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Abstract: The usage of indicators as constituent parts of composite indices is an extended practice
in many fields of knowledge. Even if rigorous statistical analyses are implemented, many of the
methodologies follow simple arithmetic assumptions to aggregate indicators to build an index.
One of the consequences of such assumptions can be the concealment of the influence of some of
the composite index’s components. We developed a fuzzy method that aggregates indicators using
non-linear methods and, in this paper, compare it to a well-known example in the field of risk
assessment, called Moncho’s equation, which combines physical and social components and uses a
linear aggregation method to estimate a level of seismic risk. By comparing the spatial pattern of the
risk level obtained from these two methodologies, we were able to evaluate to what extent a fuzzy
approach allows a more realistic representation of how social vulnerability levels might shape the
seismic risk panorama in an urban environment. We found that, in some cases, this approach can
lead to risk level values that are up to 80% greater than those obtained using a linear aggregation
method for the same areas.

Keywords: composite indices; fuzzy systems; fuzzy models; indicator aggregation; risk assessment;
seismic vulnerability; social vulnerability; disaster risk reduction

1. Introduction

The primary objective of the use of indicators and composite indices is to obtain a scale of
measurement to make comparisons among geographical areas. At the same time, a suitable index is
expected to reflect a plausible encapsulation of all the different dimensions described by the set of
indicators that integrates it. In the case of natural risk, these dimensions could be the social or structural
components that are affected by a stressor agent from which a particular level of risk is generated.

Different types of indicator-based approaches are used in the assessment of natural hazard risks.
A clear division exists between those approaches whose aim is to estimate each of the known risk
components separately and those who look for an integrated risk assessment as the convolution of all of
the potential risk sources as a single result. The UN World Risk Index [1], or the Disaster Risk Index [2],
for example, fall into this last category. Multivariate methodologies to estimate social vulnerability, on
the other hand, can be related to the first category [3,4]. A common point among all these methods
can be found in the way they use linear weighted methods to aggregate their indicators to obtain
a final index. Many researchers have proposed a variety of indicators to assess earthquake risk to
represent the different and multiple components involved, such as the physical, economic, social, and
environmental dimensions within an urban environment [5–7]. However, there is no clear consensus

Appl. Sci. 2020, 10, 3017; doi:10.3390/app10093017 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4621-8262
http://dx.doi.org/10.3390/app10093017
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/9/3017?type=check_update&version=3


Appl. Sci. 2020, 10, 3017 2 of 20

on which are the most suitable proxies to be used in a composite index and, most importantly, to be
comparable across borders [8–10].

In the field of seismic risk assessment, Moncho’s equation [11] proposes that seismic risk is the
result of physical risk aggravated by social conditions and lack of resilience capacities. This method has
been implemented to produce an integrated seismic risk index by different agencies around the world,
such as the probabilistic risk model CAPRA [12] or the Global Earthquake Model of the Eucentre in
Italy [13].

Moncho’s equation is developed as a composite index: after a selection of indicators, importance
weights are related to each through a hierarchical process, and then a linear weighted aggregation
method is implemented to obtain a final value.

The present work proposes a fuzzy modeling approach to represent an estimation of the complex
interactions between the physical and social dimensions of seismic risk. This methodology is able
to obtain non-linear models that allow a more robust and realistic measure of the influences that
each risk component may produce to generate a particular risk level. Therefore, it concedes a clearer
understanding of how the disproportional effects of a seismic hazard are distributed over a geographical
area. A key area of urban planning is to reduce disaster damage and increase safety [8], a task that
can be difficult in scenarios where uncontrolled urbanization trends take place. Combined with
inadequate urban planning and structural inner deficiencies, these elements have emerged as obstacles
to development and preparedness for complex phenomena such as earthquakes ([14–18]).

In order to emphasize the differences between the two methods of aggregation, we will refer
to the fuzzy model as the “fuzzy method” and to the Moncho’s equation implementation as the
“index method”.

The paper is distributed as follows: Section 2 discusses the common methodologies used to build
composite indices, and some of their disadvantages are pointed out. The definition of Moncho’s linear
equation and its inner structure, the basis of the proposed research, is also presented. Section 3 gives
a short introduction to fuzzy logic and the properties that make it a suitable method to deal with
some of the disadvantages noted in Section 2. Section 4 describes the fuzzy risk model and selected
configurations. Section 5 focuses on the solution surface properties of both methods and highlights
some consequences regarding non-linearity and performance. It also describes the experiments made
in two different urban environments, i.e., Barcelona and Bogotá, and discusses some consequences
regarding risk management and reduction. Section 6 highlights some of the consequences of this study
and future work.

2. Linear Methods When Used to Build Composite Indices

2.1. Two Fundamental Disadvantages of Linear Methods

The use of linear methods to form a composite index has different limitations, such as
compensability, preference dependence and interpretation of associated weights. The assumption
of preferential independence among indicators states that any contribution or influence made by
an individual indicator to the overall composite is discernible at all times: a packaged and isolated
capsule of information that can be propagated along with different information types, without any
change of its nature. When this assumption is accomplished, simple additive methods of aggregation
can be used [19]. Their use, however, may lead to a scheme of full compensability, where poor
performance of some of the indicators can be compensated by high performances of other indicators.
Geometric aggregation, even if less compensatory, still maintains a nonrestrictive use of weights
as representations of importance or significance coefficients that can translate as diminishing or
compensating for the influence of a particular dimension performing poorly with another dimension
with higher performance [19,20]. The use of geometric aggregation is the method of preference
when compensability needs to be avoided since a geometric aggregation, in addition to lowering
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compensability, rewards more those indicators with higher scores, which can be used as a way to direct
attention over those indicators with lower ranks, to increment the overall score [21].

Preferential independence should be assumed only for those indicators, among which no
phenomena of conflict or synergy exist and where any possible trade-off ratio between indicators is
independent of the values of the remaining indicators [22]. Therefore, an integral risk index must be
dependent on the good performance or decline of all of its constituent dimensions, and therefore any
risk level should reflect any bad performance of one or more of its components. Conversely, a good or
satisfactory integral risk value should be the result of the solid performance of all of its dimensions,
both structural and social [23].

Using non-compensatory logic and multi-criteria analysis is a suitable way to obtain satisfactory
results when two or more performances are compared. Nonetheless, these methods largely rely on
ranking schemes and do not try to explain the nature of the indicator’s interrelationships. One of
the consequences is the way in which each indicator’s contribution is accounted for: regardless of
the value of the difference between the contribution of two indicators, whether larger or smaller, the
ranking between them remains the same.

2.2. The Moncho’s Equation

The so-called Moncho equation comprises a physical risk (RPh), which represents the level of
risk for structural elements, and an aggravation coefficient (F), in which socioeconomic fragilities and
lack of resilience of the context are included. According to these, any final seismic risk level can be
considered the result of the physical risk but aggravated by social conditions and lack of resilience
capacities. A calculation of the total risk index is then obtained by a direct application of Equation (1).

RT = RPh(1 + F) (1)

where RT is the total risk, RPh is the physical risk, and F is an aggravation coefficient.
Both the physical risk index RPh and the aggravation coefficient F are estimated through an

additive aggregation method, where an analytical hierarchical method is applied to assess weights of
indicators. RPh and F are then estimated by Equations (2) and (3), respectively.

RPh =
∑p

i=1
WRPhi FRPhi (2)

F =
∑m

i=1
WFSiFFSi +

∑n

j=1
WFR jFFR j (3)

The term FRPhi represents physical (structural) characteristics, while FFSi represents socioeconomic
fragility characteristics and FFRj the lack of resilience of the exposed context. The terms WRPhi, WFSi,
and WFRj are the assessed weights for each indicator, respectively, and p, m, and n are the total number
of indicators for physical risk, socioeconomic fragility, and lack of resilience, respectively. More detailed
information can be found in [24,25].

3. A Fuzzy Approach for Integral Assessments

The objective of this study is to simulate the effects of an earthquake on an urban environment,
with a more accurate estimation of how the social dimension may influence the final risk level, once the
infrastructure damage has been taken into account.

Our pre-conception of accuracy regards two general aspects that may weaken the reliability of
most of the assertions based on integral risk estimations through composite indices. The first, as we
mentioned before, is the assumed preferential independence among indicators and the potential
compensability sources coming from the use of weights as importance coefficients. The second aspect
is related to the inherent uncertainty and impreciseness embedded in many of the facets that are used
to describe a social risk-related feature, many of whom are not entirely reflected in the numerical value



Appl. Sci. 2020, 10, 3017 4 of 20

associated with its quantitative representation. The treatment of such complexity and impreciseness
can be very well handled by fuzzy logic, and this is why this methodology is gaining ground, as it
allows the analysis of complex processes from a different perspective. By the use of linguistic variables,
fuzzy logic produces results closer to common language, transforming the whole process of risk
communication into a two-way bridge built on intuition.

Fuzzy logic [26] is a theory regarding the logic of imprecision and a mathematical tool capable
of performing reasoning processes when available information is uncertain, incomplete, imprecise,
vague, partially of truth, or even contradictory [27]. The introduction of the notion of multiple-valued
membership degrees to a particular fuzzy set and a gradual transition scheme among system states are
crucial elements that make fuzzy logic a suitable theory to handle complexity.

Fuzzy systems are approximators to algebraic functions since their main structure is based on a
plausible (or empirical) relationship between antecedents and consequents. In this sense, the mapping
between inputs and outputs represents an isomorphism among fuzzy logic, and abstract and linear
algebra. However, one of the most evident advantages of fuzzy logic is that either inputs or outputs can
be represented in the form of linguistic prepositions, enclosing in this manner the fuzziness contained
in the information and describing a system behavior that could not be represented by analytical
functions only.

The use of linguistic variables, as well as the use of a compositional rule of inference, allows
the establishment of what is known as approximate reasoning. An inference rule can be expressed
in natural language as: “IF premise (antecedent) THEN conclusion (consequent)”; if premises and
conclusions are expressed by linguistic fuzzy variables, and fuzzy relations are used, these inference
rules are then called fuzzy inference rules. Therefore, any system that infers its conclusion by means of
fuzzy rules is called a fuzzy inference rule-based system (FIS).

4. An Integral Seismic Risk Fuzzy Model

The proposed model is composed of different modules: Aggravation Fuzzy Model, Physical Risk
Fuzzy Model, and Total Seismic Risk Fuzzy Model. Figure 1 shows the structure of the whole model
schematically. Each module is formed by different sub-modules that are the result of the aggregation
of the set of indicators proposed by Carreño [24].
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Figure 1. Conceptualization of the Seismic Risk Fuzzy Model. White rectangles represent indicators
either describing social economic fragility or physical risk. Here: PD = Property Damage, LLSD=Life
Line Sources Damage, ND = Network Damage, FIS = Fuzzy Inference System.

We designed the aggregation of indicators employing a Fuzzy Inference System (FIS) type based on
Mamdani [27]. The aggravation fuzzy model (FIS-AGGRAVATION in Figure 1), includes two elements
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representing the social fragility (FIS-FRAGILITY) and the resilience (FIS-RESILIENCE). Both elements
are, in turn, fuzzy models that are based on their own indicators, represented by white rectangles in
Figure 1. Each of these indicators are described in detail in the next sections. The outputs of each of
these two models represent the fragility and resilience levels of a given region, respectively. These
levels are used as inputs of the FIS-AGGRAVATION model to infer the aggravation level of that region.
Likewise, the physical risk model (FIS-PHYSICAL RISK in Figure 1) receives the property damage
(PD), lifeline sources damage (LLSD), and network damage (ND) levels as inputs to infer the physical
risk level of the region under study. PD, LLSD, and ND are also fuzzy models based on their own
indicators, introduced in the following sections and represented by white rectangles in Figure 1. Finally,
the aggravation and physical risk levels inferred by the FIS-AGGRAVATION and FIS-FRAGILITY
models are the inputs of the FIS-TOTAL SEISMIC RISK fuzzy model, which provides the total seismic
risk level as an output.

Therefore, using the original indicator’s raw values, each of the outputs of each sub-model also
acts as inputs for the next inference layer in the model’s structure. In this sense, we guarantee that all
variables entered in the model remain as fuzzy sets, giving the chance to connect them through a new
FIS without losing consistency, thereby allowing model completeness.

4.1. Physical Risk Fuzzy Model

The Physical Risk Fuzzy Model is based on previous work [28] and aims to describe the potential
damages caused by an earthquake to different critical urban infrastructure and basic supply lines:
Property, LifeLines and Network Supply lines. Three sub-models, each of which is a FIS, were used to
represent each type of damage using indicators, as shown in Figure 1: Property Damage (PD), Life Line
Sources Damage (LLSD) and Network Damage (ND). In this way, we can handle several indicators at
the same time yet narrowing the complexity of the model as the number of fuzzy rules is limited to 2*n
(with n = 3)).

Table 1 shows a brief description of the indicators used in the Physical Risk model and the
resources utilized for their estimation.

Table 1. Indicators used for the Physical Risk Fuzzy Model (References for ATC-13/ATC-21 and HAZUS
area [29,30], respectively).

Property Damage (PD)

Damage Area (The percentage of constructed area that is destroyed, estimated by means of ATC-13
and HAZUS).
Dead People (Number of deaths per 1000 inhabitants as estimated by ATC-13 and HAZUS).
Injured People (Number of injured per 1000 inhabitants as estimated by ATC-13 and HAZUS).

LifeLine Sources Damage (LLSD)

Telephonic Substation Affected (number of telephonic stations with high seismic vulnerability
according to ATC-21).
Electrical Substation Affected (number of electrical substations with high seismic vulnerability
according to ATC-21).
Damage in Water Mains (number of breaks along the supply water network per kilometer as
estimated by ATC-13 and HAZUS).

Network Damage (ND)

Damage in Gas Network (number of breaks along the gas network per kilometer as estimated by
ATC-13 and HAZUS).
Fallen Length of Electrical Lines (fallen length of electrical lines per network kilometer as estimated
by means of ATC-13 and HAZUS).
Damage in Mains Roads (Damage Index).

Each of these indicators was estimated using three FIS sub-models with their antecedent and
consequent parts divided into three linguistic classes: Low, Medium, and High. For example, Table 2
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shows the set of fuzzy rules that were used to estimate LifeLine Sources Damage levels (LLSD) using
three indicators.

Table 2. Rules defined for the FIS sub-model used to estimate Life Lines Sources Damage (LLSD).
TSA = Telephonic Substation Affected; ESBA = Electrical Substation Affected; DWM = Damage in
Water Mains; Antecedent’s and consequent’s membership functions: H = high, M = medium, L = low.

1. If (TSA is L) and (ESBA is L) and (DWM is L) then (DLLS is L)
2. If (TSA is M) and (ESBA is M) and (DWM is M) then (DLLS is M)
3. If (TSA is H) and (ESBA is H) and (DWM is H) then (DLLS is H)
4. If (TSA is M) and (ESBA is L) and (DWM is L) then (DLLS is L)
5. If (TSA is H) and (ESBA is L) and (DWM is L) then (DLLS is M)
6. If (TSA is L) and (ESBA is M) and (DWM is L) then (DLLS is L)
7. If (TSA is M) and (ESBA is M) and (DWM is L) then (DLLS is M)
8. If (TSA is L) and (ESBA is M) and (DWM is L) then (DLLS is M)
9. If (TSA is L) and (ESBA is H) and (DWM is L) then (DLLS is M)
10. If (TSA is M) and (ESBA is H) and (DWM is L) then (DLLS is M)
11 If (TSA is H) and (ESBA is H) and (DWM is L) then (DLLS is H)
12. If (TSA is L) and (ESBA is L) and (DWM is M) then (DLLS is L)
13. If (TSA is M) and (ESBA is L) and (DWM is M) then (DLLS is M)
14. If (TSA is H) and (ESBA is L) and (DWM is M) then (DLLS is M)
15. If (TSA is L) and (ESBA is M) and (DWM is M) then (DLLS is M)
16. If (TSA is H) and (ESBA is M) and (DWM is M) then (DLLS is H)
17. If (TSA is L) and (ESBA is H) and (DWM is M) then (DLLS is H)
18. If (TSA is M) and (ESBA is H) and (DWM is M) then (DLLS is H)
19. If (TSA is H) and (ESBA is H) and (DWM is M) then (DLLS is H)
20. If (TSA is L) and (ESBA is L) and (DWM is H) then (DLLS is M)
21. If (TSA is M) and (ESBA is L) and (DWM is H) then (DLLS is M)
22. If (TSA is H) and (ESBA is L) and (DWM is H) then (DLLS is H)
23. If (TSA is L) and (ESBA is M) and (DWM is H) then (DLLS is H)
24. If (TSA is M) and (ESBA is M) and (DWM is H) then (DLLS is H)
25. If (TSA is H) and (ESBA is M) and (DWM is H) then (DLLS is H)
26. If (TSA is L) and (ESBA is H) and (DWM is H) then (DLLS is H)
27. If (TSA is M) and (ESBA is H) and (DWM is H) then (DLLS is H)

To estimate a physical risk level, each sub-model acts as an independent inference system using as
inputs their respective original set of indicators. In the subsequent steps, the Physical Risk model uses
the estimated inferences obtained from the three FIS sub-models and performs the final estimation
through the FIS called Physical Risk.

In the case of Physical Risk, its FIS has its antecedent part, divided into a universe of discourse of
three linguistic classes: Low, Medium, and High. Each class is associated with a membership function
type: Z-shaped, Pi-shaped, and S-shaped, respectively [31]. The FIS consequent part was characterized
by five linguistic classes: Low, Medium-Low, Medium-High, High, and Very-High, each related to a
membership function type: Z-shaped, Pi-shaped (the three middle ones), and S-shaped, respectively.
Figure 2 shows a conceptualization of the membership functions used in the experiments.

All membership function shape parameters were chosen to suit both the numerical range and
variability of available data. We used the center of gravity (COG) method for the defuzzification of
each inference. Following a fuzzy modeling approach allowed us to implement simple fuzzy logic
rules to relate each of the indicators (pertaining to a particular FIS) with a specific fuzzy outcome
according to their empirical relationship. In this way, each FIS is composed of a set of fuzzy rules
(if–then type), which relates the indicator’s fuzzified values with an empirical fuzzy consequence.

The initial values of physical risk indicators were originated as outputs of a probabilistic risk
scenario developed in the framework of the Risk-UE project of the European Commission [32].
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4.2. Aggravation Fuzzy Model

The Aggravation Fuzzy Model is based on the seismic risk conceptualization provided by [33]
and includes elements representing the social fragility and lack of resilience capacity of an urban area.
The fragility dimension aims to enclose proxy elements describing the different life quality levels
and social inequality space distribution. The resilience dimension describes a representative set of
available city resources to respond to an emergency (some of the indicators included in this model
were developed by city authorities and census open data). Table 3 shows a brief description of the
indicators used in the Aggravation model.

Table 3. Indicators used for the Aggravation Fuzzy Model.

Fragility

Marginal Slums. Percentage of: Slum area/Locality area.
Social Disparity Index: Index from 0 to 1.
Population Density: Inhabitants / km2 of built area.

Resilience

Human Health Resources: Human resource in health per 1000 inhabitants.
Emergency Operability: Index given by City Authorities (from 0 to 2).
Development Level: Index given by City Authorities (from 1 to 4).

The inner structure of the Aggravation Fuzzy Model was developed following the same nature of
the Physical Risk Fuzzy model, so each aggravation dimension constitutes an independent FIS. After
Fragility and Resilience levels are estimated through their respective FIS, they are used as the primary
input for a third FIS, where a final aggravation level is calculated (see Figure 1). In the same way as
previously, inference fuzzy rules were defined among indicators to simulate empirical knowledge
regarding fragility and resilience development and dynamics. An example of the fuzzy rules used
for estimate aggravation can be seen in Table 4 describing the sub-model called Resilience, where
three classes were defined for its antecedent part, while its consequent part was divided into five
linguistic classes.
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Table 4. Rules defined for the FIS sub-model used to estimate Resilience levels (R). HHR = Human
Health Resources, EO = Emergency Operability, DL = Development Level. Antecedent’s membership
functions: H = high, M = medium, L = low. Consequent’s membership functions: VH = Very High,
H = High, MH = Medium-High, ML= Medium-low, L = Low.

1. If (HHR is L) and (DL is L) and (EO is L) then (R is VL)
2. If (HHR is M) and (DL is M) and (EO is M) then (R is M)
3. If (HHR is H) and (DL is H) and (EO is H) then (R is VH)
4. If (HHR is M) and (DL is L) and (EO is L) then (R is L)
5. If (HHR is H) and (DL is L) and (EO is L) then (R is H)
6. If (HHR is L) and (DL is M) and (EO is L) then (R is L)
7. If (HHR is M) and (DL is M) and (EO is L) then (R is M)
8. If (HHR is H) and (DL is M) and (EO is L) then (R is H)
9. If (HHR is L) and (DL is H) and (EO is L) then (R is M)
10. If (HHR is M) and (DL is H) and (EO is L) then (R is M)
11. If (HHR is H) and (DL is H) and (EO is L) then (R is H)
12. If (HHR is L) and (DL is L) and (EO is M) then (R is L)
13. If (HHR is M) and (DL is L) and (EO is M) then (R is M)
14. If (HHR is H) and (DL is L) and (EO is M) then (R is H)
15. If (HHR is L) and (DL is M) and (EO is M) then (R is M)
16. If (HHR is H) and (DL is M) and (EO is M) then (R is H)
17. If (HHR is L) and (DL is H) and (EO is M) then (R is M)
18. If (HHR is M) and (DL is H) and (EO is M) then (R is H)
19. If (HHR is H) and (DL is H) and (EO is M) then (R is H)
20. If (HHR is L) and (DL is L) and (EO is H) then (R is M)
21. If (HHR is M) and (DL is L) and (EO is H) then (R is H)
22. If (HHR is H) and (DL is L) and (EO is H) then (R is H)
23. If (HHR is L) and (DL is M) and (EO is H) then (R is H)
24. If (HHR is M) and (DL is M) and (EO is H) then (R is VH)
25. If (HHR is H) and (DL is M) and (EO is H) then ((R is VH)
26. If (HHR is L) and (DL is H) and (EO is H) then (R is H)
27. If (HHR is M) and (DL is H) and (EO is H) then (R is VH)

4.3. Total Risk Fuzzy Model

Once physical risk and aggravation levels have been estimated, they are used as inputs for the
final FIS called Total Risk, which is used to determine a final integral seismic risk level as a result of the
convolution of the aforementioned two dimensions. In this model, five linguistic classes characterize
antecedents and consequents: Low, Medium-Low, Medium-High, High, and Very-High, as shown in
the lower plot of Figure 2.

The FIS Total Risk is based on a set of 25 fuzzy rules interrelating empirical relationships between
physical risk and social aggravation. Figure 1 shows a conceptualization of the flux of information and
the main functioning of the whole Integral Seismic Risk Model. The fuzzy rules used to estimate Total
Risk can be seen in Table 5.

Table 5. Rules defined for the FIS sub-model used to estimate Total Risk levels. TR = Total
Risk, PHR = Physical Risk, AG = Aggravation, VH = very-high; H = high; MH = medium-high;
ML = medium-low; L = low.

1. If (Ag is L) and (PhR is L) then (TR is L)
2. If (Ag is ML) and (PhR is L) then (TR is ML)
3. If (Ag is MH) and (PhR is L) then (TR is ML)
4. If (Ag is H) and (PhR is L) then (TR is ML)
5. If (Ag is L) and (PhR is L) then (TR is MH)
6. If (Ag is L) and (PhR is ML) then (TR is ML)
7. If (Ag is ML) and (PhR is ML) then (TR is ML)
8. If (Ag is MH) and (PhR is ML) then (TR is MH)
9. If (Ag is H) and (PhR is ML) then (TR is MH)
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Table 5. Cont.

10. If (Ag is VH) and (PhR is L) then (TR is MH)
11. If (Ag is L) and (PhR is MH) then (TR is ML)
12. If (Ag is ML) and (PhR is MH) then (TR is MH)
13. If (Ag is MH) and (PhR is MH) then (TR is MH)
14. If (Ag is H) and (PhR is MH) then (TR is MH)
15. If (Ag is VH) and (PhR is MH) then (TR is H)
16. If (Ag is L) and (PhR is H) then (TR is MH)
17. If (Ag is ML) and (PhR is H) then (TR is VH)
18. If (Ag is MH) and (PhR is H) then (TR is VH)
19. If (Ag is H) and (PhR is H) then (TR is H)
20. If (Ag is VH) and (PhR is H) then (TR is VH)
21. If (Ag is L) and (PhR is VH) then (TR is VH)
22. If (Ag is L) and (PhR is VH) then (TR is VH)
23. If (Ag is MH) and (PhR is VH) then (TR is H)
24. If (Ag is H) and (PhR is VH) then (TR is H)
25. If (Ag is VH) and (PhR is VH) then (TR is VH)

5. Results and Discussion

In this section, the integral seismic risk fuzzy model described in the previous section and
Moncho’s equation are used to estimate integral seismic risk levels for the cities of Barcelona, Spain,
and Bogota, Colombia. We compare these results in terms of their spatial distribution patterns and
their estimated quantitative risk values. Before going through the results obtained for these two cities,
a comparison study of both approaches (fuzzy models and Moncho’s equation) in a synthetic problem
is presented to clarify the different behavior of both types of models.

5.1. Comparison Surfaces of the Fuzzy Model and the Index Method in a Synthetic Dataset

An analysis of the differences between the solution surfaces of Moncho’s equation and the fuzzy
model is performed. A synthetic database [33] is used to show how the linearity of Moncho’s equation
generates a smooth surface, while a fuzzy model displays a rough surface more suitable to describe a
non-linear response of the simultaneous influences of different indicators. These surfaces are shown in
Figure 3.Appl. Sci. 2020, x, x FOR PEER REVIEW 11 of 22 
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The lineal assumption made in Moncho’s equation generates a non-balanced contribution between
aggravation and physical risk to the overall composite, underestimating the influence of the aggravation,
particularly in its lower part.

Let us first analyze the case in which the physical risk is zero. In this case, Moncho’s equation
always obtains a constant total risk of zero regardless of the aggravation value. The same happens
not only with a value of zero but also for small values of physical risk, with the total risk remaining
practically constant regardless of the aggravation taking large values. It is important to underline that
both physical and aggravation are risk factors that must have an impact on total risk. The total risk
should not be null just because there is no physical risk. The previous sentence is a fundamental point
that we consider to be a strong limitation of the approaches that use Moncho’s equation.

In the case of the fuzzy model, the apparent dependence on physical risk values and the inherent
diminishing of the influence of aggravation is no longer observed on its solution surface. Hence, the
way higher aggravation values combine with physical risk to generate total risk levels is consequent and
more natural, with the main assumption made in an integral risk estimation in which both dimensions
should be shaping any total risk level. As we will see later, these characteristics have a vital significance
in terms of the final interpretation of the role that each indicator is playing to generate a particular total
risk level.

Another interesting aspect to comment on is the shape of the surfaces. The surface obtained with
Moncho’s equation has a very pronounced profile due, on the one hand, to the fact that for low physical
risk values, the total risk remains low regardless of the aggravation values. On the other hand, for high
values of physical risk, the influence on the total risk of the aggravation is very high, e.g., the total risk
is doubled when physical risk and aggravation have maximum values. Contrarily, the surface derived
from the fuzzy model has a softer shape, with a moderate progression. This allows obtaining more
balanced and sensible model responses for close values of physical risk and aggravation.

5.2. Results for Barcelona

The city of Barcelona is divided into 10 administrative districts and 73 neighborhoods. For statistical
purposes, the city is also split into an arbitrary division of 273 small-sized areas called ZEP (small
statistical areas, in Spanish; this division was recently replaced with a new group of 233 “basic statistical
areas” but their statistical objectives remain the same). The left-hand side plots of Figure 4 show the
spatial distribution of aggravation levels estimated for the 10 administrative districts of Barcelona
according to the proposed fuzzy model (upper plot) and Moncho’s equation (lower plot). Both
estimations show that aggravation levels in Barcelona are divided into two main areas: the highest
aggravation is spread mostly over the northeast part of the city, whilst lower aggravation levels are
contained in the southwest.

It is interesting to note, however, how both models differ in representing the shift between the
two extreme labels of these categories (from low to very high). The index method estimates the higher
levels of aggravation for Districts (1), (8), (9), and (10), while the proposed method estimates the
same districts, plus District (7), but with much larger aggravation magnitudes. These results, which
effectively create a spatial frontier that indicates where significant aggravation levels start to grow, are
important when the final risk level is estimated. Figure 5 shows the numerical aggravation levels per
district obtained by the two models.



Appl. Sci. 2020, 10, 3017 11 of 20
Appl. Sci. 2020, x, x FOR PEER REVIEW 12 of 22 

 
Figure 4. Risk components obtained for Barcelona city by the fuzzy model (upper row) and the index 
model (lower part). From left to right: social aggravation, physical risk, and total seismic risk. 
Significant values of each component have been highlighted to show a measure of how the 
assumption of compensability can lead towards different risk spatial patterns. Regardless of the 
resemblances between the spatial configurations estimated by the two models for social aggravation 
and physical risk levels, it is clear how a linear aggregation produces a different total risk pattern. 

 

 

Figure 5. Aggravation values obtained for the 10 districts of Barcelona with the index method and the 
proposed fuzzy model. 

Figure 4. Risk components obtained for Barcelona city by the fuzzy model (upper row) and the
index model (lower part). From left to right: social aggravation, physical risk, and total seismic risk.
Significant values of each component have been highlighted to show a measure of how the assumption
of compensability can lead towards different risk spatial patterns. Regardless of the resemblances
between the spatial configurations estimated by the two models for social aggravation and physical
risk levels, it is clear how a linear aggregation produces a different total risk pattern.
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The center plots of Figure 4 show the estimated spatial patterns of physical risk levels for the
248 administrative zones (ZEP) utilizing the fuzzy model and Moncho’s equation, respectively. Both
approaches show that the highest levels of physical risk are mostly contained in the central part of the
city (districts: (1) Ciutat Vella and (2) Eixample). The most obvious difference is again in the magnitude
of physical risk, as shown in Figure 6.
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Figure 6. Physical Risk values for the 248 Barcelona small statistical areas (ZEP).

Moncho’s equation estimates the highest magnitudes of physical risk at ZEPs contained in Districts
(1) and (2). A magnitude of medium-low was estimated for a large extension of Districts (2) and (3),
which seems to create a corridor of physical risk between these two districts. In contrast, the fuzzy
model estimates that this same magnitude would be contained mainly towards the south and that the
same corridor may exist but involves a reduced number of ZEPs.

The right-hand-side plots of Figure 4 show the total risk spatial distribution of the levels calculated
from both approaches. Moncho’s equation estimates spatial distribution of total risk with its highest
values contained in the central area of the city, namely, over Districts (1) and (2). The fuzzy model also
estimates higher levels in these areas but, additionally, another large area is estimated at the northeast
of the city, having values labeled as medium-low. These spatial differences are worth examining more
carefully since they are not just a matter of value difference but are related to how both methodologies,
Moncho’s and fuzzy, perform the aggregation of the two dimensions of risk. We will further discuss
these implications in Sections 4 and 5.

Figure 7 shows total risk numerical values for the different ZEPs, where we can note the distribution
of similar values between the fuzzy and Moncho methods. It is important to note, as we discussed
before, that the physical risk levels estimated by the fuzzy model are lower than those calculated by
Moncho’s equation. However, this sort of underestimation related to Moncho’s outputs is not reflected
in the final total risk levels estimated by the fuzzy method, which are quite similar to those displayed
by Moncho’s equation. Therefore, we can see the crucial influence that aggravation values may have
on the final total risk level.
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5.3. Results for Bogota

Although Colombia’s capital is divided into 20 administrative localities, in this study, we used
only 19, since the 20th corresponds mainly to the rural area of the city. As before, to estimate social
aggravation for each district, we used statistical and demographic data as reported in [24].

The left-hand-side plots of Figure 8 show aggravation levels obtained by means of the proposed
fuzzy model (upper plot) and Moncho’s equation (lower plot). In this case, the general aggravation
level seems to be underestimated by the fuzzy model when compared with Moncho’s equation, or index
method. However, both models estimated that the highest values of aggravation are at the southwest
part of the city, corresponding to Districts (4)–(8). The east part of the city remains with medium-low,
while the northwest part of the city presents medium-high aggravation values.

The index method reaches a very-high value at the southwest part of the city while the northern
part presents mostly a medium-low aggravation value. Figure 9 shows the numerical values of the
aggravation levels for the 19 administrative districts of Bogota, obtained through the two methods.
As in the Barcelona case, the trend is similar to that obtained by the index method, although there is a
difference in the numerical values.

Physical risk levels were estimated using a probabilistic damage seismic scenario as a base,
which considered an earthquake of close to 0.2g of rock acceleration, and which was studied by the
Universidad de Los Andes in 1997 [34,35].

The center plots of Figure 8 show the physical risk spatial patterns of fuzzy and index methods,
respectively. Both estimate the highest physical risk values in the northern part of the city (Districts: (1),
(2), (11), (12), (13), and (17)). Figure 10 shows the physical risk numeric values over the 19 administrative
districts of Bogota estimated by both methods. It is clear that Moncho’s equation, or index method,
present the lowest values for almost all city localities, while the fuzzy model estimates are as much as
twice as high for the same locations.
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Figure 10. Physical Risk values obtained for the 19 administrative localities of Bogotá with the index
method and the proposed fuzzy model.

The right-hand-side plots of Figure 8 show the estimated spatial patterns of total risk, according
to the fuzzy model (upper plot) and the index method (lower plot), respectively. The fuzzy model
estimates that the highest levels of risk are present mostly in the south and the center parts of the city.
In contrast, the index method determines the highest risk levels for the northern part of the city and
only a small region in the south.

Figure 11 shows the total risk numerical values over the 19 districts of Bogota. The variability
estimated by the fuzzy model is similar to that estimated by the index method, especially at the
right-hand side of the plot.
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5.4. Comparison of Seismic Risk Spatial Distribution’s Patterns of the Fuzzy Model and the Index Method in
Barcelona and Bogotá

It is worth analyzing the differences carefully among total risk spatial patterns of both
methodologies where the advantages in performing a non-linear aggregation of indicators through fuzzy
methods can be seen. Such advantages are significantly important for any integral risk management
scheme because a more explicit and transparent assessment of how the different dimensions of risk
(either natural or anthropogenic) may be acting together to generate seismic risk is perceived.

Figure 4 highlights Barcelona’s estimated values for aggravation, physical risk, and total risk
levels achieved using the fuzzy model (upper row) and the index method (lower row). As we have
discussed, both methodologies estimate the presence of a large area with significant aggravation levels
located in the northeast part of the city. At the same time, both models assess that the highest physical
risk levels are mostly contained in the central area (which corresponds to the oldest part of the city).
However, it is noticeable that, according to the index method or Moncho’s equation, the total risk
spatial distribution seems to be limited or constrained by the nature of the original spatial configuration
estimated for the physical risk.

This feature can be translated as an underestimation of the influence of the aggravation component,
which could lead us to biased results or even to a contradiction scenario. For example, when calculating
physical risk levels, only particular components pertaining to this dimension were considered, such as
the number of lines of telephonic substations affected and the potential damage to the lifelines network.
Although important, these components do not reflect the entire nature of risk which, by definition
in Moncho’s equation, must be integral in order to be realistic. This means social fragility and social
vulnerability components (such as poverty, inequality, and number of slums) also play an important
role, and must be taken into account in the final calculation of risk. Another way to interpret this is
that the physical components of seismic risk are not the only ones that are driving seismic risk (and
therefore its spatial distribution) and that the human element is also influencing risk redistribution. In
any other case, all related activities of Disaster Risk Reduction, designed to reduce risk throughout
communities’ engagement and participation, would be unnecessary. Therefore, the assumption based
on the hypothesis that physical risk is the main driver of the final distribution of seismic risk remains
an open question and cannot be taken as an evenhanded reference.

This hypothesis is well reflected in the mathematical form of Moncho’s equation, where the
aggravation term is considered as a scalar/factor, increasing or decreasing the value of physical risk. We
can see the consequences in Figure 4 for Barcelona, where only those geographical areas first estimated
as having an amount and spatial pattern of physical risk, determine where total risk can appear later.
The same also holds true in the case of Bogota (Figure 8, lower row) where this same behavior can be
seen even more clearly. In the maps, we can see how the large area in the southwest part of Bogotá
with significant social aggravation levels does not have any influence on the distribution of total risk.
One might conclude that according to the index method, bad performance of the areas with significant
social aggravation levels could be compensated by good levels (low or medium) of physical risk, in
such a way that the total risk level in those areas is estimated as being low.

In terms of risk management, assuming a physical risk-based approach can be critical. As is
widely accepted, in an urban environment, the ex-ante social aggravation or vulnerability levels
can be conditioners for future trends or potential paths that may define levels of preparedness and
resilience [36–39]. Sometimes, such social processes may define particular dynamics that may amplify
the effects of the hazard [38,40]. Consider, for example, the second-order effects (both in intensity and
in duration time) over a panorama of high aggravation levels or the post-disaster recovery strategies
that can be weakened by the presence of areas with significant levels of social fragility and inadequate
resilience capacities [37,41–44]. All of this is translated as a coercive environment for pre- and post-
disaster actions that could easily and rapidly transpire to be ineffective or insufficient.

This linear proportionality between total risk and the original spatial pattern of physical risk is
not seen in the fuzzy model. On the contrary, as is shown in Barcelona (Figure 4, upper row), when the



Appl. Sci. 2020, 10, 3017 17 of 20

final total risk level is estimated, it is influenced by the spatial pattern of physical risk (very similar to
that estimated by the index method). Nevertheless, the effect of the social component is still present,
merely in the area in the northern part of the city (with a total risk level of medium-low), which is
consistent with the presence of the extensive area with high social aggravation levels estimated before.

The absence of compensability between total risk and physical risk can also be observed in the case
of Bogota (Figure 8, upper row). As discussed previously, both methodologies estimated a considerable
area with high aggravation levels over the southern part of the city, with the highest physical risk
levels estimated in the northern part of the city. The influence of the social aggravation component
on total risk distribution can be quantified as the large south area with high and very high total risk
values, which is again consistent with the original aggravation estimated in that area.

Figures 12 and 13 show a quantification of the social aggravation component’s contribution to the
total seismic risk level for Bogota’s administrative localities and Barcelona’s districts, respectively.
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northeast area of District 9, with significant social aggravation levels. According to this result, the index
method would underestimate the total risk level in this area by a factor of 10.

In the case of Bogota, the difference between the total risk estimated by both models is significantly
more considerable (up to 200% for some areas); for example, in administrative localities 6, 7, 8, 9, 15,
and 18, which are those that present the highest difference with respect to the values estimated by the
index method, and also correspond to a high degree of social aggravation.

6. Conclusions and Future Work

Based on our results, we consider that a more realistic risk assessment (both in classification and
distribution) can be achieved using fuzzy approaches. Using fuzzy inference, it is possible to analyze
in more detail the influence of the social component considering a modeling framework in which
social vulnerability is not exclusively dependent on the pre-existence of significant levels of physical
risk. Avoiding the use of an unrestricted weighted linear aggregation scheme allowed us to represent
a quantitative measure of how significant levels of social vulnerability are reflected in an integrated
risk assessment, regardless of the good or bad performance of the physical/structural element. This
fuzzy feature can lead towards a more formal quantification of how the presence of significant social
fragilities or lack of resilience capacities might re-shape any seismic risk level.

The establishment of interrelated rules among indicators allows the assembly of compositional
rules of inference that are based on the same elements that are assumed to generate urban seismic risk.
Therefore, the inference process can be made following risk management knowledge allowing the
model to represent, with a certain degree of freedom, the current understanding of how aggravation
and physical risk merge. At the same time, it allows a real discussion of the fuzzy rule’s structure
strength, which can be improved though a deepest debate. Fuzzy logic potentialities can be exploited
in a more suitable way because outputs from each FIS used in the seismic model are always fuzzy sets,
giving the chance to connect them through a new FIS without losing consistency, and allowing model
completeness. It is worth noting that modeling seismic risk through fuzzy methodologies allows a
certain degree of flexibility over the model’s structure. In this way, the inclusion of new variables is
possible without significant technicalities. Economic and environmental variables could be added
to the model to increase its feasibility. Finally, the fuzzy model can be adapted to make estimates of
seismic risk at different space scales, whether at the urban, municipal, or national levels.
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