2000 of step damping factor increase. Since the simulation model of this
study has a shorter distance between the wave source and boundary, 1000 of the initial damping factor,
and 5000 of the incremental damping factor are chosen. The FE models in this study compose of three
groups: the solid medium group, damper group and wave absorbing infinite element group. The solid
medium size is 4000 mm (width) × 1000 mm (height). The 500 mm damper zone is at the boundary of
the solid medium group and is represented in the rainbow color of Figure 2. The infinite element is
placed at the dampers’ end. The applied material properties are assumed for the typical solid material
(ρ = 2400 kg/m2, E = 35 GPa and υ = 0.2), which is the largest component in the model. Both the
analytical model and the FE model have applicability limitations for typical material cases having
material nonlinearities that may affect wave propagation. We assume linear elastic wave propagation.
The explicit FE simulation does not enforce the structural equilibrium [17], therefore the structural
boundary condition is not necessary for the structural equilibrium of the internal structure forces
under the external load. The model of the ABAQUS solver is designed using a two-dimensional
(2-D) four-node plane strain element (CPE4R) with 2 mm mesh size for the solid medium group
and dampers.
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Figure 2. Details of finite element (FE) model: N1 is the listening node for the backward scattered
waves, N2 is the listening node for the forward scattered waves, DC−N1 and DC−N1 are the distances
between the crack and nodes, N1 and N2, respectively, Ds−N1 is the distance between the wave source
and N1. The figure also includes ten dampers in rainbow colors on the three sides of the solid medium
and an infinite element in the thin red layer at the end of dampers. The illustration shows the required
component and geometry to simulate the wave propagation in the cracked model.

The artificially attenuated dampers are designed by gradually increased alpha mass-proportional
damping factors, as described in Table 3. Typically, the damper zone allows attenuating low-frequency
waves, while the infinite element absorbs high-frequency waves [10]. The type of the element is an
infinite element, CINPE4.

Table 3. Damping factors for optimum damping gradient of FE model.

Damper
1

Damper
2

Damper
3

Damper
4

Damper
5

Damper
6

Damper
7

Damper
8

Damper
9

Damper
10

1000 6000 11,000 16,000 21,000 26,000 31,000 36,000 41,000 46,000

3.2. Discussion of the Wave Separation in FE Simulation

The model based on the wave separation in the P-wave and surface waves is studied in this
section. As illustrated in Figure 2, the DC−N1, N2 represents a distance between the crack location and
listening nodes in the x-direction, while DC−N1 represents the distance between the source point and
backward listening node in the x-direction. Typically, each propagated wave (e.g., P-wave, S-wave
and surface wave) has a different arrival time due to each wave’s different speed. For example, in
the simulation with given material property, the speed of the P-wave (CP) and surface wave (CR) are
4084 m/s and 2265 m/s, respectively. However, the model requires a minimum distance between the
wave source and the listening nodes to obtain the pure waveforms (e.g., surface wave) so as to avoid
overlapped waves.

Figure 3 shows four different wave groups excited by an incident sine wave. The two-wave
groups (P-wave and surface wave) are incident waves in the time range between 0.2 and 0.8 × 10−3 s,
while the other two-wave groups are the reflected waves at the crack in the time range between
1.2 and 1.6 × 10−3 s. The three following groups must be considered to obtain a clear P-wave and
surface wave separation: i) Reflected P-waves by the crack should not pass when the incident surface
waves pass through at N1, as DS−N1+DC−N1+DC−N2

CP
,

DS−N1
CR

. ii) the distance, DC−N1 should be enough to

have a wave separation in P- and Surface-waves at N1, (see Region A in Figure 3), DS−N1
CP
−

DS−N1
CR

> T,
where T is period of the incident wave. DC−N1, N2 should be enough to have a wave separation
between the reflected P- and Surface-waves by the crack at the N1 and N2, (see region B in Figure 3),
DC−N1,N2

CP
−

DC−N1,N2
CR

> T. In addition, the simulations are designed to avoid the S-wave effect to obtain the
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pure surface wave by receiving only the horizontal displacement, which is in a longitudinal direction,
thus the S-wave was eliminated.
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Figure 3. FE simulation results of the time-domain waveform at the node N1 in horizontal
x-displacement: Waves from the incident wave and reflected waves by the crack are calculated.
Both Region A and B show different arrival times as wave separations of the P-wave and surface waves.
Region A is associated with the incident waves and B is associated with the reflected waves by crack.
The image explains the waveform in the time-domain and the required distance of DC−N1, N2 and
DS−N1 to obtain a pure waveform of the surface waves.

4. Results and Discussions

The FE simulation is performed to verify the analytical model introduced in Section 2. The
numerically calculated analytical model and FE simulation results are described to the displacement
variation of the ratio of the backward scattered wave and incident wave, ubs/uin and the ratio of the
forward scattered wave and incident wave u f s/uin by two parameters of ‘a’ and ‘kR’, which is related
to the frequency (k = 2π f /C: k is a wavenumber, f is a frequency and C is the wave speed).

4.1. Results of the Analytical Model and FE Simulation

The analytical model with five different integral methods is computed using MATLAB
(2019, MathWorks, Natick, MA, USA) in accordance with the procedures of Section 2. The FE
simulation is designed based on the details described in Section 3. The analytical model and FE
simulation results are normalized with the highest magnitude of the variation ratio to compare the
shape and tendency of each case. The wavenumbers are considered to have the displacement variation
curves in the kRa < 4 range by the given ‘a’ values (e.g., 12 mm, 18 mm and 24 mm). In the simulation
result of the forward scattered case, the pure scattered waves are obtained at a higher frequency range
than 10 kHz. Since the lower frequency (e.g., 10 kHz or below) has a longer wavelength, the scattered
P-wave overlaps the scattered surface wave, as discussed in Section 3.2.

Figure 4 includes two graphs of the backward and forward scattered cases of the C18–0.2 model,
which has a 72-mm crack size. In this geometry, the higher amplitude of scattered energy variation
shows in the forward scattered direction (see the amplitude of the u f s/uin in Figure 4) than in the
backward direction (see the amplitude of the ubs/uin in Figure 4).

The displacement variation changes depending on distance between the ground and top crack,
denoted as ‘a’ and the crack size are described in Figure 5. The three models considered are C12–0.2,
C18–0.2 and C24–0.2, which have depths of 12 mm, 18 mm and 24 mm, respectively and a crack size of
48 mm, 72 mm and 96 mm. The models have the same a/b ratio, 0.2. Regardless of the crack depth and
size, a similar amount of wave scattering occurs in the same a/b ratio.
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Figure 4. Displacement variation curves from the analytical model and FE simulation by the different
direction of the C18–0.2 model: (a) backward scattering and (b) forward scattering result. The curves
show the shape of the displacement variation denoted as ubs/uin and u f s/uin in the analytical model
and simulation result. The results indicate that the analytical models solved by different internal
methods show a shape similar to that of the FE simulation in both the forward and backward case.

The displacement variations based on crack size change is described in Figure 6, including C12–0.1
and C12–0.2 case, which have a 108-mm and 48-mm crack size. The graph result showing 0.1 of the
a/b ratio (see Figure 6a) is obtained by a longer crack than the 0.2 case (see Figure 6b) and the model
shows a sharper triangular shape of curves in the lower kRa value. The small crack size case has its
peak value at the relatively higher kRa. Since the lower frequency waves can pass through the smaller
length or size of the crack, it shows lesser wave scattering energy in the lower kRa. Thus, the peak
displacement variation is formed in the higher kRa as part of a smaller crack model.
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Figure 5. Displacement variation curves of analytical model solving five different integral methods
and FE simulation shown with different crack depths, ‘a ’ of the forward scattered models: (a) result
with a 12 mm a and a 0.2 a/b ratio model (C12–0.2), (b) results with an 18 mm a and 0.2 a/b ratio model
(C18–0.2) and (c) results with 24 mm of a and a 0.2 a/b ratio model (C24–0.2). The figure implies the
deeper crack depth which is a higher ‘a’ result shows the peak point at the higher kRa value.
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Figure 6. Displacement variation curves of the analytical model and FE simulation by different a/b ratio
of the forward scattering models: (a) result from 0.1 a/b ratio model (C12–0.1), (b) result from 0.2 a/b
ratio model (C12–0.2). The figure implies the longer crack model represents the higher wave scattering
energy and narrow distribution curve. The peak displacement variations of the shorter crack model are
obtained at the relatively higher kRa value.

4.2. Representative Correlation Values of Curves

The correlation coefficient is used for quantifying the similarity between two variables. In this
study, Pearson’s correlation coefficient [18] is adopted to evaluate the similarity of the displacement
variation curves. The method of Pearson’s correlation coefficient gives the coefficient (r) value between
−1 and 1 to define the similarity of the two curves. When r > 0, it means that the two variables are
positively correlated and when r < 0, the two variables are negatively correlated. When |r| = 1, it
means that the two variables are completely and linearly correlated, that is, they have a functional
relationship. When r = 0, it refers to the nonlinear correlation between the two variables. When 0 < |r|
< 1, it means there is a certain degree of linear correlation between the two variables, as described in
Table 4. And, the closer |r| is to 1, the closer the linear relationship is between two variables. If r is
closer to 0, the linear correlation is weaker between two variables, as described in Table 5.
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Table 4. Condition of correlation coefficient and its relationship between variables.

Condition of Correlation Coefficient Relationship between Variables

r > 0 or r < 0 Positive correlation or negative correlation
|r| = 1 Completely linear correlation (functional relationship)
r = 0 Nonlinear correlation

0 < |r| <1 Certain degree of linear correlation

Table 5. Criteria for a correlation coefficient.

Rank of Correlation Coefficient Meaning

|r| < 0.4 Low linear correlation
0.4 ≤ |r| < 0.7 Significance correlation
0.7 ≤ |r| < 1.0 Highly linear correlation

The Pearson’s correlation coefficient (r) is calculated by Equation (18):

r =
∑n

i=1(Xi − µX)(Yi − µY)√∑n
i=1(Xi − µX)

2 ∑n
i=1(Yi − µY)

2
(18)

where µX and µY is the mean of variable X and Y. In the discussion section, the results of
the FE simulation will be compared with the analytical models using five different numerical
integration approaches.

The calculated correlation coefficients are described in Table 6. The averages of the obtained
correlation coefficients from the five integral methods range from 0.79 to 0.94. Therefore, all five integral
methods are in the highly linear correlation condition in Table 5. Among the applied integration
methods, the Gauss–Legendre quadrature method shows a higher correlation, e.g., 0.94 and obtained
an averaged correlation coefficient.

Table 6. Calculated correlation coefficient results between FE simulation and analytical solution by
five different numerical methods; the Gauss–Legendre quadrature method (GLEQ) shows the highest
similarity. GCQ: the Gauss–Chebyshev quadrature; GJQ: the Gauss–Jacobi quadrature; GHQ: the
Gauss–Hermite quadrature; GLAQ: the Gauss–Laguerre quadrature.

GLEQ GCQ GJQ GHQ GLAQ

A12–0.1 0.98 0.90 0.95 0.86 0.73
A12–0.2 0.84 0.63 0.86 0.56 0.93
A18–0.1 0.98 0.86 0.89 0.86 0.83
A18–0.2 0.96 0.85 0.96 0.80 0.86
A24–0.1 0.95 0.83 0.86 0.82 0.80
A24–0.2 0.92 0.89 0.93 0.86 0.75

Similarity 0.94 0.83 0.91 0.79 0.82

The distance of the correlation coefficient between the analytical model and FE simulation can
be explained with considerable limitations: 1) the assumption of the analytical model which is not
considered in FE simulation and 2) methodological difference between the analytical solutions and
FE simulation.

The analytical model is derived based on many assumptions to make the mathematical logic
simple. For example, the analytical model uses Green’s function expressed in terms of the Hankel
functions to obtain the stiffness function (see GI and GII in Equation (10)). Since Green’s function
adopts a point source effective solution based on the Dirac delta function in mathematical terms, the
analytical model limits the non-localized explicit solution. Thus, the results show a difference from the
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FE simulation results, which is the explicit time variable solution. In addition, the FE simulation results
are affected by the distance (DC−N1, N2 and DS−N1) and incident waveform; however, the analytical
model has no variables pertaining to the horizontal distance and incident waveform.

5. Conclusions

The presented study mainly focuses on singular integral solutions to investigate the existing
analytical model and to provide a new analytical solution. The study also presents an efficient
dynamic FE analysis with an optimized model configuration for wave separation. The simulation that
uniquely offers the wave scattering phenomena is designed to obtain the displacement value under the
same given conditions as with the analytical model. The data from the simulation results are used
to demonstrate the viability of the wave scattering model. The obtained analytical solutions with
displacement variation curves are investigated by defining the Pearson’s correlation of the FE results.
Finally, the result shows the significantly correlated displacement variation of the proposed model
with the FE results. The obtained results are discussed in terms of the curved shape and the correlation
coefficient between the analytical model and FE simulation. The following conclusions are drawn
based on the analytical solutions and FE simulation results and discussion presented in the study.

• The computation time of the analytical model is much shorter than the FE simulation. In the
study, 177 FE models are created and simulated in order to provide an adequate resolution of
the displacement variation curves. Each simulation computing time is about 20 minutes, and
post-processing is required, while the numerical solution for analytical model takes a few seconds
without designing and post-processing time.

• Regardless of crack depth and size, a similar amount of wave scattering energy occurs in the same
a/b ratio.

• The smaller crack sized model has a peak value at the relatively higher kRa. Since the lower
frequency waves can pass through the smaller length of the crack, it shows lesser wave scattering
in the lower kRa. Therefore, the peak displacement variation is formed in the higher kRa in the
case of the smaller crack model.

• The Gauss–Legendre quadrature integration method shows the highest correlation coefficient
values, with an averaged value of 0.94 compared to all considered models, between its analytical
model and the FE simulation.

• The analytical model can provide an efficient and reliable approach to solving the parametric
relationship of wave scattering. Further studies are needed to investigate the limits of applicability
of the developed analytical formulation, such as nonlinearity.
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