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Featured Application: This article applies the neural network of one-stage target detection
to detect and count the urban traffic flows in different scenarios and weather conditions.
This research can be used to provide information-based support for the development and
optimization of the transportation systems of a modern smart city. When the data of detections and
statistical analyses of traffic flows has been further applied, traffic management departments can
make better decisions on road infrastructure optimization or traffic limits to avoid a large number
of traffic congestion and traffic accidents, and that can improve the life quality and convenience
of urban people.

Abstract: In the intelligent traffic system, real-time and accurate detections of vehicles in images
and video data are very important and challenging work. Especially in situations with complex
scenes, different models, and high density, it is difficult to accurately locate and classify these vehicles
during traffic flows. Therefore, we propose a single-stage deep neural network YOLOv3-DL, which is
based on the Tensorflow framework to improve this problem. The network structure is optimized by
introducing the idea of spatial pyramid pooling, then the loss function is redefined, and a weight
regularization method is introduced, for that, the real-time detections and statistics of traffic flows
can be implemented effectively. The optimization algorithm we use is the DL-CAR data set for
end-to-end network training and experiments with data sets under different scenarios and weathers.
The analyses of experimental data show that the optimized algorithm can improve the vehicles’
detection accuracy on the test set by 3.86%. Experiments on test sets in different environments have
improved the detection accuracy rate by 4.53%, indicating that the algorithm has high robustness.
At the same time, the detection accuracy and speed of the investigated algorithm are higher than
other algorithms, indicating that the algorithm has higher detection performance.

Keywords: intelligent transportation; vehicle detection; traffic flow; loss function; YOLOv3 mode

1. Introduction

With the dramatic improvement of people’s standards of living, the rapid expansion of cities,
and the growing number of private cars, traffic congestion has become an important issue that
restricts urban development and affects the quality of life. In the intelligent transportation system,
accurate traffic predictions can provide the basis for making a decision on urban traffic management
and for finding the optimization of transportation facilities. For that, the accurate prediction of traffic
transportation is an important part of developing the smart transportation system of the modern
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intelligent city. The rapid detections of vehicles in traffic images or videos are the main tasks of urban
traffic prediction, for that, investigating an algorithm with capabilities of real-time computation and
correct detections of vehicles are very important [1].

The traditional target detection methods are as follows: Xu et al. proposed a featured operator,
which can extract features from the region of interest selected on the images and implement target
detection by training a classifier [2]. This method will greatly reduce the detection accuracy because
the scene is a little complicated. Qiu et al. proposed an optical target detection, which is based on the
methods of optical flow and the inter-frame differences [3]. The accuracy of the optical flow method is
ideal but it has the problem of lower detection speed. The inter-frame difference method is fast but
the accuracy is not ideal. Felzenszwalb et al. had proposed a sliding window classification method,
which first extracts the features of the region of interest through sliding windows and then performs
classification by a support vector machine (SVM) classifier to achieve target detection [4]. This method
has a large amount of calculation, which leads to a slower detection speed [5]. Suriya Prakash et al.
proposed an edge-based object detection method, which is susceptible to interference from background
and noise and leads to an increase in inaccurate detections [6]. The above traditional target detection
methods are not targeted at the sliding window area of selection strategies, they need a large number
of calculations, result in a slow detection speed, and the area feature extraction has no generalization.

In recent years, with the rapid developments of computer vision and artificial intelligence
technologies, object detection algorithms based on deep learning have been widely investigated.
Among them, convolutional neural networks have a strong generalization of the feature extraction of
images and are convenient [7]. At present, there are two main methods of target detection in deep
learning: one is a target detection algorithm combining convolutional neural networks and candidate
region suggestions, represented by region-based convolutional neural networks (R-CNN) [8] and
spatial pyramid pooling (SPP)-net [9]. The other is to use the series of the Single Shot MultiBox
Detector (SSD) [10] and the You Only Look Once (YOLO) model [11–13] as the representative detection
algorithms to convert the target detection problem into the regression problem by machine learning.
The R-CNN algorithm uses a selective search to select the region suggestion box, which improves the
accuracy of target detections. However, a large number of repeated calculations lead to a long time and
the candidate box is scaled, which easily results in the loss of image feature information. The SPP-net
algorithm proposes a pyramid pooling layer, which solves the problem of the size of the fixed input
layer of the network in R-CNN, but its training steps are cumbersome and each step will generate
a certain ratio of errors because the convolutional neural network and SVM classification need to be
trained separately. As a result, the training takes a long time and a large number of feature files need
to be saved after training, which occupies a large amount of hard disk space.

By combining the algorithm characteristics of the SPP-net into the R-CNN, the Faster R-CNN
algorithm solves problems such as long training and test time and large space occupation, etc.
However, the extraction of the proposed box is still based on the selective search method, that is,
the time-consuming problem still exists. [14]. By introducing the RPN (region proposal networks)
algorithm instead of the selective search (SS) one, the candidate region frame extraction and back end
of the Faster R-CNN are integrated into a convolutional neural network model. For that, the Faster
R-CNN algorithm can greatly shorten the extraction time of the candidate region [15]. The Faster
R-CNN algorithm is considered to be the first truly end-to-end training and prediction, but its speed is
far from the requirement of real-time target detection.

Based on the candidate box area idea of Faster R-CNN, the concept of Prior Box is proposed in
the SSD algorithm. Due to the combination of YOLO’s regression thought, the detection speed of the
SSD algorithm is the same as YOLO, and the detection accuracy is the same as Faster R-CNN. For that
reason, the parameters of the priori frame cannot be obtained through network training automatically
and the adjustment process of parameters depends on actual experience, the generalization of the SSD
algorithm is not very good. The YOLO series is a regression-based network algorithm that directly
uses the full map for training and returns the target frame and target category at different positions.
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The YOLO algorithm is the first one to choose a method based on the candidate frame area algorithm
to train the network. It directly uses the full image for training and returns the target frame and target
category at different positions, thereby making it easier to quickly distinguish target objects from the
background area but is prone to serious positioning errors.

The YOLOv2 algorithm uses a series of methods to optimize the structure of the YOLO network
model, which significantly improves its detection speed. For that, its detection accuracy is equal
to that of the SSD algorithm. Because the YOLOv2 basic network is relatively simple, it does not
improve target detection accuracy. The YOLOv3 algorithm uses the Feature Pyramid Networks (FPN)
idea to achieve multi-scale prediction [16] and uses deep residual network (ResNet) ideas to extract
image features to achieve a certain balance between detection speed and detection accuracy [17].
However, the size of the smallest feature map (13 × 13) is much larger than the SSD algorithm
(1 × 1), the positioning accuracy of the object by YOLOv3 is low, and the false detection and miss
detection is easy to occur. Our team previously published a YOLO-UA algorithm based on YOLO
optimization for traffic flow detection, which mainly realized real-time detections and statistics of
vehicle flows by adjusting the network structure and optimizing the loss function [18]. According to
the team’s achievements and foundation, in this article we investigate the YOLOv3-DL algorithm,
a high-performance regression-based algorithm for detecting and collecting statistical information
from the traffic flows in real-time. YOLOv3-DL is based on the YOLOv3 algorithm, both Intersection
Over Union (IOU) and Distance-IOU (DIOU) are used to enhance its performance. The method of
directly optimizing the loss function, which measures the parameters to improve the progress of target
positioning, can solve the problems of insufficient positioning accuracy of the YOLOv3 model and
low vehicles’ statistical accuracy. After optimization, it can be better applied to detect video vehicles
in real-time and in real scenes. By optimizing models and algorithms, we can better improve the
performance of the detection system of traffic flows.

2. The Composition and Principle of Traffic Flow Detection System

The traffic flow detection system consists of a video image acquisition module, an image
pre-processing module, a vehicle detection and identification module, and a vehicle flows statistics
module. The main modules of the detection system are shown in Figure 1. The core of the system is
the vehicle detection and recognition module, which locates and recognizes the vehicles in the video
images. In order to combine target position and recognition into one, which needs to take requirements
of the speed detection and recognition accuracy into consideration, the YOLOv3 algorithm is used for
the vehicles’ detection and recognition.
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Figure 1. Detection System Process.

The YOLOv3 algorithm is an improvement on YOLOv1 and YOLOv2 because it has the advantages
of high detection accuracy, accurate positioning, and fast speed. Especially when the multi-scale
prediction methods are introduced, it can achieve the detection of small targets and has good robustness
to environmental scenes, therefore, it has become a current research hotspot. The network structure
of the YOLOv3 algorithm is shown in Figure 2. The residual network is mainly used to upgrade the
feature extraction network, and the basic backbone network is updated from Darknet-19 to Darknet-53
to extract features and obtain deeper feature information.
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Figure 2. YOLOv3 network structure diagram. 
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The Darknet-53 network in YOLOv3 uses a large number of 1 × 1 and 3 × 3 convolutional layers
in order to connect local feature interactions and its function is equivalent to the global connection of
the full feature layer and the addition of shortcut connections. This operation enables us to obtain
more meaningful semantic information from up-sampled features and finer-grained information
from earlier feature mappings. This feature extraction network has 53 convolutional layers, which is
called Darknet-53, and its structure is shown at the top in Figure 2. In Darknet-53, 1 × 1 and 3 × 3
alternating convolution kernels are used, and after each layer of convolution, the BN layer is used
for normalization. The Leaky Relu function is used as the activation function, the pooling layer is
discarded, and the step size of the convolution kernel is enlarged to reduce the size of the feature map.
As the network structure is deeper, its ability to extract features is also enhanced. The function of the
sampling layer (upsample) is to generate the small-size images by interpolation of small-size feature
maps and other methods. When short connections are set up between some layers to connect low-level
features with high-level ones, the fine-grained information of high-level abstract features is enhanced,
and they can be used for class prediction and bounding box regression.

The YOLOv3 network prediction process is listed below:

1) First, the images of size 416 × 416 are input into the Darknet-53 network. After performing many
convolutions, a feature map of size 13 × 13 is obtained, and then 7 times by 1 × 1 and 3 × 3
convolution kernels are processed to realize the first class and regression bounding box prediction.

2) The feature map with size 13 × 13 is processed 5 times by 1 × 1 and 3 × 3 convolution kernels,
and then the convolution operation is performed by using 1 × 1 convolution kernel, followed by 2
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times the upsampling layer, and stitching to the size on the 26 × 26 feature map. The new feature
map of size 26 × 26 is then processed 7 times using 1 × 1 and 3 × 3 convolution kernels to achieve
the second category and regression bounding box prediction.

3) A new feature map has a size of 26 × 26. Firstly, we use 1 × 1 and 3 × 3 convolution kernels to
process 5 times, perform a double upsampling operation, and stitch it onto the feature map of
size 52 × 52. Then, the feature map is processed 7 times using 1 × 1 and 3 × 3 convolution kernels
to achieve the third category and regression bounding box prediction.

It can be seen from the above results, that YOLOv3 can output three feature maps of different
sizes at the same time, which are 13 × 13, 26 × 26, and 52 × 52. In this way, the feature maps of different
sizes are optimized for the detections of small targets, but at the same time, the detections of large
targets are weakened. Each feature map predicts three regression bounding boxes at each position,
each bounding box contains a target confidence value, four coordinate values, and the probability of C
different edges. There are (52 × 52 + 26 × 26 + 13 × 13) × 3 = 10647 regression bounding boxes.

3. YOLO v3 Algorithm Optimization

3.1. Network Structure Optimization

During the feature extraction process of the YOLOv3 network, as the convolutional layers are
deepened, the receptive field of a single neuron is gradually increasing. At the same time, the feature
extraction capability is also enhanced and the extracted feature is more abstract. At this time, if the
shape of the object’s feature map is blurred, the position information of the small target will be
inaccurate or even lost in severe cases. Therefore, when the YOLOv3 is used for the vehicles’ detection
experiment, there are a large number of vehicles in the images, the phenomenon of missed detections
will occur, and the accuracies of the vehicle flow detections will be greatly reduced. To solve this
problem, we introduce the idea of spatial pyramid pooling between the 5th and 6th convolutional
layers of the YOLOv3 network to optimize the network structure. The SPP-net is a feature enhancement
module, which extracts the main information of the feature map and performs stitching, as shown in
Figure 3.
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The difference between the concatenate operation and the addition operation in the module is
that as the idea of the addition operation is derived from ResNet, the input feature map is added to
the corresponding dimension of the output feature map, that is, y= f(x) + x. However, the idea of
concatenate operation originates from the DenseNet network, and the feature graph is spliced directly
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according to channel dimension [19]. For example, 8 × 8 × 16 feature graph was splicing with 8×8×16
feature graph to generate 8 × 8 × 32 features.

This module draws on the idea of the spatial pyramid and realizes local and global features
through the SPP module. This is why the largest pooling kernel size in the SPP module should be as
close as possible or equal to the size of the feature map that needs to be pooled. After the features
are fused with the global features, the expression ability of the featured maps is enriched. The main
operation in the module is to down-sample the input features using pooling windows with kernel
sizes of 5 × 5, 9 × 9, and 13 × 13, the pooling steps are all 1, and the pooled features are input to
the concatenate operation to perform dimensional stitching. Because when the YOLOv3 network
predicts the target position, the feature map of each size must be convolved 5 times by 1 × 1 and 3 × 3
convolution kernels (that is the Conv2D×5 block in Figure 2). Here, the method of directly adding
the SPP module to each Conv2D × 5 structure in the figure is adopted to form an overall feature
enhancement module, which can improve the network’s effect of extracting feature maps of each
different size.

In summary, the network has the following characteristics after optimization:

1) The input size can be ignored and a fixed-length output can be generated to solve the problem of
inconsistent input image size.

2) When the multi-level spatial multi-scale block pooling operation is used, not only a sliding
window of size for the pooling operation is used, the speed of computing the entire network of
features can be improved.

3) The space pyramid module divides the feature maps into different levels at different levels,
calculates the features of each level, and finally fuses the features of each level together, that is,
conducive to the situation of large differences in target sizes and in the images to be detected.
Especially, the complex multi-target detection can be improved by YOLOv3, for that the detection
accuracy has been greatly improved.

3.2. Loss Function Optimization

A regression bounding box is a key step in target detection and target tracking in computer
vision. Traditional methods mainly improve network performance by deepening the number of
layers in the backbone network and optimizing local feature extraction methods, but they often
ignore the optimization of loss functions. Intersection Over Union (IOU) is a measure of overlap area,
which indicates the degree of overlap between the target window generated by the model and the
original labeled window [11]. It is not sensitive to the changes of scales and non-negative, and it is
a common evaluation standard in target detection, also known as detection accuracy. The value of IOU
is the ratio of the intersection between the detection result, the ground truth, and the union between
them. The calculation diagram is shown in Figure 4.
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Evaluation indicators for bounding box regression:

IOU =

∣∣∣B∩ Bgt
∣∣∣∣∣∣B∪ Bgt
∣∣∣ (1)
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where Bgt = (xgt, ygt, wgt, hgt) is the real box and B= (x, y, w, h) is the prediction box. Usually, the distance
between the bounding boxes is measured by the coordinates of B and Bgt using the ln-norm (n = 1 or 2)
loss function. In recent years, IOU loss is usually used to improve the IOU index. The expression of
IOU loss is listed as followed:

LIOU= 1 −

∣∣∣B∩ Bgt
∣∣∣∣∣∣B∪ Bgt
∣∣∣ (2)

It can be seen that when the two frames do not intersect, that is, the IOU is equal to zero, which is
equivalent to the loss function having no effect and cannot be learned and trained, for that, theIOU loss
is only applicable to the case where the target frame overlaps. In the cases of different distances,
different scales, and different aspect ratios, as IOU is used to optimize the loss function, the regression
situation is often incomplete. For the case where the target boxes do not overlap, in order to optimize
the IOU loss function and solve the positioning and other problems, the DIOU measurement parameters
are introduced [20]. When the target box and the prediction box do not overlap, there will be a loss.
The centering distance can make the prediction frame to move toward the target. The DIOU loss can
directly minimize the distance between the two boxes, it means that by combining the standardized
distance between the prediction box and the target box can directly minimize the normalized distance
between the anchor box and the target box, for that, the loss convergence is more accurate and faster
than that of the IOU.

DIOU loss is mainly based on IOU loss plus a constraint term and DIOU loss is shown in Equation
(3). Among this, b and bgt represent the center points of the prediction frame and the real frame,
respectively, ρ represents the calculation of the Euclidean distance between the two center points.
The calculation result is the value of d in Figure 5, and c represents the diagonal distance between the
smallest closed area that can contain both the prediction box and the real box.

LDIOU= 1 −

∣∣∣B∩ Bgt
∣∣∣∣∣∣B∪ Bgt
∣∣∣ + ρ2(b, bgt)

c2 (3)
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The DIOU loss can provide a moving direction for the bounding boxes when the target boxes
do not overlap, which can directly minimize the distance between the two target boxes. At the same
time, the regression convergence speed of DIOU loss is very fast, which solves the problem of IOU loss.
In network training, DIOU loss is added to the network loss function. The value of the loss function
gradually decreases with the number of iterations and the degree of overlap increases. It can effectively
solve the problems of inaccurate positioning of YOLOv3. L2 regularization is used to enhance the
generalization of the network to prevent the over-fitting problem, as Equation (4) shows. Where β is
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a hyperparameter, as the value is larger, the more important regularization will be and
∑

is the sum of
squares of the ownership weight.

LOSStotal = loss + β
∑

i

w2
i (4)

The network weight update is shown in Equation (5). Where µ is the learning rate of the network,
regularization is actually multiplying (1–2 µβ) when the ownership weight is updated.

wnew = w− µ · ∂LOSStotal
∂w

= w− µ · ∂loss
∂w − µ ·

∂(βw2)
∂w = (1− 2µβ) ·w− µ∂loss

∂w

(5)

DIOU loss optimization can have the following effects. 1. It is similar to Generalized Intersection
Over Union (GIOU) loss, but when DIOU loss does not overlap the target frame, it can still provide
the moving direction for the bounding box. 2. DIOU loss can directly minimize the distance between
two target boxes, so it can converge much faster than GIOU loss. 3. For the case where the two boxes
are horizontal and vertical, DIOU loss can make the regression very fast, while GIOU loss is almost
degraded to IOU loss [21].

In summary, for convenience of expression, the optimized algorithm model is YOLOv3-DL,
where DL stands for DIOU loss. After using the above optimization, the YOLOv3-DL model can
minimize the distance between two bounding boxes directly, for that, the prediction box and the target
box can be completely and quickly matched together with a small number of iterations, effectively
solving the positioning accuracy and speed problem existing in the YOLOv3 model. In addition,
the feature enhancement methods of multi-layer extraction and fusion are adopted in the network
feature extraction, which is beneficial to deal with the large difference of target size in the images to
be detected. In the complex multi-target detection system such as traffic flows, this processing has
greatly improved the target detection accuracy of the system. Therefore, using YOLOv3-DL in the
detection system of traffic flows, at a certain speed the target vehicles can be detected with higher
accuracy, and the real-time detection effects of the vehicles can be achieved, thereby, YOLOv3-DL can
improve the performance of the detection system of traffic flows.

4. Making the Data Set

In order to study the monitoring of traffic flows in actual scenarios, the data source of this study
uses the large-scale data set of DETection and tRACking (DETRAC) for vehicle detection and tracking.
The data set is mainly derived from video images of road crossing bridges in Beijing and Tianjin,
and manually labeled 8250 vehicles and 1.21 million target object frames. The shooting scenes include
sunny, cloudy, rainy, and night, and the height and angle of each shot are different.

The steps for making the experimental data set of this project are as follows:

1) Collecting daytime, dusk, evening, and rainy pictures from the DETRAC data set, a total of
6203 pictures were collected;

2) Combining the 6203 pictures and the VOC_2007 data set to make a DL_CAR data set containing
26,820 pictures;

3) Randomly extracting 80% of the DL-CAR data set to make a training verification set;
4) Randomly extracting 80% from the training verification set to make the training set;
5) The remaining 20% of the DL-CAR data set is used as the verification set and test set in a 1:1 ratio;
6) Organizing your own data set according to the structure of the VOC data set. The folder structure

of the VOC data set is shown in Figure 6;
7) Use OpenCV to read all the images in the folder, name them in the order of reading and unify the

format to facilitate later statistics.
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In this paper, the LabelImg tool is used to uniformly label each target vehicle on the pictures of the
training set, validation set, and test set, and an XML file corresponding to the pictures is generated to
store the labeling information for subsequent network training. After that, the XML file corresponding
to the picture is generated to store the label information for subsequent network training. The actual
labeling steps are:

1) Using the mouse to select and frame the target vehicle area;
2) Double-clicking to mark the corresponding target category;
3) Clicking “Save” after marking.

Each image in the training verification set initializes a 3D label in the form of [7, 7, 25] with
0, column 0 represents the confidence, column 1–4 represents the central coordinates (xc, yc, w, h),
and column 5–24 represents the object class sequence number. Next, we parse the XML file and take
out all target categories in the file and their coordinate values (xmin, ymin, xmax, ymax) in the upper left
and lower corners, these data were then multiplied while using ratio values according to the 448 × 448
image scaling factor to obtain (x1min, y1min, x2max, y2max). Subsequently, Equation (6) is used to convert
the coordinates into the form of center point coordinates, and Equation (7) is used to calculate which
grid the target center falls into. In the image label, the grid confidence degree is set to 1, the coordinate
of the center point is set to the calculation results of Equations (6)–(7), and the corresponding target
category index is set to 1.

xc = (x1min + x2max)/2, w = x2max − x1min

yc = (y1min + y2max)/2, h = y2max − y1min
(6)

x_ind = [7xc/448], y_ind = [7yc/448] (7)

In order to enhance the robustness of the network, we use random horizontal flip, random
cropping, random color distortion, etc. for data enhancement. We create a dictionary for each picture
to store its path and label, and add all dictionaries to the list and save the list in a pkl file.

5. Experiment and Analysis of Results

5.1. Experimental Platform

The experiments in this article were performed on the Ubuntu 18.04 system (Canonical Ltd.,
London, United Kingdom). Under the PyCharm development environment, the program was written
in Python 3.6. The YOLOv3-DL algorithm was run under the Darknet framework. The processor
was an Inter Core i9-9900K CPU and the NVIDIA GeForce RTX2080Ti graphic card was used to
accelerate training.
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5.2. Network Training

The initialization weights for YOLOv3-DL training use the weights of the pre-trained YOLOv3
model of the VOC2007 dataset, extract the picture path and labels from the pkl file, and normalize the
pixel value of the processed picture [−1,1]. We use the stochastic gradient descent method to train
the algorithm 30,000 times. The learning rate is chosen to be 0.001 between 0 and 20,000 iterations.
In 20000 ~ 25000 iterations, 0.1 times the current learning rate, and in 25,000 ~ 30000 iterations,
the learning rate is multiplied by 0.01 times. The adjustment of the learning rate reduces training loss.
Batch is set to 64 and Subdivision is set to 8. As a result, each batch will not be added to the network
as a whole, but it will be divided into 8 parts. After the batch is run, it will be packaged to complete
an iteration. Which can reduce the memory usage.

5.3. Analysis of Experimental Data

5.3.1. Experimental Evaluation Parameters

To verify the effectiveness of the optimization, the DL-CAR data set is used to perform the following
tests, analyze the experimental data, and compare the experimental results. The problems of missed
detection and false detection will happen in the monitoring processes of traffic flows. In this experiment,
Precision, Recall, and mAP are used as evaluation parameters. The “Precision” (accuracy) is the ratio
of the number of correctly detected statistical vehicles to the total number of detected statistical vehicles.
The “Recall” (recall rate) is the ratio of the number of correctly detected statistical vehicles to the total number
of vehicles in the data set. The calculation method is shown in Equations (8)–(10).

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

AP =
1

11

∑
r∈(0,0.1,0.2,...,1)

xr, xr = max(Precision) (10)

In these formulas, True Positive (TP) indicates the number of correctly detected vehicles,
True Negative (TN) indicates the number of correctly detected backgrounds, False Positive (FP)
indicates the number of incorrect detections, and False Negative (FN) indicates the number of missed
detections, respectively. In Equation (10), xr is the maximum value of the recall rate greater than the
corresponding precision rate of the interval segment, and then the average value of the maximum
value of 11 points is calculated. In practice, we do not directly calculate the PR curve but smooth the
PR curve. That is, for each point on the PR curve, the value of Precision is the value of the largest
Precision to the right of that point.

5.3.2. Comparative analysis of Different Algorithm Experiments

The XML file is parsed in the image folder of the dataset and the actual number of vehicles is
counted in the dataset. The optimized YOLOv3-DL model is used to detect the number of vehicles in
the statistical data set, which is called the number of statistics. The Precision, Recall, and Accuracy of
vehicle statistics was calculated and compared with the YOLOv3 model. The experimental results are
shown in Tables 1 and 2.
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Table 1. YOLOv3 general model traffic statistics.

Data Sets Number of
Actual

Number of
Statistics Precision (%) Recall (%) Accuracy Rate

(%)

Training set 11,1351 11,2422 94.23 95.14 95.14

Training
verification set 139098 14,0427 94.24 95.14 95.14

Verification set 27,747 27,982 94.36 95.16 95.16

Test set 34,760 35,416 93.22 94.98 95.01

Table 2. YOLOv3-DL general model traffic statistics.

Data Sets Number of
Actual

Number of
Statistics Precision (%) Recall (%) Accuracy Rate

(%)

Training set 11,1351 11,3929 96.73 98.97 98.97

Training
verification set 13,9098 14,0937 96.77 98.05 98.97

Verification set 27,747 28,374 96.92 99.11 99.11

Test set 34,760 3,5870 95.82 98.88 98.83

From the results in Tables 1 and 2, under the presupposition, we found that the actual vehicle
base of the data set is large. Compared with the results of the YOLOv3 model, the statistical accuracy
of the YOLOv3-DL model is increased by 3.86% and the recall rate is increased by 3.65%. In the
data set labeling, we do not fully label the vehicles that are far away, the targets are small, and the
images are blurred. The actual number in the table represents the total number of vehicles labeled
with the Labellmg tool when our previous data set is prepared. In Tables 1 and 2, the number of
statistical vehicles in the model data set is higher than the actual number of vehicles. It can be explained
that the above two models can be used to detect vehicles with large targets and vehicles with small
targets, so the above table appears. The number of statistics in China is higher than the actual number,
which indirectly shows that the above model has better generalization in vehicles’ detection.

5.3.3. Comparative Analysis of Experiments in Different Scenarios

In order to study the adaptability of the optimization model to multi-scenario and multi-weather
traffic detections, 1000 sets of pictures were taken for each scene through the self-made datasets
of sunny, cloudy, rainy, and night, then they were tested with YOLOv3 and YOLOv3-DL models.
The experimental results are shown in Tables 3 and 4.

Table 3. YOLOv3 multi-environment traffic statistics.

Data Sets Number of
Actual

Number of
Statistics Precision (%) Recall (%) Accuracy Rate

(%)

Sunny 6823 6837 94.85 95.05 95.05

Cloudy 5922 5968 94.52 95.26 95.25

Rainy 8517 8629 93.49 94.73 94.69

Night 5731 5825 93.74 95.27 95.26
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Table 4. YOLOv3-DL multi-environment traffic statistics.

Data Sets Number of
Actual

Number of
Statistics Precision (%) Recall (%) Accuracy Rate

(%)

Sunny 6823 6861 98.33 98.87 98.91

Cloudy 5922 6031 98.17 99.99 99.97

Rainy 8517 8694 97.59 99.61 99.56

Night 5731 5852 97.88 99.95 99.94

Using the DIOU-optimized network model YOLOv3-DL, we find that the statistical average
accuracy is improved to 4.53% and the network performance has improved significantly. For different
scenes and weathers, its adaptability has been improved as compared to that of YOLOv3, which can
more accurately detect vehicles and be used for monitoring tasks of traffic flows. Based on the results
of experimental tests on multiple scenes and weathers, some vehicles will be missed in the detections
of YOLOv3 before optimization, which leads to a decline in statistical accuracy, as shown in Figure 7.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 14 

 

(a) 

 

(b) 

Figure 7. Comparison of Vehicle Detection Based on Optimized Models (a) YOLOv3 algorithm 

detection results and (b) YOLOv3-DL algorithm detection results. 

5.3.4. Video stream experimental data analysis 

In order to test the detection capability of the YOLOv3-DL algorithm in the video stream, we 

collected vehicles’ driving videos for experiments in a variety of different scenarios and different 

weathers. The length of each collected video is uniformly 40 s. For further comparison, we take a 

Test-1 video at the roadside on a clear day at dusk, a Test-2 video on the flyover at noon on a clear 

day, and a Test-3 video on the sidewalk on a cloudy morning. The test results shown in Tables 5 and 

6 have also presented that even in different weather conditions, the accuracy rates of the YOLOv3-

DL algorithm are higher than those of the YOLOv3 algorithm. 

Table 5. YOLOv3 video traffic monitoring. 

Video Number of Actual Number of Statistics Accuracy (%) 

Test-1.mp4 50 44 88 

Test-2.mp4 67 62 92.5 

Test-3.mp4 25 23 92 

Table 6. YOLOv3-DL video traffic monitoring. 

Video Number of Actual Number of Statistics Accuracy (%) 

Test-1.mp4 50 49 98 

Test-2.mp4 67 66 98.5 

Test-3.mp4 25 25 100 

Figure 7. Comparison of Vehicle Detection Based on Optimized Models (a) YOLOv3 algorithm detection
results and (b) YOLOv3-DL algorithm detection results.



Appl. Sci. 2020, 10, 3079 13 of 15

5.3.4. Video Stream Experimental Data Analysis

In order to test the detection capability of the YOLOv3-DL algorithm in the video stream,
we collected vehicles’ driving videos for experiments in a variety of different scenarios and different
weathers. The length of each collected video is uniformly 40 s. For further comparison, we take
a Test-1 video at the roadside on a clear day at dusk, a Test-2 video on the flyover at noon on a clear
day, and a Test-3 video on the sidewalk on a cloudy morning. The test results shown in Tables 5 and 6
have also presented that even in different weather conditions, the accuracy rates of the YOLOv3-DL
algorithm are higher than those of the YOLOv3 algorithm.

Table 5. YOLOv3 video traffic monitoring.

Video Number of Actual Number of Statistics Accuracy (%)

Test-1.mp4 50 44 88

Test-2.mp4 67 62 92.5

Test-3.mp4 25 23 92

Table 6. YOLOv3-DL video traffic monitoring.

Video Number of Actual Number of Statistics Accuracy (%)

Test-1.mp4 50 49 98

Test-2.mp4 67 66 98.5

Test-3.mp4 25 25 100

The test results show that it takes an average of 25 ms to count the vehicles per frame image,
and the monitoring of traffic flows using the YOLOv3-DL algorithm is almost equal to the real traffic
flow. As compared with the previous results of YOLOv3, the video monitoring accuracy rate of traffic
flows has been improved, and we also note that the video collection location should not be too high
and the field of view should not be too large. Because when the location is too high, it may cause
missed detection, and the field of vision will cause false detection. The average accuracy rates of
traffic statistics in Tables 5 and 6 are 90.8% and 98.8%, respectively, and the average statistical times of
YOLOv3 and YOLOv3-DL are 32 ms and 25 ms, respectively. When these results are compared with
other monitoring algorithms of traffic flows, such as Faster R-CNN and SSD, as the results in Table 7
show, the YOLOv3-DL algorithm has the maximum accuracy rate and shortest monitoring time.

Table 7. Different algorithm traffic monitoring.

Algorithm Accuracy (%) Time/ms

ViBe 96.2 158

Faster R-CNN 83.5 85

SSD 85.8 54

YOLOv3 90.8 32

YOLOv3-DL 98.8 25

6. Conclusions

Due to the limitations of the YOLOv3 model, when more vehicles are close to each other in the
images or the vehicles’ target size is not the same, it will have missed detections and positioning
problems, further affecting the accuracy rates of traffic flow statistics and prediction information.
By using the YOLOv3-Dl algorithm and optimized by DIOU, the traffic flow statistics with a high
accuracy rate can be generated, and the results obtained after adjusting the threshold parameters are
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very close to the actual number of vehicles. After optimization, the algorithm can reliably conduct the
monitoring of traffic flows and statistical analysis in a variety of scenarios and weather conditions.
The experimental results show that the YOLOv3 model needs to be further improved in real-time and
accuracy rate of traffic monitoring. Therefore, we will introduce the pyramid space module (i) the
feature extraction of the network structure to optimize YOLOv3 themselves, (ii) DIOU loss to solve the
problem of unbalanced category, (iii) during the training of batch standardization to further improve
its adaptability to all kinds of weathers and scenarios. In this experiment, we can see on the test set,
the detection accuracy rate of the YOLOv3-DL algorithm increased by 3.86% as compared with that of
YOLOv3, and under different environmental conditions, the detection accuracy rate of the YOLOv3-DL
algorithm increased by 4.53% as compared with that of YOLOv3. In the video monitoring of traffic
flows, as compared with the previous Faster R-CNN, SSD, and YOLOv3 algorithms, the YOLOv3-DL
algorithm achieves the accuracy rate of 98.8% and the detection speed of 25 ms at the same time,
which meets the requirements of high precision and fast speed required by monitoring of traffic flows
and further improves the real-time detection system of traffic flows.

Author Contributions: Investigation, Y.-Q.H., J.-C.Z. and C.-F.Y.; Methodology, Y.-Q.H., J.-C.Z., S.-D.S., and J.L.;
Formal analysis, Y.-Q.H., S.-D.S., C.-F.Y., and J.L.; Writing—original draft preparation, Y.-Q.H., J.-C.Z., S.-D.S.,
C.-F.Y., and J.L.; Writing-review and editing, C.-F.Y., Y.-Q.H. and J.-C.Z. All authors have read and agreed to the
published version of the manuscript.

Acknowledgments: This work was supported by key project of Fujian science and technology plan (No. 2017h0028);
Fund project of Jimei University (No. zp2020042). This work was also supported by projects under No. MOST
108-2221-E-390-005 and MOST 108-2622-E-390-002-CC3.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, Y. Big Data Technology and Its Analysis of Application in Urban Intelligent Transportation System.
In Proceedings of the International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS),
Xiamen, China, 25–26 January 2018; pp. 17–19.

2. Xu, Y.Z.; Yu, G.Z.; Wang, Y.P.; Wu, X.K.; Ma, Y.L. A Hybrid Vehicle Detection Method Based on Viola-Jones
and HOG + SVM from UAV Images. Sensors 2016, 16, 1325–1348. [CrossRef] [PubMed]

3. Qiu, Q.J.; Yong, L.; Cai, D.W. Vehicle detection based on LBP features of the Haar-like Characteristics.
In Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China,
29 June–4 July 2014; pp. 1050–1055.

4. Felzenszwalb, P.F.; Girshick, R.B.; Mcallester, D.; Ramanan, D. Object Detection with Discriminatively Trained
Part-Based Models. IEEE Trans. Softw. Eng. 2010, 32, 1627–1645. [CrossRef] [PubMed]

5. Prakash, J.S.; Vignesh, K.A.; Ashok, C.; Adithyan, R. Multi class Support Vector Machines classifier for
machine vision application. In Proceedings of the International Conference on Machine Vision and Image
Processing (MVIP), Taipei, Taiwan, 14–15 December 2012; pp. 197–199.

6. Kenan, M.U.; Hui, F.; Zhao, X.; Prehofer, C. Multiscale edge fusion for vehicle detection based on difference
of Gaussian. Opt.-Int. J. Light Electron Opt. 2016, 127, 4794–4798.

7. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

8. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and
Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 24–27 June 2014; pp. 580–587.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

10. Thakar, V.; Saini, H.; Ahmed, W.; Soltani, M.M.; Aly, A.; Yu, J.Y. Efficient Single-Shot Multibox Detector for
Construction Site Monitoring. In Proceedings of the 4th IEEE International Smart Cities Conference (ISC2),
Kansas City, MO, USA, 16–19 September 2018; pp. 1–6.

http://dx.doi.org/10.3390/s16081325
http://www.ncbi.nlm.nih.gov/pubmed/27548179
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135


Appl. Sci. 2020, 10, 3079 15 of 15

11. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27–30 June 2016; pp. 779–788.

12. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

13. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 1854–1862.

14. Liu, J.; Huang, Y.; Peng, J.; Yao, J.; Wang, L. Fast Object Detection at Constrained Energy. IEEE Trans. Emerg.
Top. Comput. 2018, 6, 409–416. [CrossRef]

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

16. Tesema, F.B.; Lin, J.; Ou, J.; Wu, H.; Zhu, W. Feature Fusing of Feature Pyramid Network for Multi-Scale
Pedestrian Detection. In Proceedings of the 15th International Computer Conference on Wavelet Active
Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 14–16 December 2018;
pp. 10–13.

17. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 10–13 December
2016; pp. 770–778.

18. Cao, C.Y.; Zheng, J.C.; Huang, Y.Q.; Liu, J.; Yang, C.F. Investigation of a Promoted You Only Look Once
Algorithm and Its Application in Traffic Flow Monitoring. Appl. Sci. 2019, 9, 3619. [CrossRef]

19. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI,
USA, 21–26 July 2017; pp. 234–258.

20. Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU Loss: Faster and Better Learning for Bounding Box
Regression. 2019, pp. 1458–1467. Available online: https://arxiv.org/abs/1911.08287 (accessed on 9 March 2020).

21. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union:
A Metric and a Loss for Bounding Box Regression. In Proceedings of the 32nd IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–21 June 2019; pp. 658–666.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TETC.2016.2577538
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.3390/app9173619
https://arxiv.org/abs/1911.08287
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Composition and Principle of Traffic Flow Detection System 
	YOLO v3 Algorithm Optimization 
	Network Structure Optimization 
	Loss Function Optimization 

	Making the Data Set 
	Experiment and Analysis of Results 
	Experimental Platform 
	Network Training 
	Analysis of Experimental Data 
	Experimental Evaluation Parameters 
	Comparative analysis of Different Algorithm Experiments 
	Comparative Analysis of Experiments in Different Scenarios 
	Video Stream Experimental Data Analysis 


	Conclusions 
	References

