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Featured Application: Prediction of macroseismic intensity from ground motion parameters based
on a support vector regression model is better than that based on linear regression model.

Abstract: In this paper, a nonlinear regression method called a support vector regression (SVR)
is presented to establish the relationship between engineering ground motion parameters and
macroseismic intensity (MSI). Sixteen ground motion parameters, including peak ground acceleration
(PGA), peak ground velocity (PGV), Arias intensity, Housner intensity, acceleration spectrum intensity,
velocity spectrum intensity, and others, are considered as candidates for feature selection to generate
optimal SVR models. The datasets with both useable strong ground motion records and corresponding
investigated MSIs in the Sichuan–Yunnan region, China, are all collected, and these 125 pairs of
datasets are used for selecting features and comparing regression results. Nine ground motion
parameters are selected as the most relevant features: PGA is the first fundamental one and PGV is
the fifth relevant feature. Based on performance measures on the testing dataset, the best SVR model
is given when the number of features is one all the way up to nine. According to predicted accuracy,
SVR models with Gaussian kernel give much better MSI prediction than linear kernel SVR models
and linear regression models. In particular, the Gaussian kernel SVR of PGA gives much higher MSI
prediction accuracy than the linear regression model of PGV and PGA. The proposed SVR models are
valid for MSI values from VI to IX, and they can be used for rapid mapping damage potential and
reporting seismic intensity for this high-seismic-activity region.

Keywords: macroseismic intensity; ground motion parameters; support vector regression;
Sichuan–Yunnan region; linear regression; PGA; PGV; instrumental seismic intensity

1. Introduction

Macroseismic intensity (MSI) is a local measure of the degree of earthquake damage and
ground motion shaking in an earthquake, as evidenced by observed damages and human responses.
MSI is crucial for seismic hazard, seismic design, and seismic loss, and has been widely used in the
seismological, engineering, and loss-modeling communities [1–5]. MSI can also provide guidelines on
seismic retrofitting of existing structures after strong ground motion shaking, in order to reduce the
seismic risk of the structures in future earthquakes. There are many different MSI scales, and the most
used ones are the modified Mercalli intensity (MMI) scale, European macroseismic scale (EMS), Japan
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Meteorological Agency (JMA) intensity scale, and Chinese macroseismic intensity scale (CMSIS) [1–7].
Similar to the MMI scale, CMSIS has twelve levels ranging from I to XII, but the referred values
of peak ground acceleration (PGA) and peak ground velocity (PGV) are quite different from those
values adopted in MMI scale [6,7]. One main reason for this difference is that MSI has strong regional
dependence and a source mechanism of seismic fault, velocity structures of crust and soil layers, and
local site conditions in different regions, resulting in different ground motion prediction equations
for both MSI and peak ground motion parameters. Thus, regional regression models for MSIs are
generated in different countries and regions, e.g., California, eastern North America, Italy, Greece, and
Japan. Another main reason is that the investigated MSIs are primarily based on the assessments of
structural damage, which have large dispersion and randomness due to the subjective judgements by
the investigating seismologists and structural experts. Thus, the MSI given by objective ground motions
is another option, and regression models between MSI and ground motion parameters have recently
been generated in different regions. These instrumental seismic intensities from regression models can
provide rapid seismic intensity reporting after a destructive earthquake, as long as the ground motion
records are available from seismic and strong ground motion instruments. The ShakeMap system in
California and Italy, as well as the JMA’s seismic intensity rapid reporting system in Japan, are all
based on instrumental seismic intensities.

Among engineering ground motion parameters, PGA and PGV are widely used to establish a
relationship with the MSI. Since PGA is fundamental in seismic ground motion parameter zonation
and seismic design of structures, the relationship between PGA and the MSI primarily has been
analyzed and established [1–3,7–14]. PGV is more indicative of earthquake damage in more flexible
structures, and linear regression models are generated based on PGV [1–3,7–15]. Wald et al. [3] found
that the MMI values from the relationship with PGV were better than the value based on PGA if
the actual seismic intensity were no less than VII. Akansel et al. [16] stated that whether MMI was
more related to PGA or PGV depended on the structural stiffness. Bilal and Askan [13] concluded
that MMI had better linear correlation with PGA for brittle structure and PGV for ductile structure.
Besides PGA and PGV, other ground motion parameters are also used to establish the relationships.
Since the structural response is derived from acceleration response spectrum, acceleration spectrum
intensity was used by Tong and Yamazaki [17] and Karim and Yamazaki [11], and they both found
that acceleration spectrum intensity had a higher correlation coefficient than PGA and PGV. Velocity
spectrum intensity was also used for establishing relationships [18,19]. Shabestari and Yamaziki [20]
derived equivalent peak acceleration from band passed three component accelerations and obtained a
new relationship between JMA intensity scale and the derived acceleration. This relationship has been
implemented in the JMA seismic intensity rapid reporting system. Other ground motion parameters,
such as ground motion duration [21], cumulative absolute velocity [22], and Arias intensity [23],
were also introduced to generate relationships with MSI. Each ground motion parameter has its own
advantage over others in certain cases. For example, PGA and acceleration spectrum intensity are
better parameters for estimating lower MSIs, and PGV and velocity spectrum intensity are better
parameters for estimating higher MSIs. It should be noted that the above findings are based on the
linear regression method. If another, nonlinear regression method is used to establish the relationship,
the findings could be different. The linear regression method handles multiple variables using ordinary
least square or weighted least square, but the regression results show large scatter due to two main
problems. One main problem is that the true relationship is not just linearly related to each variable,
and cross-terms of multiple variables may appear. For example, McCann [24] added quadratic terms
in regression equation. The true relationship is complicated and nonlinear, and linear regression is
not good for handling the hidden nonlinear cross-terms. For example, Alvarez et al. [25] used neural
networks to set up the complicated and nonlinear relationship. The other main problem is that MSI
is a discrete integer, while the ground motion parameters are continuous real variables and are not
consistent with one another. There should be some steps to handle this inconsistency. One possible
choice is to round the function of the continuous real variables, so that the regression value is correct if
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it is within MSI ± 0.5. For example, if the output of regression function is 7.3, then round(7.3) = 7 (VII).
In this case, the loss between regression output and this MSI value should be zero, but linear regression
counts 0.3 as a loss. The nonlinear regression method is a choice to handle the above two problems.

2. Motivation and the Study Objective

Support vector regression (SVR) is a powerful nonlinear regression approach. It belongs to the
support vector machine (SVM) and is also called support vector machine regression. SVR has been
proven to be effective and powerful in real value function estimation [26–28], and it has also been
widely used for model regression in engineering applications [29–34]. In earthquake engineering,
Alvarez et al. [25] predicted MMI from PGA, PGV, moment magnitude, and epicentral distance.
Hsu et al. [32] estimated on-site PGA from P wave features, such as cumulative absolute velocity, peak
amplitudes of acceleration, velocity and displacement, integral of squared velocity, and predominant
period. As is well-known, linear regression and neural networks employ empirical risk minimization
to force the regression model to converge to sample target values as much as possible, without
consideration of the structural characteristics of the regression model, so they both have generalization
problems if the sample size is small. On the other hand, SVR considers structural risk minimization
besides empirical risk minimization, so that the regression model matches the available training
dataset reasonably well, and also generalizes well to the new testing dataset [35]. In this regard,
SVR is also suitable for small sample size regression. For example, the qualitative structure activity
relationships dataset, which contains only 74 samples with 27 features, and Boston housing data,
which contains 506 samples with 13 features, are widely used for regression, and SVR perform well on
these dataset [28]. Similarly, the number of samples with both measured ground motion parameters
and investigated MSIs is limited for a specific region, so the SVR is used here for model regression.
Meanwhile, SVR introduces nonlinear kernel to model the nonlinear function of multiple variables,
and uses insensitive loss function to accept small deviations from objective function. Thus, SVR is quite
suitable for establishing the relationship between multiple continuous ground motion parameters and
discrete MSI.

3. Study Area and Datasets

The Sichuan–Yunnan region is located in the area where the Eurasian plate and the Indian
plate collide with each other and squeeze strongly. It covers the Sichuan–Yunnan diamond block,
the southern Yunnan block, the western Yunnan block, and the eastern part of the Bayanhar block.
This region consists of main faults like the Longmen Mountain fault, Anning River fault, Zemu River
fault, Xiaojiang River fault, Honghe River fault, and Xiaojinhe River fault, and is the most significant
area for strong earthquakes in western China [36]. The area is about 865,000 square kilometers,
and is twice as large as California and almost three times larger than Italy. The seismicity in the
Sichuan–Yunnan region is at a high level. Up to now, more than 30 earthquakes larger than magnitude
7.0 have occurred, and these earthquakes have caused significant casualties and property losses.
For example, the great Wenchuan earthquake killed more than 69,000 people and caused 852.3 billion
Yuan direct economic losses [37]. After a destructive earthquake occurs, a reconnaissance team will
be sent to conduct field investigation and produce an MSI map that reflects the scope and degree
of the ground impact caused by the earthquake. These MSI maps are very valuable for earthquake
emergency response and post-disaster rehabilitation. To measure the ground motions caused by
earthquakes, there are now 400 permanent, strong ground motion observation stations mounted in this
region: 224 stations in Sichuan Province and 176 in Yunnan Province. These stations have recorded
high-quality, strong ground motions in the past few years [38].

The MSI for a station in an earthquake is determined by adding the location of the station to the
MSI map and determining which isoseismic line encircles it. Nine moderate-to-large earthquakes that
have both investigated MSI maps and ground motion records are analyzed in this study. The locations
of these earthquakes, as well as the spatial distribution of the strong motion stations, are displayed
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in Figure 1. There are 106 different strong motions stations, and some stations record more than
one earthquake event. The detailed information of the nine earthquakes and the numbers of strong
motion records are shown in Table 1. The surface magnitude (Ms), which is used in China to measure
earthquake magnitude, of these earthquakes varies from 5.8 to 8.0, and the depths are from 5 km
to 33 km. The epicentral distances of stations are from 6 km to 312 km, and the MSIs are from VI
to IX. In total, 125 pairs of ground motion records and MSIs are used to analyze the relationship.
The complete information of the 125 sets of data on MSIs, station names, site conditions, and epicentral
distances is shown in Supplementary Materials Table S1.
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4. Ground Motion Parameters

Ground motion generated by an earthquake is complicated, and multiple parameters rather
than a single parameter are used to quantitatively reflect the characteristics of ground motion.
The amplitude, frequency content, and duration are the most significant characteristics in the
engineering community [39]. Some ground motion parameters, such as PGA and PGV, provide
information on amplitude, while other parameters, such as acceleration spectrum intensity and Arias
intensity, reflect the above two or three characteristics. A total of 16 ground motion parameters are used
to characterize the recorded ground motion in the relationship study. The single amplitude parameters
include PGA and PGV. Peak ground displacement (PGD) is not included, due to its sensitiveness
to long period noise, and different choices of baseline correction and filtering of acceleration may
give quite different displacements. The individual frequency content parameters include central
frequency, which measures the frequency where the power spectral density is most concentrated, and
the ratio vmax/amax, which gives the period where the ground motion is most significant. The individual
duration parameters include bracketed duration and significant duration. Bracketed duration is the
total time elapsed between the first and the last excursions of a given level. Absolute level 5 gal
and relative level 5% PGA are both considered. Significant duration is defined as the interval time
when a proportion of the total Arias intensity is accumulated, and the interval between 5% and 95%
thresholds is chosen here. The ground motion parameters reflecting more than one characteristic
include derivations of accelerations, such as the root mean square of acceleration, cumulative absolute
velocity, Arias intensity, characteristic intensity, JMA equivalent peak acceleration, and destructive
index. Spectrum-based intensities, such as the acceleration spectrum intensity, velocity spectrum
intensity, and Housner intensity, are considered. For the completeness and readability of the paper,
the definitions, explanations, and calculation formulas of the above ground motions are given as
follows [39–41].

The root mean square of acceleration (aRMS) stands for the effective average acceleration in the
significant duration, given by

aRMS =

√
1
Ts

∫ t2

t1

[a(t)]2dt (1)

where Ts is significant duration and t1 and t2 are the start and end time instants, respectively.
The cumulative absolute velocity (CAV) is proposed by U.S. Electrical Power Research Institute

for indicating the onset of structural damage caused by an earthquake, and is given by

CAV =

∫ t2

t1

∣∣∣a(t)∣∣∣dt (2)

The Arias intensity (AI) is proposed for indicating the damage potential to nuclear power plants,
and is given by

AI =
π
2g

∫ t2

t1

[a(t)]2dt (3)

The characteristic intensity (Ic) is proposed to indicate structural damage caused by maximal
deformation and dissipative hysteretic energy, and is given by

Ic = a1.5
RMST0.5

s (4)

The JMA equivalent peak acceleration is used to calculate JMA seismic intensity. It is the value
of vector composition of three component band-pass accelerations, each of which is filtered by a
compound filter composed of a amplitude filter, a high-cut filter, and a low-cut filter, such that the total
duration when the vector composite acceleration is larger than this value is longer than 0.3 s, as shown
in Equation (5). The schematic diagram of JMA equivalent peak acceleration, compound filter, and
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total duration with respect to peak values are shown in [11]. Since the JMA seismic intensity scale of
0–VII is quite different than the MSI I-XII in China, the JMA equivalent peak acceleration (A0.3) rather
than JMA seismic intensity is used to characterize ground motion:

A0.3 = a0
∣∣∣τ(a0) ≥ 0.3 (5)

where a0 is the vector composite acceleration, and τ(a0) is the duration of composite acceleration larger
than a0.

The destructive index (DI) has been proposed by Nakamura [42] to estimate the damage potential
of ground motion by calculating the logarithm of the product of vertical acceleration and velocity, and
is given by

DI = max
(
lg

(∣∣∣a(t)v(t)∣∣∣)) (6)

The acceleration spectrum intensity (ASI) is proposed to analyze ground motion effect on short
period structures like concrete dams, and is given by

ASI =
∫ 0.5

0.1
Sa(ξ = 0.05, T)dT (7)

where Sa(ξ = 0.05, T) is the acceleration response spectrum with damping ratio ξ = 0.05.
The velocity spectrum intensity (VSI) is proposed to indicate ground motion damage potential on

most structures whose fundamental periods are between 0.1 and 2.5 s:

VSI =
∫ 2.5

0.1
PSV(ξ = 0.05, T)dT (8)

where PSV(ξ = 0.05, T) is the pseudo-velocity response spectrum with damping ratio ξ = 0.05.
The Housner intensity (HI) is quite similar to velocity spectrum intensity, except that the damping

ratio is selected as 0.2, since the damping ratio will become larger when the structure is damaged by an
earthquake:

HI =
1

2.4

∫ 2.5

0.1
PSV(ξ = 0.2, T)dT (9)

Three component accelerations are used to calculate JMA equivalent peak acceleration, while only
up–down (UD) component acceleration is used for the destructive index. For the remaining ground
motion parameters, the geometric means of the two horizontal component accelerations are used.
The natural frequency of middle- and high-rise buildings is mainly within 0.1–2.0 Hz, and in low-rise
buildings is within 5.0–10.0 Hz. The corrected acceleration is filtered by a second-order Butterworth
bandpass filter with a passing band of 0.1–10.0 Hz. A complete list of the 16 calculated ground motion
parameters from the set of 125 ground motion records is shown in Supplementary Materials Table S1.
The scatter plots of MSI versus ground motion parameter are shown in Figure 2, and the corresponding
absolute values of Pearson correlation coefficients are shown in Figure 3. It can be seen that ASI, A0.3,
Ic, PGA, DI, HI, PGV, VSI, AI, aRMS, and CAV have higher linear correlations with MSI, and duration
parameters Tdb,5, Tds, Tdb,5% and frequency parameters central frequency (CF) and vmax/amax almost
have no linear correlation.
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Figure 2. Scatter of macroseismic intensity (MSI) versus ground motion parameters.
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5. Support Vector Regression

For a given dataset D =
{
(x1, y1), (x2, y2), . . . , (xm, ym)

}
, where xi = (xi1, xi2, . . . , xid)

T
∈ Rd is the

ith sample with feature dimensionality of d, and xi j is the value for the jth feature, yi ∈ R is the
corresponding target value of the sample and m is the number of samples. As shown in Figure 4, the
linear kernel SVR is to find a function f (x) = ωTx + b, where ω = (ω1,ω2, . . . ,ωd)

T
∈ Rd is a normal

vector of the hyperplane and b ∈ R is the offset between the hyperplane and the coordinate origin,
such that the function is as flat as possible and has at most ε deviation from each sample target value
yi. The optimization objective is given by [26]:

min
ω,b

1
2
ωTω+ C

m∑
i=1

|ξ|ε( f (xi) − yi) (10)
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where C is a regularization constant and |ξ|ε is an ε-insensitive loss function, given by

|ξ|ε =

{
0, if |ξ| ≤ ε
|ξ| − ε, otherwise

(11)
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The first term of Equation (10) is to describe the flatness of the function, and it is also called
“structural risk”. The second term of the equation, without C, is to describe the fitness between
the function and actual sample target values, and is also called “empirical risk”. The constant C is
a compromise between the two terms. In traditional linear regression, function loss is counted as
long as the function value is not equal to the sample target value. This rule is too strict, and will
result in overfitting. Since the determination of the sample target value could be disturbed by some
subjective or objective factors, the sample target value contains a certain level of noise. To overcome
this disadvantage, SVR counts function loss only when the difference between the function value and
sample target value is larger than a given threshold ε. The condition C = 0 means only considering
flatness, and SVR goes back to linear regression, while C approaching infinity means that every
sample target value is within the ε deviation of the corresponding function value. To describe the real
deviation, two slack variables are introduced, and the primal objective function can be deduced from
Equation (10) as

min
ω,b,ξ,ξ∗

1
2
ωTω+ C

m∑
i=1

ξi + C
m∑

i=1

ξ∗i (12)

subject to


ωTxi + b− yi ≤ ε+ ξi
yi −ωTxi − b ≤ ε+ ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , m

To efficiently solve the above optimization problem with inequality constraints, the dual problem
is obtained by using the Lagrange function method, given by

max
α,α∗
−

1
2
(α−α∗)TxT

i x j(α−α
∗) − ε

m∑
i=1

(
αi + α∗i

)
+

m∑
i=1

yi
(
αi − α

∗

i

)
(13)

subject to


m∑

i=1

(
αi − α

∗

i

)
= 0

0 ≤ αi,α∗i ≤ C

Solve the above quadratic programming problem to get α, α∗, and the solution of the SVR
is given by

f (x) =
m∑

i=1

(
−αi + α∗i

)
xT

i x j + b (14)
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where b is the mean of all possible b values for the support vectors when −αi + α∗i , 0, using
Karush–Kuhn–Tucker (KKT) conditions [26–28].

b =
1
|S|

∑
s∈S

ys + ε−
m∑

i=1

(
−αi + α∗i

)
xT

i xs

 (15)

Here, S is the subscript set such that α j is greater than 0, given by S =
{
j
∣∣∣α j

〉
0, j = 1, 2, . . . , m

}
.

For real-world problems, it is impossible to find such a hyperplane that satisfies both good flatness
and fitness simultaneously. One possible approach is to find a hypersurface f (x) = ωTφ(x) + b, which
preprocesses sample x into a feature space by a mapping φ(x). With the help of the kernel function
method, the solution of nonlinear SVR is given by

f (x) =
m∑

i=1

(
−αi + α∗i

)
K(x, xi) + b (16)

where K(x, xi) is the kernel function, and b is similar to Equation (15), although xT
i xs is substituted

by K(xi, xs). Linear kernel K(x, xi) = xTxi and Gaussian kernel (x, xi) = exp
(
−γ||x− xi||

2
)
, where γ

is a parameter representing the width of Gaussian kernel, are widely used as kernel functions for
most SVRs. To choose the best SVR model, parameter C for linear kernel and parameters (C,γ) for a
Gaussian kernel need to be selected. A simple grid search, with grids from 2−9 to 29 for C and 2−8

to 22 for γ, both in interval 21, is used to select model parameters. To reduce overfitting, there are
several strategies for model selection, such as hold-out, bootstrap, and n-fold cross-validation [27].
For a dataset with small size samples, the simple and powerful strategy is n-fold cross validation,
which divides the dataset into n mutually exclusive and complementary subsets, and each time uses
n – 1 subsets as training sets and the remaining subset as the testing set. The best parameters are
selected by choosing the model that gives the minimum average mean squared error (MSE) for the all
n subsets. Besides the MSE and correlation coefficient, accuracy percentage is proposed to evaluate
the performance of regression model. Accuracy percentage (Pa) is defined as the number of correctly
predicted data, when the rounded value of predicted MSI equals to actual MSI, divided by the number
of testing data:

Pa =

∣∣∣{i∣∣∣round( f (xi)) = yi, i = 1, 2, . . . , l
}∣∣∣

l
× 100% (17)

where round is a function that rounds the element to the nearest integer, and l is the total number of
testing data. Since the accuracy percentage is based on the condition that the prediction value is within
MSI ± 0.5, the deviation ε is set to 0.5 for the SVR.

The procedure of SVR for establishing the relationship between MSI and ground motion parameters
are summarized as follows: (1) choosing some ground motion parameters as features; (2) making
logarithmic transformation on ground motion parameters, except for the destructive index; (3) scaling
the chosen features linearly to the range of [−1, +1]; (4) selecting optimal regularization constant C and
kernel parameter γ for the regression model, using 10-fold cross-validation on the training dataset;
and (4) assessing the performance of regression on the testing dataset. Support vector machine toolbox
LIBSVM, developed by Chang and Lin [28], was used to perform the training and testing.

6. Results and Discussion

The observations in earlier earthquakes, such as the Ninger, Wenchuan, Panzhihua, and Lushan
earthquakes, are used as a training set, and the trained model is tested on the observations in later
earthquakes, such as the Ludian, Jinggu, Kangding01, Kanagding02, and Jiuzhaigou earthquakes.
The training set contains 98 observations (78.4%), and the testing set has 27 observations (21.6%).
The numbers of MSI VI, VII, VIII, and IX for the training and testing sets are shown in Figure 5.
After optimal model parameters were obtained in cross-validation, the final regression model was
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trained for the whole observations of occurred earthquakes, and will be used to predict the MSIs of
future earthquakes.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 17 
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Figure 5. Histogram of the macroseismic intensity dataset.

6.1. Feature Selection

As mentioned in Section 4, some ground motion parameters have no linear correlation with MSI,
it is important to focus on the most relevant features and eliminate the irrelevant ones. The inclusion
of irrelevant features in the SVR gives bad prediction results, due to the overfitting problem in the
irrelevant information. Each ground motion parameter should be checked for relevancy, and each time
one ground motion parameter should be selected as the sole feature. The performance of Gaussian
kernel SVR is shown in Figure 6, where the optimal model parameters are C = 256 and γ = 1/16,
using 10-fold cross-validation on the 98-observation training dataset. It can be seen that parameters
ASI, A0.3, Ic, PGA, DI, HI, PGV, VSI, and AI all have MSEs smaller than 0.5 and accuracy percentages
more than 50%. PGA gives the highest accuracy percentage, followed by A0.3 and HI, and aRMS,
CAV, Tdb,5, Tds, Tdb,5%, CF, and vmax/amax have MSEs greater than 0.5 and accuracy percentages less
than 50%.
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Figure 6. Performance of SVR with a sole feature for the 16 ground motion parameters.

In this regard, the first nine ground motion parameters are considered as relevant features, and
the latter seven are irrelevant features. Here, only the first nine ground motion parameters are used
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for further regression study. There are
9∑

i=1
Ci

9 = 511 possible combinations of those nine features, and

the best performances for SVRs having up to nine features are shown in Figure 7. It can be seen that
seven features, including PGA, A0.3, ASI, HI, PGV, VSI, and Ic, give the highest accuracy percentages,
followed by six features, then by one feature (PGA). It is noted that one feature, PGA, gives almost the
same level accuracy as a combination of seven features, meaning PGA is the most fundamental feature
for all cases. One reason for this is that the other six ground motion parameters have relative high
cross-correlation coefficients with PGA, and are partially linearly dependent on one another. When the
number of features becomes larger than seven, the accuracy percentage drops below 50%, and this
means more features do not necessarily give better prediction. With the development of strong ground
motion observation network, many more stations will be constructed. In the future, a large number of
stations will be triggered in an earthquake event. Calculating PGA, A0.3, ASI, HI, PGV, VSI, and Ic from
ground motion requires much more time than just calculating PGA, and the time for calculating them
for many stations will be even more. Since every millisecond is important in rapid seismic intensity
reporting, the SVR of PGA will be more effective than the SVR of this seven ground motion parameters.
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Figure 7. Performance of best SVRs with 1–9 features.

6.2. Gaussioan Kernel Versus Linear Kernel and Linear Regression Method

To demonstrate the advantage of Gaussian kernel SVR, the prediction performances of SVR with
linear kernel and linear regression are also calculated. For brevity, only the results of best models with
one, two, and seven features are shown here. The linear regression using least square on the training
dataset for the three cases are as follows:

MSI = 1.330 log(PGA) + 3.863 (18)

MSI = 0.416 log(PGA) + 1.024 log(A0.3) + 3.980 (19)

MSI = 0.196 log(PGA) + 0.945 log(A0.3) + 1.007 log(ASI) − 2.638 log(HI)

+1.471 log(PGV) + 0.898 log(VSI) − 0.260 log(Ic) + 3.019
(20)

The predicted MSIs versus actual ones on the testing dataset are shown in Figure 8a–c for one, two,
and seven features, respectively. To show the scatter for the third method more clearly, the result of the
linear regression is off to the left side of a Gaussian kernel, with a linear kernel SVR to the right side.
It can be seen from Figure 8a that most of predicted values are within a ±0.5 range of the actual values
for the Gaussian kernel. The predicted points of MSI VI are well concentrated in a smaller range, and
even MSI IX is well predicted. On the other hand, more points are out of the ±0.5 range for the linear
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SVR and linear regression. This means that Gaussian kernel SVR has better prediction performance
than the other two methods. Figure 8b for two features and Figure 8c for seven features show similar
results. Since Gaussian kernel SVR gives the lowest MSE and highest accuracy percentage, it is the
best of the three regression models. Comparing Figure 8a with Figure 8c, it can also be seen that the
performance of predicted MSIs using PGA is almost the same as the one using seven features.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17 
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Figure 8. Performance comparison of regression models with Gaussian kernel and linear kernel SVRs
and linear regression. (a) One feature; (b) two features; (c) seven features.

Present empirical relationships for the MMI or MSI are mainly based on PGA and PGV [1–5,7–10],
and the Gaussian SVR versus linear regression of PGA and PGV are also studied. As the dataset is not
the same as those used in previous studies [1–5,7], the linear regression equation should be obtained
on this training set again. The model of the PGA is given by Equation (18), and the model of the PGV
is given by

MSI = 1.442 log(PGV) + 5.299 (21)

The performance results are shown in Table 2. The linear regression model of PGV is better than
that of PGA, and the accuracy percentage increases from 44.3% to 66.7%. The MSE decreases from 0.374
in the linear regression of PGV to 0.214 in the Gaussian kernel SVR of PGA, and the predicted accuracy
increases from 66.7% to 74.1%. It is noted that the Gaussian kernel SVR of PGV is not better than that
of PGA, which can also be seen from Figure 6. The well-accepted conception that PGV is better than
PGA for estimating MSI assumes linear regression. The Gaussian SVR of PGA and PGV has almost
the same MSE and correlation coefficient as that of PGA, but the accuracy percentage decrease from
74.1% to 68.6%. From the comparison, it was found that the Gaussian kernel SVR of PGA gave the best
regression model for predicting MSI, and was much better than the linear regression of PGV or PGA.
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Table 2. Performance measures for Gaussian kernel SVR and the linear regression of peak ground
acceleration (PGA) and peak ground velocity (PGV).

Performance Linear Regression
of PGA

Linear Regression
of PGV SVR of PGA SVR of PGV SVR of PGA

and PGV

MSE 0.452 0.374 0.214 0.284 0.227
Correlation coefficient 0.599 0.715 0.819 0.759 0.814
Accuracy percentage 44.3% 66.7% 74.1% 67.1% 68.6%

6.3. Gaussian Kernel SVR of PGA Versus Models from Previous Studies

The final Gaussian kernel SVR of PGA is obtained by training the whole available dataset, and
it can be used for predicting MSIs in future earthquakes. The final SVR model was compared with
regression models from previous studies to check regression performance. Models from three previous
studies [3,5,7] are compared here. These three models have regression equations based on both PGA
and PGV. The results are shown in Figure 9a,b, and the performance measures are shown in Table 3. It is
clear from Figure 9 that the performance of the SVR model is much better than that of the other three
models, especially at MSI VI and VII. The predicted points of MSI VI and VII are well concentrated in a
much smaller range in the SVR model, while the points in the other three models have much larger
scatter. It is interesting that all models have relatively good behavior at MSI IX. From Table 3, though
the correlation coefficients of the four models are at the same level, the accuracy percentage of the SVR
model is much higher than the other three. The reason for this is because these three models have too
much prediction dispersion at MSI VI and VII. It should be noted that one study [3] was based on
California data, and another [5] on global data. Regional variation and differences in datasets result in
bad performance for the Sichuan–Yunnan earthquakes. As the regression equation was obtained for
the same dataset as that in SVR model, the MSEs of the linear regression in Table 2 are much smaller
than those in Table 3. Thus, for a specific region, one should be very careful using the regression model
of another region. The accuracy percentage of this study is also better than the third other model [7],
and there are two reasons. One is that this study contained datasets from other areas of western China
besides the Sichuan–Yunnan region, and did not contain Jiuzhaigou earthquake records. The other is
that the filtering process was different from this paper, which leads to the condition that the PGA and
PGV are not exactly the same for the two datasets. It is suggested that to have comparable results of
different regression methods, not only should the earthquake records be the same, but also the ground
motion parameters after the filtering process, as much as possible.
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Figure 9. Performance comparison of the Gaussian kernel SVR with previous models. (a) Reference
model based on PGA; (b) reference model based on PGV.
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Table 3. Performance measures for nonlinear SVR and linear regressions based on PGA and PGV.

Performance
Reference [3] Model Reference [5] Model Reference [7] Model SVR
PGA PGV PGA PGV PGA PGV PGA

MSE 1.479 2.024 0.986 0.590 1.162 1.096 0.300
Correlation coefficient 0.704 0.705 0.708 0.691 0.656 0.676 0.768
Accuracy percentage 32.0% 13.6% 42.4% 47.2% 47.2% 35.2% 71.2%

6.4. Disscussion of Earthquake Magnitude and Epicentral Distance

Since the MSI at a location is related to the earthquake magnitude and epicentral distance, the
SVR model with and without these two parameters are also discussed. As shown in Figure 10, the
performance of the SVR of PGA is almost the same as those SVRs considering earthquake magnitude
and epicentral distance. This means that it is enough to use ground motion parameters for predicting
MSI, and it is not necessary to include magnitude and distance terms in the SVR model.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17 

Since the MSI at a location is related to the earthquake magnitude and epicentral distance, the 
SVR model with and without these two parameters are also discussed. As shown in Figure 10, the 
performance of the SVR of PGA is almost the same as those SVRs considering earthquake magnitude 
and epicentral distance. This means that it is enough to use ground motion parameters for predicting 
MSI, and it is not necessary to include magnitude and distance terms in the SVR model. 

 
Figure 10. Performance comparison of the SVR model with and without earthquake magnitude and 
epicentral distance. 

7. Conclusions 

In this study, SVR was used to model the relationship between discrete MSI and continuous 
ground motion parameters. MSI is treated as sample target, and the 16 ground motion parameters 
are considered as feature candidates. In the Sichuan–Yunnan region, 125 sets of ground motion 
records with corresponding investigated MSIs were used as a complete dataset for analysis. Based 
on the limited dataset, the main conclusions are as follows: 

(1) During the single-feature scanning test, PGA, JMA equivalent acceleration, acceleration 
spectrum intensity, Housner intensity, PGV, velocity spectrum intensity, Arias intensity, 
characteristic intensity, and damage index are the most relevant features. Unlike the linear regression 
method, PGA is better than PGV for predicting MSI in an SVR model. 

(2) The best model parameters for Gaussian kernel SVRs with one all the way up to nine features 
are provided. The SVR of PGA gives almost the same performance as that of SVR with nine features. 
According to the performance measures of MSE, the correlation coefficient, and accuracy percentage, 
the Gaussian kernel SVRs perform much better than the liner kernels and linear regressions. 

(3) Gaussian kernel SVRs perform much better than previous models [3,5,7], especially with 
regard to the accuracy percentage. The comparison results also suggest that regression should better 
be done with a regional dataset. 

(4) Gaussian kernel SVRs with or without earthquake magnitude and epicentral distance give 
similar prediction performance. 

Since MSI and ground motion parameters have strong regional dependence, and the number of 
datasets for establishing the relationship in the studied area is limited, the conclusions may not be 
true anymore when another dataset is used for regression. However, a Gaussian kernel SVR of PGA 
is a good initial start for the regression. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. Supplement Table S1. 

Author Contributions: Conceptualization, S.L. (Shanyou Li) and Q.M.; methodology, D.T. and D.L.; software, 
D.T. and S.L. (Shuilong Li); writing—original draft preparation, D.T. and Z.X.; writing—review and editing, 
D.T.; project administration, D.T.; funding acquisition, Q.M. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research was funded by the Scientific Research Fund of Institute of Engineering Mechanics, China 
Earthquake Administration (Grant Nos. 2014B08, 2016A03), National Key Research and Development Program 

V VI VII VIII IX X

V

VI

VII

VIII

IX

X

MSI

Pr
ed

ic
te

d 
M

SI

 

 
Actual
Actual-0.5
Actual+0.5
M,R,PGA
M,PGA
PGA

Figure 10. Performance comparison of the SVR model with and without earthquake magnitude and
epicentral distance.

7. Conclusions

In this study, SVR was used to model the relationship between discrete MSI and continuous
ground motion parameters. MSI is treated as sample target, and the 16 ground motion parameters are
considered as feature candidates. In the Sichuan–Yunnan region, 125 sets of ground motion records
with corresponding investigated MSIs were used as a complete dataset for analysis. Based on the
limited dataset, the main conclusions are as follows:

(1) During the single-feature scanning test, PGA, JMA equivalent acceleration, acceleration
spectrum intensity, Housner intensity, PGV, velocity spectrum intensity, Arias intensity, characteristic
intensity, and damage index are the most relevant features. Unlike the linear regression method, PGA
is better than PGV for predicting MSI in an SVR model.

(2) The best model parameters for Gaussian kernel SVRs with one all the way up to nine features
are provided. The SVR of PGA gives almost the same performance as that of SVR with nine features.
According to the performance measures of MSE, the correlation coefficient, and accuracy percentage,
the Gaussian kernel SVRs perform much better than the liner kernels and linear regressions.

(3) Gaussian kernel SVRs perform much better than previous models [3,5,7], especially with
regard to the accuracy percentage. The comparison results also suggest that regression should better
be done with a regional dataset.

(4) Gaussian kernel SVRs with or without earthquake magnitude and epicentral distance give
similar prediction performance.

Since MSI and ground motion parameters have strong regional dependence, and the number of
datasets for establishing the relationship in the studied area is limited, the conclusions may not be true



Appl. Sci. 2020, 10, 3086 15 of 17

anymore when another dataset is used for regression. However, a Gaussian kernel SVR of PGA is a
good initial start for the regression.
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