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Abstract

:

Aggregate gradation and asphalt type are traditional variables that affects mix design of Hot-Mix Asphalt (HMA). Recently, the number of design gyrations (Ndes) has been increasingly accepted as another variable parameter during the design process. Due to the growing shortage of high-quality raw materials, it is necessary to make full use of the combined roles between these design parameters, instead of solely relying on their individual effect, to improve the HMA properties. Therefore, this study comprehensively explored the effect of aggregate gradation, Ndes, and asphalt type on the performance of HMAs. Seven different combinations of aggregate gradation, Ndes, and asphalt type were evaluated. The volumetric indicators, uniaxial penetration shear test (UPST), unconfined compression test (UCT), low-temperature bending test (LBT), four-point bending test (FPBT), and dynamic modulus test (DMT) were used to assess the performance of HMAs designed by various parameter combinations. It was found that the contribution of adopting harder asphalt binder was able to make up for the high-temperature resistance loss caused by lower Ndes or coarser gradation. The dynamic modulus exhibited the similar phenomenon. By contrast, the harder asphalt binder led to the worse tenacity of HMAs at low temperature; however, the tenacity can be restored through using lower Ndes or coarser gradation by increasing asphalt content. In addition, the fatigue life of HMAs went up significantly by about 36 ~ 41%, when both Ndes and asphalt penetration grade decreased to one lower level.
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1. Introduction


The Superior Performing Asphalt Pavement (Superpave) design method is extensively used to design Hot-Mix Asphalt (HMA). This method adjusts the mixture aggregate gradations or even raw materials continuously until the output HMA meets the empirical volumetric and performance requirements [1]. In recent years, the number of design gyrations (Ndes) has been gradually accepted as another parameter in the design process [2,3,4]. These design parameters may have different effects on the performance of asphalt mixtures. In addition, due to the performance-based mix design promoted, more attention is paid to the properties of asphalt mixtures [5,6], and the designers need to design the HMAs to meet the pavement requirements [6]. Faced with the increasing shortage of high-quality raw materials, it is necessary to fully explore combined effects of these design parameters on the properties of HMAs.



The influences of these design parameters on the properties of HMA have been explored previously. In 2006, National Cooperative Highway Research Program (NCHRP) conducted a comprehensive project evaluating the effects of different design parameters on HMA high-temperature performance [7]. The report from NCHRP implied that as the fineness modulus (FM300) rose by 6% during design, the rutting resistance of the mixture increased by about 2.0 to 2.5 times. As the number of Ndes increased by 25, the rutting resistance was improved by approximately 15% to 25%; Moreover, as the high-temperature PG-grade of the asphalt increased by one level (6 °C), the rutting resistance of HMA went up by about 2.5 times [7]. The above NCHRP project only focused on the mixture’s high-temperature performance. The assessments for other HMA properties (i.e., low-temperature performance and fatigue performance), however, were not performed in this project.



Some other studies also explored the individual influence of design parameters on the mixture properties. In terms of the effect of aggregate gradation, Brown et al. found that the HMA with coarse gradation (below restricted zone) exhibited weak deformation resistance under high temperatures [8]. Haddock et al. found the similar patterns as Brown et al. [9]. Sousa et al. found that HMAs using fine gradation (above or through restricted zone) had better fatigue performance as compared with those using coarse gradation [10]. In terms of the effort of Ndes, Khosla et al. discovered that with an increase in Ndes, the high-temperature properties and dynamic modulus of the mixtures were significantly improved [3,11]. Moreover, Sun et al. reported that the rise in Ndes by 25 resulted in a decrease in fatigue life by 10–20%, and a decrease in low-temperature flexural-tensile strain by 10–50% [2]. As for the effect of asphalt type, the HMAs with modified binder (i.e., PG 76-22) were found to suffer less rutting by about 60% compared with those using neat binder (i.e., PG 67-22) [12].



Above studies indicated that all design parameters, including aggregate gradation, asphalt type and Ndes, affected the HMA properties notably. Previous studies mainly evaluated the individual influence of design parameter on the mixture properties. The combined effects of those parameters, however, need to be further investigated. In addition, several other essential properties of HMAs (i.e., low-temperature cracking) also need to be further included during investigation. Therefore, this study aimed to systematically explore the influence of three different design parameters, namely aggregate gradation, Ndes, and asphalt type, on the properties of HMAs. The high- and low-temperature, fatigue, and dynamic modulus properties of the mixture were included for evaluation.




2. Experimental Design


The flowchart of the experimental design of this research is presented in Figure 1. In this experiment, 30, 50 and 75 were selected as design gyration (Ndes) variables. Fine, middle, and coarse gradation were adopted as aggregate gradation variables. Moreover, 30#, 50#, and 70# penetration graded binder was selected as asphalt type variables. Seven different combinations of the above design variables were included and analyzed, as shown in Table 1. As a result, the individual and combined effects of these design parameters on the mixture properties were fully explored.




3. Materials


3.1. Asphalt Binder


Three types of asphalt binders were adopted in this experiment. The 30# asphalt binder was used in Group 1–4, and it exhibited a penetration of 33.6 (0.1 mm) and a softening point of 58.7 °C (Ring and Ball Method). The 50# asphalt binder was used in Group 5, and it exhibited a penetration of 47.4 (0.1 mm) and a softening point of 53.0 °C. In addition, the 70# asphalt binder was used in Group 6–7, and it exhibited a penetration of 67.5 (0.1 mm) and a softening point of 47.5 °C [13].




3.2. Aggregates


The aggregates used in this experiment were limestone types. The properties of these aggregates are summarized in Table 2. In addition, three different gradation curves within the range of AC-16 gradation were used in this study. The AC-16 was frequently used in the pavement projects in China [14]. The fine gradation curve was adopted in Group 2. The middle gradation curve was adopted in Group 1, 3, and 5–7. The coarse gradation curve was adopted in Group 4. The aggregate gradations are presented in Table 2.




3.3. Specimen Preparation


The HMAs for testing were formed through the Superpave gyratory compactor. In Superpave, the air void was recommended to be maintained at an empirical level of 3–5% [7]. Since air void significantly affects the HMA performance [7], the air voids of all HMAs testing in this research were maintained at around 4%. The HMA optimal asphalt content (OAC) was determined when controlling its air void. The volumetric indicators of HMAs corresponding to seven design parameter combinations are presented in Table 3.



As seen from the results regarding Groups 1, 3 and Groups 6, 7, when the Ndes decreases by one level (25 numbers), the Voids in Mineral Aggregate (VMA) of HMA increases by about 0.5%, while the OAC increases by about 0.3%. No apparent difference was observed for the volumetric indicators of HMAs using fine and middle gradations (Group 2, 3). However, when the HMA gradation became coarse one (Group 4), its VMA increased rapidly by about 0.6%, and the OAC increased by 0.3%. In addition, the effects of asphalt type on the HMAs’ volumetric properties were slight (Group 3, 5, and 6).





4. Test Procedures


Based on the HMAs listed in Table 3, the high- and low-temperature, fatigue, and dynamic modulus properties of the mixtures designed by different variable combinations were evaluated using different tests. The uniaxial penetration shear test (UPST) and unconfined compression test (UCT) were chosen to analyze HMA high-temperature performance. The specimens of above tests had diameters of 100 mm and heigths of 100 mm, and they were formed by gyratory compactor. The low-temperature bending test (LTBT) was used to evaluate the HMA low-temperature performance. The specimens for bending test, which were formed using rolling wheel compactor, had dimensions of 250 mm × 30 mm × 35 mm. The four-point bending fatigue test (4PBT) was applied to assess the HMA fatigue property. The corresponding specimens had dimensions of 380 mm × 50 mm × 63 mm and were formed by vibrating compactor. The uniaxial compressive modulus test (UCMT) was used to measure the HMA dynamic modulus. The specimens for the dynamic modulus test were prepared by gyratory compactor, and had diameters of 100 mm and heigths of 150 mm. In addition, the detailed tests arranged for different groups of HMAs are summarized in Table 4.



The UPST reflects the shear strength of HMA at high temperature (60 °C) [15,16,17]. The experimental device of UPST is presented in Figure 2a. During the experiment, an indenter with a diameter of 28.5 mm was loaded on the asphalt mixtures at a rate of 1 mm/min. The maximum force was recorded to calculate the shear strength of asphalt mixtures, as shown in Equation (1) [18].


   R τ  =  f τ  ⋅  P A   



(1)




where Rτ is shear strength (MPa); P is the maximum force (N); A is the contact area of indenter (mm2); and fτ is the correction factor (i.e., fτ = 0.34).



The UCT mainly reflects the compressive strength of HMA at high temperature (60 °C). The experimental device of UCT is presented in Figure 2b. In contrast to UPST, the surface of asphalt mixtures in UCT was subjected to uniform indenter load, and the loading rate was controlled at 1mm/min. During the process, the maximum force was recorded to calculate the compressive strength of asphalt mixtures [13].



The LTBT characterizes the tenacity of asphalt mixtures at low temperature (−10 °C). The experimental device of LTBT is presented in Figure 2c. During the experiment, the load was applied to the midspan of rectangular asphalt mixtures, and the loading rate was controlled at 50mm/min. The deflection of the midspan d corresponding to the maximum force was recorded. Then, the flexural-tensile strain εB of asphalt mixtures at failure was calculated according to the following Equation [13].


   ε B  =   6 × h × d    L 2     



(2)




where εB is the flexural-tensile strain at low temperature(με); L is the span of beam (mm); h is the height of midspan (mm); and d is the deflection of midspan in failure (mm).



The four-point bending test (4PBT) was used to characterize the fatigue life of asphalt mixtures [10]. The experimental device of FPBT is presented in Figure 2d. During the test process, the experiment maintained the loading frequency at 10 Hz, constant strain at 300 με and temperature at 15 °C. The initial stiffness of asphalt mixture was defined at the 50th load, and the indicator of fatigue life was regarded as the number of loads when the stiffness reduced to half [19].



The experimental device of UCMT is presented in Figure 2e. The UCMT was conducted at six frequencies of 0.1, 0.5, 1, 5, 10, and 25 Hz and five temperatures of −10, 4.4, 21.1, 37.8, and 54.4 °C. Then, the master curves of dynamic modulus were fitted using the Sigmoid model, shown as Equations (3) and (4) [20].


  log  |   E *   |  = δ +  α  1 +  e  β − γ log ( τ ⋅  a T  )      



(3)




where |E*| is dynamic modulus (MPa); δ, α, β, and γ are regression parameters; and τ is the frequency at the reference temperature (Hz); aT is the shift factor which converts the frequency at measured temperature to the reference temperature.


  log  (   a T   )  =    C 1  ⋅  (  T −  T  ref    )     C 2  +  (  T −  T  ref    )     



(4)




where C1 and C2 are regression parameters, T is the measured temperature (°C), and Tref is the reference temperature (i.e., 21 °C).




5. Results and Analysis


5.1. High-Temperature Performance


The results of UPST are presented in Figure 3. For comparison purposes, the shear strength of HMAs with different asphalt types and numbers of Ndes (at middle gradation) are presented in Figure 3a, and the shear strength of HMAs with different asphalt types and aggregate gradations (at Ndes = 50) are presented in Figure 3b.



As shown in Figure 3a, with the Ndes increasing by one level (25 numbers), the shear strength of HMA rises by approximately 0.21–0.4 MPa, which corresponds to 26–43% rise. When the binder penetration grade decreased by one level (20#), the shear strength of HMA was improved by about 0.23–0.33 MPa. In addition, the HMAs with asphalt = 30# and Ndes = 30 had almost the same shear strength as those with asphalt = 50# and Ndes = 50 or asphalt = 70# and Ndes = 75. This fact proves that increasing the gyration number (Ndes) contributes to increasing the HMA shear resistance, and the contribution of increasing gyration number for shear resistance enhancement is able to make up for the shear resistance loss caused by increasing asphalt binder grade.



As shown in Figure 3b, aggregate gradation has a significant impact on the shear properties of asphalt mixture. The finer the gradation corresponded to the better the shear resistance for the HMA. Moreover, the shear strength of HMA with 30# binder and coarse gradation was equivalent to that of HMA with 50# binder and middle gradation.



The results of UCT were presented in Figure 4. As shown in Figure 4a, when the Ndes increases by 25 numbers, the compressive strength of HMA rises by approximately 10~23%. With the binder penetration grade decreasing to one lower level (20#), the compressive strength of HMA increased by about 15–25%. In addition, there was also no significant difference appeared in compressive resistance between the HMAs with binder = 30# and Ndes = 30 and those with binder = 50# and Ndes = 50, or binder = 70# and Ndes = 75. This further proves the substitutability of these two design parameters for HMA high-temperature properties. As shown in Figure 4b, the finer gradation presented the better compressive resistance, and compared with fine and middle gradation, coarse gradation appeared to be more sensitive to the high-temperature resistance. In general, the high-temperature properties of HMAs exhibited in UCT were similar to those in UPST.



In addition, three design parameters affected the high-temperature performance of HMAs in different ways. Specifically, the effects of compaction effort (Ndes) and aggregate gradation on HMA’ properties were realized through VMA and asphalt content in the design process, while the effects of asphalt type was realized by the viscosity of binder.




5.2. Low-Temperature Performance


The results of LTBT are presented in Figure 5. In contrast to high-temperature testing results, the low-temperature properties of HMAs increased with the reduction in Ndes, the increase in binder grade, and the coarser aggregate gradation.



As shown in Figure 5a, with the Ndes decreasing by one level (25 numbers), the flexural-tensile strain of asphalt mixtures increased by approximately 330–412 με (14–23%). When the binder penetration grade increased by one level (20#), the flexural-tensile strain would increase by about 405–481με (17–25%). In addition, when the Ndes and asphalt grade decreased to one lower level simultaneously, the flexure-strains of the corresponding HMAs remained almost unchanged, implying that the Ndes and the asphalt binder were able to complement with each other to maintain the HMAs’ high- and low-temperature properties.



As shown in Figure 5b, with the aggregate gradation becoming coarser, the low-temperature property of asphalt mixtures increased obviously. Moreover, the flexural-tensile strain of HMA with coarse gradation and Ndes = 50 (Group 4) was similar to that with middle gradation and Ndes = 30 (Group 1).



Three design parameters affected the low-temperature performance of HMAs in different ways. The less Ndes or coarser gradation, the more asphalt content required, which may help to improve the low-temperature resistance of HMAs. By contrast, the effects of softer asphalt type may be realized by the larger tenacity of binder itself.




5.3. Fatigue Performance


The fatigue results HMAs are presented in Figure 6. An interesting phenomenon can be found here was that the three different design parameters have different effects on the fatigue life of asphalt mixtures.



As shown in Figure 6, with the Ndes decreasing by 25, the fatigue life of HMA increased by approximately 32%. When the binder penetration grade decreased by one level (20#), the fatigue life increased by about 12~15%, which indicated that HMAs with harder asphalt could perform better fatigue resistance. Moreover, different from the high- and low-temperature performance, when the Ndes and asphalt grade decreased by one level together, the fatigue life of HMAs improved significantly by about 36~41%. In addition, It can be seen that HMAs with middle gradation performed the better fatigue life than those with fine or coarse gradation.



This results can be used to guide the design of HMA in the laboratory. If the high-temperature resistance of HMA is insufficient, it can be made up by using harder asphalt or finer gradation (middle gradation), which can also improve the fatigue resistance. On the contrary, if the low-temperature resistance of HMA cannot meet the requirements, it is better to reduce the Ndes to increase the tenacity, and the fatigue life of HMA was also improved.




5.4. Dynamic Modulus


The experiment results of dynamic modulus were presented in Figure 7. The master curves of dynamic modulus of seven group were fitted, as shown in Figure 7a. Then the data of dynamic modulus at 10 Hz and 21 °C was put together for comparison, as shown in Figure 7b,c.



As shown in Figure 7b, with the Ndes increasing by one level (25 numbers), the dynamic modulus of HMAs increased by approximately 4 ~ 26%; When the binder penetration grade decreased by one level (20#), the dynamic modulus of HMAs increased by about 10 ~ 14%. In addition, as shown in Figure 7c, the aggregate gradation influenced the dynamic modulus properties of asphalt mixtures. The finer gradation performed the larger modulus. However, the effect of aggregate gradation on dynamic modulus was not as significant as that of Ndes and asphalt type.





6. Summary and Conclusions


This study aimed to systematically explore the influence of three different design parameters, namely aggregate gradation, Ndes, and asphalt type, on the properties of HMAs. The high- and low-temperature, fatigue, and dynamic modulus properties of the mixture were included for evaluation. Based on the findings, the following conclusions can be drawn:



1. The high-temperature resistance of HMAs increased with the rise in Ndes, the reduction in asphalt penetration grade and the finer gradation. In addition, the contribution of increasing gyration number for shear resistance enhancement is able to make up for the shear resistance loss caused by increasing asphalt penetration grade.



2. The flexural-tensile strain of HMAs at low temperatures increased with the lower Ndes or coarser gradation. In addition, when the asphalt penetration grade increased to one higher level, the flexural-tensile strain of the HMA increased by around 17 ~ 25%. Moreover, the low-temperature resistance loss caused by harder asphalt binder can be restored through using lower Ndes or coarser gradation by increasing asphalt content.



3. The fatigue life of HMAs increased by about 32% when the Ndes decreased by 25. The HMA fatigue life rised around by 12 ~ 15% when the asphalt grade decreased to one lower level. Moreover, when both Ndes and asphalt grade decreased by one level together, the fatigue life could be significantly improved by approximately 36 ~ 41%. This may indicate that the combination of hard asphalt and low Ndes has more potential than traditional one.



4. The dynamic modulus of HMAs decreased significantly with the reduction in Ndes, the rise in asphalt binder grade, or coarser gradation. Specifically, the dynamic modulus of HMA decreased by about 4 ~ 26% when the Ndes decreased to one lower level. Moreover, the HMA modulus declined by 10 ~ 14% when the asphalt grade increased to one higher level.



5. Under the combination of design parameters, more design possibilities can be obtained to achieve the expected performance compared with traditional methods, and thus the flexibility in the design of HMAs was further improved.
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Figure 1. The flowchart of the experimental design of this research. 
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Figure 2. The devices of experiments in this study: (a) UPST, (b) UCT, (c) LTBT, (d) 4PBT, (e) UCMT. 
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Figure 3. The result of uniaxial penetration shear test. 
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Figure 4. The result of unconfined compression test. 
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Figure 5. The result of low-temperature bending test. 
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Figure 6. The result of four-point bending test. 
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Figure 7. The result of dynamic modulus test. 
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Table 1. The seven combinations of design parameters.
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Experiment

	
Design Parameters




	
Aggregate Gradation

	
Ndes (numbers)

	
Asphalt Type






	
Group 1

	
Middle gradation

	
30

	
30#




	
Group 2

	
Fine gradation

	
50

	
30#




	
Group 3

	
Middle gradation

	
50

	
30#




	
Group 4

	
Coarse gradation

	
50

	
30#




	
Group 5

	
Middle gradation

	
50

	
50#




	
Group 6

	
Middle gradation

	
50

	
70#




	
Group 7

	
Middle gradation

	
75

	
70#
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Table 2. The gradations and properties of aggregates.
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Aggregate Gradation

	
Sieve Size

	
19

	
16

	
13.2

	
9.5

	
4.75

	
2.36

	
1.18

	
0.6

	
0.3

	
0.15

	
0.075




	
Fine Gradation

	
100

	
97.5

	
93.5

	
84.1

	
66.6

	
38.9

	
22.9

	
18.4

	
11.4

	
8.6

	
6.4




	
Middle Gradation

	
100

	
95.8

	
89.2

	
73.6

	
48.0

	
28.2

	
17.2

	
14.1

	
9.3

	
7.2

	
5.6




	
Coarse Gradation

	
100

	
95.0

	
87.0

	
68.3

	
38.7

	
22.9

	
14.3

	
11.9

	
8.1

	
6.5

	
5.1




	
Aggregate Property

	
Sieve Size

	
10–15

	
3–5

	
0–3

	
Mineral




	
Bulk Specific Gravity

	
2.696

	
2.756

	
2.776

	
2.752




	
Crushing Stone Value = 22.8%

	
Los Angeles Abrasion = 16.2%

	
Flat and Elongated Particle Content = 16.4%
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Table 3. The volumetric indicators of HMAs corresponding to seven combinations.
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Experiment

	
Asphalt Content (%)

	
Air Void (%)

	
Density (g/cm3)

	
VMA (%)

	
VFA (%)






	
Group 1

	
(30#; Ndes = 30; middle gradation)

	
5.70

	
3.8

	
2.432

	
16.5

	
77.0




	
Group 2

	
(30#; Ndes = 50; fine gradation)

	
5.50

	
3.7

	
2.446

	
16.1

	
76.9




	
Group 3

	
(30#; Ndes = 50; middle gradation)

	
5.40

	
3.9

	
2.460

	
16.1

	
76.0




	
Group 4

	
(30#; Ndes = 50; coarse gradation)

	
5.70

	
4.1

	
2.421

	
16.7

	
75.7




	
Group 5

	
(50#; Ndes = 50; middle gradation)

	
5.30

	
3.7

	
2.455

	
15.7

	
76.4




	
Group 6

	
(70#; Ndes = 50; middle gradation)

	
5.25

	
4.4

	
2.416

	
16.1

	
72.4




	
Group 7

	
(70#; Ndes = 75; middle gradation)

	
4.90

	
4.5

	
2.437

	
15.5

	
71.1
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Table 4. The detailed tests arranged for different groups of HMAs.
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	Experiments
	UCT
	UPST
	LTBT
	4PBT
	UCMT





	Group 1
	√
	√
	√
	√
	√



	Group 2
	√
	√
	√
	√
	√



	Group 3
	√
	√
	√
	√
	√



	Group 4
	√
	√
	√
	√
	√



	Group 5
	√
	√
	√
	√
	√



	Group 6
	√
	√
	√
	√
	√



	Group 7
	√
	√
	√
	√
	√











© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
70,
" ° o263 P
T 115
E
S & .1 ~§
T 55| hos 2
H H
[ &
2 &
i .
F 40 2
£ os
2 3l B

11075 e 10663 P rozsawea” | [fo85

Find gradation Midde gradtion Coarse gradation

‘Aggregate Gradation
(©) The modulus at 10 Hz and 21 °C of different asphalt type and gradation (N = 50).





nav.xhtml


  applsci-10-03038


  
    		
      applsci-10-03038
    


  




  





media/file8.jpg
g

P, =
Ees. 2200
£

- o
B

Bss 000
H

o

sphalt Typo

A

R
i e

Naes (mbor)
(2) The low-temperature strain of different asphalt type and N (Middle gradation).

70

g

[

Se0

3

H

£50

g

&

a0

<. .
s s e

sl s
F7R gradation Vidde gradion  Coarse racaion

‘Agaregate Gradation

(b) The low-temperature strain of different asphalt type and aggregate gradation (N = 50).





media/file11.png
Stiffness, log (MPa)

[
Initial Stiffness |

at 50th cycle

= Group 1

| |
\ |
\ |
\ \ | |
12000 | ‘ Strain control (300 microstrain) ‘ 777777 —Group 2|
| | === Group 3
10000 s, lT ,,,,,,, —GrOUP 4,
: | = Group 5
. : = Group 6
A ] —Group7|
8000 B \ | |
_ ™ |
| |
| |
LAY, " W | |
6000~ -~ - —— - - -+ 23 D - A - - - R A A
v, | V¢
| N |
Fatigue Life ‘ | |
@50% stiffness reduction | | |
\ [ | | |
0 1 2 3 4 5
Number of Repetitions (N) %10
(a) Fatigue stitfness vs. loading cycles.
10
?OI I ) I
284830 o 191703 o ;;."
"EBS ............ _ E.
£ &
-
NP RUPRUUI s o mos o - o s o e e e s s e ey ey SO _ -
o= —
::60 =
= ®
255 &
% ==
&50 35 @
2 =
45 {0
= 3 3
E“'O TR E
o Four-point Fatigue 25 C
2 L Bending Test E e
35 ® o
512100 384143 =
30I ] ] ] ] ] 2
30 40 50 60 70

Nyes (number)
(b) The tatigue life of different asphalt type and Naes (Middle gradation).

5
07 ' ' 3180
@ on
— L Four-point Fatigue 234330 E“
£ 65 Bending Test ué
= @
= 50 3.6 —
S "
S ®
*E 55 3.4 &
==
§ 50 v
ey =h
S 45 32 2
l— o
= e N O ] 1
©
2 40 2 2
c
“ T o o o e e T A R U o . = o o o e SO i o
< 357 o o =
277147 384143 284177 -
30 L l L 28
Fine gradation Middle gradtion Coarse gradation

Aggregate Gradation
(c) The fatigue life of different asphalt type and aggregate gradation (Ndes = 50).





media/file6.jpg
g

50

g
£
£
H
&
g
e
y
g

(ed) WBuons aafssasduios paujuosun

Py (oumber)
(3) The compressive strength of different asphalt type and Na- (Middle gradation).

(GnconnescorpressonTent] * 052 WP

2

Y
(2di) UiBuo S oAIssa w03 pauyuosun

B
H
H
2
H
H
5
$
%

FiR oradation Midde gradtion ‘Coarse gradation
Aggregate Gradation

(b) The compressive strength of different asphalt type and aggregate gradation (Nac = 50).






media/file1.png
Experiments

- - - -

130 150

! 95 ) . Fine gradation ~ Middle gradatlon . . Coarse gradation | | 30# : | 50# | | 704 |
SN bicain? bt bCoscasessd companamsaiminy | R i et o oo e ool S b s s oSk s e S it S i | IS | ENER—
I [ I 1 1 [~ L n I~
v v
Compaction Effort (N,.,) I Aggregate Gradation Asphalt Type
[ [ ]
+
Seven Groups Designed
|
v ! ' ! '
Unconfined Uniaxial Penetration Low-temperature Four-point Dynamic
Compression Test Shear Test Bending Test Bending Test Modulus Test
________________________________ o (SS——— e W—
. High-temperature ' | Low-temperature | | Fatigue .| Dynamic modulus |
_performance .__performance | | performance , | _performance |
. Flexural-tensile Fatigue Life @ 50% Master Curve of
. S Shear Strength Strain Stiffness Reduction Dynamic Modulus
[ [ | I J
¢

I Performance Evaluation |






media/file10.jpg





media/file7.png
70  0.52MPa o 0.58 MPa 4 0.8
g
- 0.75
T — S i
5
I 0.7
D
$50
[+
< 0.65
o
>
= L 06
g_ 40
0 | Unconfined Compression Test |
< © bt 0.55
0.63 MPa 0.82 MPa '
30 30 40 50 60 70

(a) The compressive strength of different asphalt type and Naes (Middle gradation).

Nyes (number)

70

| Unconfined Compression Test |

@
0.52 MPa

o))
o

0.85

0.8

Asphalt Type (Penetration 0.1mm)
Pa h
o L

o
0.87 MPa

@
0.82 MPa

0.75

0.7

0.65

0.6

0.60 MPa 0.55

Fi%g gradation

(b) The compressive strength of different asphalt type and aggregate gradation (Ndes = 50).

Middle gradtion
Aggregate Gradation

Coarse gradation

(ediN) Wibual)s aalssaldwod pauyuodun

(ed ) Yibuaals aalssaldwod pauuodun





media/file12.jpg
o e mass e

Oynanic Modulus (4Pe)

v Froquoncy gL HighFroquency
High Tomporsare Low Tomparsure

0 0t

o w ' w
Froguency ()

(a) The master curves of four groups.

) B243MPa o $567MPa o 110500
Ees.
g
o o000 €
H £
s :
H osco 5
&0 £
5 2
e oo =
Feo <
<35, jasoo
iz

g

0 W 50
Naas (number)

(b) The modulus at 10 Hz and 21 °C of different asphalt type and N (Middle gradation).





media/file9.png
70 ' ' ' 2300 ©
2319.5 pce 1989.7 use g
E55 S ) ) ) s e PO _ 2200 ~3
E 3
dBO ..................... . 2100 E
c —_
o =
®55 2000 :
2 2
550 1900 E
2 1800 =
245 o
- D,
E40_ ................ 1700 ;
£ Low-temperature o
235 """ . o Bending Test e 1600 %
| 1763.2ps 1433540 | 1500 &

30 30 40 50 60 70

Nyes (number)

(a) The low-temperature strain of different asphalt type and Naes (Middle gradation).

700 ' | 2300

Low-temperature 2319.5 ue
Bending Test

2200

2100

&)
o

2000

1900

Cn
o

1800

1700

.
-
i

1600

Asphalt Type (Penetration 0.1mm)

o [+ &
1420.4 pe 1433.5 pe 1724.1 pe 1500

(37) Uled)s ajiIsuaj-jeinxal} ainjeladwa) Mo

Fiﬁg gradation Middle gradtion Coarse gradation
Aggregate Gradation

(b) The low-temperature strain of different asphalt type and aggregate gradation (Naes = 50).





media/file5.png
70 P | 0.8 MPa »
E
E
‘:;60 ..................... i . o
5 g
E E
5 092
§50 E
§: 0.8~
5 =
E40 ................. &
S Uniaxial Penetration 0.7
2 Shear Test

® @

0.75 MPa 1.15 MPa
30 1 L 1 : I 06
30 40 50 60 70

Nyes (number)
(a) The shear strength of different asphalt type and Naes (Middle gradation).
70

[ 1.2
®0.59 MPa

Uniaxial Penetration
Shear Test

—
—

60

—_—

50

= =
o o
(edN) Wbuans reays

40_ .................................... =

Q
-..d

Asphalt Type (Penetration 0.1mm)

2 @ @
1.23 MPa 1.15 MPa 0.83 MPa
Fi%g gradation Middle gradtion Coarse gradation'
Aggregate Gradation

(b) The shear strength of different asphalt type and aggregate gradation (Ndes = 50).





media/file15.png
X 10

70
L]

—_ 8243 MPa

S 65 1.15

= ‘ Dynamic Modulus Test

S 60 11 2

= D

= 3

*E' 55 1.05 =

z =

g :
c

8 45 o

e 095 =

2 4ol AR . 1 o

m e

S 0.9

m R S B I N I I D I U U e —

<< 35[7, L .

11975 MPa 10663 MPa 10283 MPa 0.85
Fiﬁg gradation Middle gradtion Coarse gradation
Aggregate Gradation

(c) The modulus at 10 Hz and 21 °C of different asphalt type and gradation (Ndes = 50).





media/file3.png
o
Ty e ' 7 .‘
T Ty . mp Sy T R 3
Tad' >3 ,'Qi.g;,.':.r,-;lq‘-.,.:‘s;&’:f’...
e ), do - e = it
A r:.,\h PR S et ,\Q
f B s

(c) LTBT

(d) 4PBT





media/file14.png
T |

________________ Master Curve of Group 2 |I g i e

7777777777777777 (30#; Ndes=50; fine gradation)[i~ P——

4 Master Curve of Group 1
~10F------ Master Curve of Group 3 . PW — — — —((30#; N, =30; middle gradation)|- — —
g _______ (30%#; Ndes=50; middle gradation) L — — — — — — des E—
E IR . > . 4 M ;s;e;c‘u;\,;o‘fgrgu;g_":::::::::
@ B Master Curve of Group 4 — — — — |(80# N __=50; middle gradation)f — - - - - — — — —
— — —(30#; N, =50; coarse gradation) SNy - - - - - — — - — — — — — —
=3 des
©
O [T~ —- === === == =7 / Master Curve of Group6 |- ————————— — — — 77
; =50; middle gradation

= (70# Ndes 50; middi dation)
o 3
E 10 r - _—_ _—_ —_ —_—_—-—_—-—_—-——-——-Z - - - - - " “Z“Z_—Z~— ™
© T - - -_-_-----Z [ =< Master Curve of Group 7 - - C---------Z--Z-Z-Z-™—
g ___________ ek _ _ |(70#; Ndes=75; middle gradation)} - - - - - - - - - — _ _ _ _ _ _ _|
D fffffffff _ e — 4 T T e e e — —

o 7.7 s & L

,,,,,,, > ¢ Low Frequency _ g g~ HighFrequency |

High Temperature Low Temperature
2
10 [ | | [
4 -2 0 2 4 6
10 10 10 10 10 10

Frequency (Hz)

(a) The master curves of four groups.

-
<

8243 MPa o 8567 MPa o 10500

EGE) ............ _

E o

iso ..................... _ 10000 |,§

8 5

®55 S

2 9500 E

£5U c
o

@D

245 bia

= 9000 =

E“-D s &L

% Dynamic Modulus Test

357, = o 8500

8452 MPa 10663 MPa
30 30 40 50 60 70

Nyes (number)
(b) The modulus at 10 Hz and 21 °C of different asphalt type and Naes (Middle gradation).





media/file4.jpg
0
_ ha
£
£
S60° '«
] 4
3 H
H 02
i H
5 g
H =
Fo -
5 o7
H
60 70 e
Nes (number)
() The shearstrenghof diferent asphlt type and N (Middle gradaton).

701

2

g
(o) wbuons seous

‘Asphalt Type (Penstration 0.mm)

FiR gracation ‘Cosrse gracation
‘Aggregate Gradation

(b) The shear strength of different asphalt type and aggregate gradation (N = 50)





media/file0.jpg
Experiments

Aggregate Gradation

Seven Groups Designed.
I
r T T T !
Unconfined Uniaia Penctration | | Low-emperat Fourpoint Dynanic
Compression Test Shear Test Bending Test Bending Tost Moduls Test

i)

{Brcmaddi |
s

Compresive Srengeh

Flesurabtensic

St

Fatgue Life @ $0%
Stncs Reduction

Maser Carve of
Dynansc Modulas






media/file2.jpg
(9 LTBT

(d) 4PBT





