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Abstract

:

Featured Application


This research can be applied to home care monitoring systems to assist in providing care for dependent persons by analyzing abnormal events or falls.




Abstract


In this paper, an innovative home care video monitoring system for detecting abnormal and normal events is proposed by introducing a virtual grounding point (VGP) concept. To be specific, the proposed system is composed of four main image processing components: (1) visual object detection, (2) feature extraction, (3) abnormal and normal event analysis, and (4) the decision-making process. In the object detection component, background subtraction is first achieved using a specific mixture of Gaussians (MoG) to model the foreground in the form of a low-rank matrix factorization. Then, a theory of graph cut is applied to refine the foreground. In the feature extraction component, the position and posture of the detected person is estimated by using a combination of the virtual grounding point, along with its related centroid, area, and aspect ratios. In analyzing the abnormal and normal events, the moving averages (MA) for the extracted features are calculated. After that, a new curve analysis is computed, specifically using the modified difference (MD). The local maximum (lmax), local minimum (lmin), and half width value (vhw) are determined on the observed curve of the modified difference. In the decision-making component, the support vector machine (SVM) method is applied to detect abnormal and normal events. In addition, a new concept called period detection (PD) is proposed to robustly detect the abnormal events. The experimental results were obtained using the Le2i fall detection dataset to confirm the reliability of the proposed method, and that it achieved a high detection rate.
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1. Introduction


In recent years, 24/7 monitoring systems for dependent persons who are living alone at home have become an important topic of research in the field of image technology. Here, the term dependent persons not only includes older adults who require care with regular, long-term monitoring, but also disabled persons, and patients with chronic diseases [1]. Such people may have problems with mobility that can affect their health, quality of life, and expected life span. Falls are the most common injuries facing dependent persons. Accordingly, much research has focused on fall detection. Most systems in use for detecting abnormal events or falls are classified into three groups: those using wearable-sensors [2], or ambient sensors [3], and those using computer-vision and image processing [4,5,6]. Wearable sensors are commonly used to collect information related to body movements and provide notification when a fall occurs. However, movement-based systems cannot provide notification if the person is already unconscious after falling. Ambient sensors can be installed under the bed or floor to capture the vibration that occurs when a person falls. Although such sensors do not disturb the person, they can generate false alarms. For these reasons, a system based on computer vision is more beneficial and reliable. In addition, visual surveillance systems can detect specific human activities, such as walking, sitting, and lying down [7,8].



Therefore, we propose a vision-based system for home care monitoring that detects normal as well as abnormal events, including falls. The main contributions of this paper are described in the following developments.



	
A detection system for visible abnormal and normal events based on data gathered using an RGB video camera;



	
A modified method of statistical analysis involving virtual grounding point features that provides reliable information, not only on the exact time of a fall, but also on the pre-impact period of a fall.






In this study, our proposed approach makes an effort to improve the detection rates for abnormal and normal events in a home-care monitoring system. Since our intention is to develop a long-term monitoring system for an assisted-living environment, we take great care in considering the extracted features for the details of human posture for precisely detecting falls. In this study, we consider new features using the concept of a virtual grounding point for the human body, and related visual features. We conduct abnormal event analysis including modified statistical analysis. Finally, the decision-making process is performed by applying a support vector machine, and a new consideration that involves detecting the period of a fall.



The following provides a step-by-step description of system and method. We firstly conduct foreground and background separation to detect both moving and motionless people in the video scenes. Secondly, we perform feature extraction, including the construction of a virtual grounding point and its associated visual features. Thirdly, we obtain analytical information for fall events by analyzing moving averages for the extracted features, and computing differences for the observed moving averages for the extracted features. Finally, a support vector machine is used to set the rules for decision making and detect the period of the event in effectively distinguishing abnormal and normal events. The rest of this paper is organized as follows: Section 2 presents related works; Section 3 presents the methodologies of our proposed system; Section 4 presents and evaluates experimental results, and finally, Section 5 presents the conclusion and speculates on future trends in our approach.




2. Related Works


In most video monitoring systems, the most fundamental step is background subtraction, which assumes that the distribution of background pixels can be separated from that of foreground pixels in detecting a silhouetted object. Methods used for this purpose involve statistical measures such as median and mean [9] to model the background. In addition, a more complicated distribution for background pixels can be obtained using models such as mixture of Gaussians (MoG) [10] and mixture of generalized Gaussians (MoGG) [11]. As these methods do not always provide great performance due to not taking a knowledge of video structure into consideration, a low-rank subspace learning approach has been proposed [12] to take account of the video structure, including the temporal similarity of the background scene, and the spatial contiguity of foreground objects. However, most of these methods focus on solving for detection of moving objects in video scenes. When the foreground objects move very slowly, the redundant data occurs, resulting in serious outliers. To solve this problem, methods are applied for motion detection and frame differencing, eliminating redundant data [13]. However, this technique can result in a loss of useful information in real-life video sequences. Therefore, we have applied a graph cut theory as a solution for refining the results of background subtraction [14,15]. In this study, we achieved foreground refinement by combining MoG with the low-rank subspace learning method [12] for background subtraction and the graph cut algorithm [15].



In order to represent human objects in video sequences, shape analysis is performed using the bounding box method, which gives the attributes of height and width to calculate the aspect ratio in defining a fall. Our previous method for action analysis first involved creating a fitted ellipse bounding box around the object body [16]. The moment is then computed for the continuous images and the ellipse’s center. Its major axis, minor axis, and its orientation are used as the observed features for human actions. In addition, horizontal and vertical histograms are constructed to obtain good performance for posture detection of the object. An additional method in our previous work for feature extraction involved the variation of motion using timed motion history images (tMHI). This had provided the basic facts for detecting great motion in abnormal scenes. However, these techniques required fixed threshold values for analyzing and detecting the events. In addition, the movement characteristics in the walking patterns of the human body are studied by determining the features of temporal variability, such as joint angle (ankle, knee, hip, torso) movements. However, additional observations are needed in which values for temporal variations with the pre-selected variables might deviate during investigation, and useful information for analysis on potential features might be discarded. In this regard, the proposed method [17] uses movement variability throughout the whole body, which need not consider pre-selected variables. However, this system uses a full-body marker set, which consists of 28 markers placed on human body segments for gait analysis. Requiring the elderly and dependent persons who have chronic diseases to wear markers 24 h per day is unrealistic.



Moreover, we propose a three-dimensional model of the human body [18] based on the visual appearance of the human subject that changes over time in aspects such as self-shadowing, and clothing deformation. The idea is to develop an adaptive, appearance model for articulated body parts by using a mixture model that includes an adaptive template and a frame-to-frame matching process. As motivation for this approach, research featuring background subtraction from foreground silhouettes has not provided reliable tracking. This suggests that a three-dimensional articulated model of the human body must be developed without using a high-quality silhouette provided by background subtraction. However, the system has limitations in requiring high-quality resolution of image data and multiple cameras to cope with self-occlusions. In addition, a method of estimating real-time, multi-person, two-dimensional poses is proposed [19] by using part affinity fields of skeleton images. This architecture is designed to jointly study human-body part locations to recognize human poses by utilizing a convolutional neural network (CNN) trained with a large amount of data. However, the results which are tested on different datasets show that the detection of body parts could not adequately differentiate human subjects from objects similar to the human body. Therefore, a suggestion for improving this system involves embedding an improved background subtraction technique during the pre-processing stage. This kind of extended body part model might provide the research for the detection of abnormal or falls and normal daily activities. Moreover, the features based on the body shape of the silhouette images are investigated for patterns of human movement in the literature survey [20]. The boundary points of the body are extracted and the distances are calculated from the centroid of the object. Moreover, several physical features could be observed for the gait period, stride length, and height, as well as the ratio of chest width to body height with respect to analyzing the patterns of walking slow, fast and normal. However, most of the research that focused on an analysis of walking patterns mentions that each individual person has a unique walking style, and it is necessary to pre-select according to age, and gender, as well as whether subjects are healthy or not.



In analyzing abnormal and normal events, most systems utilize the coefficient of motion and prefixed threshold features [5,7,16,21]. The proposed method [22] uses four features as the inputs to a k-nearest neighbor (K-NN) classifier to detect a fall: orientation angle, ratio of fitted ellipse, coefficient of motion, and silhouette threshold. The overall accuracy of the system is 95% in real time video sequences. Similarly, a fall-detection method is proposed [23] that depends on the activity patterns of the detected person, such as the aspect ratio and speed of motion of the human object. The region based convolutional neural network (R-CNN) deep learning algorithm is then selected to obtain information on the object’s position in the video sequences during a fall. This method can be used to classify falls during normal daily activities with an accuracy of 95.50% using the simulated video sequences. Moreover, Charfi 2013 [24] observed fourteen features extracted from the detected bounding box, which includes the aspect ratio, centroid, and ellipse orientation for the detection of falls. The combination of Fourier and wavelet transforms, using first and second derivatives, is also utilized in determining these features. An evaluation is then performed using the support vector machine (SVM) and adaptive boosting (AdaBoost) classifiers. The system achieves an accuracy of 99.42%, a precision of 95.91%, and a recall of 92.15% using the Le2i fall detection dataset. In addition, another method for the detection of unnatural falls is proposed in 2018 [25] by extracting the features of aspect ratio, orientation angle, motion history image, and objects below the threshold line. The obtained features are utilized as the inputs for the detection system by applying SVM, K-NN, Stochastic Gradient Descent (SGD), Decision Tree (DT) and Gradient Boosting (GB). The observed performance of the detection system using Decision Tree (DT) provides an accuracy of 95%, a precision of 94%, and a recall of 95% in the Le2i fall detection dataset. Then, The proposed fall-detection system [5], in support of independent living for older adults, generates features for classifying falls by extracting motion information using a best-fit ellipse and a bounding box around the silhouetted object, projection histograms, and estimates for head position over time. A multilayer perceptron (MLP) neural network is used to generate the extracted features for fall classification. This method shows the reliability of the approach with a high fall-detection rate of 99.60% when tested with the UR (University of Rzeszow) fall detection dataset. The Le2i fall-detection dataset was also used to extend [26] the performance evaluation of the fall detection method. The accuracy of this method is 99.82% with a precision of 100% and a recall of 95.27%.




3. Proposed System Architecture


In this section, we provide an overview of the proposed home care monitoring system to detect abnormal events or falls occurring to ambulant people living independently. The term abnormal represents the falls and normal represents normal daily activities such as walking, standing, sitting and lying down. The proposed system uses a virtual grounding point concept, and its observable visual features are as shown in Figure 1. The proposed system includes four main components: object detection, feature extraction, analysis of abnormal and normal events, and the decision-making process for event detection. The technical details for each component are described in the following sub-sections.



3.1. Object Detection


The main purpose of object detection is to properly separate foreground objects from the background in the scene. There are two main parts in object detection, described as follows.



3.1.1. Mixture of Gaussians (MoG) Model


In this part, the mixture of Gaussians (MoG) using the low-rank matrix factorization model [12] is selected to perform foreground and background segmentation. Using this model, knowledge from previous frames is learned and updated frame by frame. The probabilistic model of MoG noise distribution in the low-rank matrix factorization form in each successive frame is briefly introduced in Equation (1):


   x i t  ~   ∏  k = 1  K   Ν    (   x i t  |    (   u i   )   T   v i  ,  σ k 2   )     z   i k   t    ,  z i t  ~ Multi  (   z i t  | Π  )     



(1)




where xit signifies the ith pixels of xt, k = 1…, K represents the number of Gaussians, N means the number of random variables, ui means the ith row vectors of low-rank properties; U(basis), and vi are the V(coefficient) matrices. In addition, σ and Π are the variances and mixture rate, respectively. Multi refers to the multinomial distribution. Then, the MoG model is utilized by implementing the expectation maximization (EM) algorithm on a new frame sample xt for updating parameters for foreground and background [12]. However, the resultant MoG cannot give the optimal solution for background subtraction, and ghost effects occur around the foreground object. In real-life video sequences, much redundant data occurs, as when foreground objects move very slowly or remain in place for a long period. In such situations, the system cannot always recognize a person as the foreground when the person comes into the frame and sits there for a long time. This has been a recurrent problem, but to address this issue, graph theory is used to refine the foreground.




3.1.2. Graph Cut


The resultant foreground and background pixels are given as a set of inputs for the video sequences. We now seek binary labels that mark each vertex vvertex as the foreground, set to 1, and the background set to 0. Then, these labels are computed by constructing a graph G = (vvertex, ε), where vvertex is the set of vertices (i.e., pixels), and ε is the set of edges linking nearby 4-connected pixels [15]. Finally, the maximum-flow and minimum-cut algorithm is applied to find the vertex labeling with a minimum energy function [27]. In applying the theory of graph cut for refining the foreground, we here focus on the user-assisted case, but note that an MoG mask is given every 100th frame, instead of manually re-drawing the scribbles and region of interest (ROI) for every frame. A comprehensive research problem and solution is illustrated in Figure 2.





3.2. Feature Extraction


In this component, the features are extracted from the detected foreground object, including the centroid (C), area, height, width, aspect ratios (r), and the virtual grounding point (VGP). Specialized terminology and notations for feature extraction are provided in the following.



With the use of VGP, we aim to define new parameters describing patterns of human action. Four steps are involved in constructing VGP, and the technical details are described as follows.



	
Firstly, the position p at time t of the detected foreground object is defined as in Equation (2).


  p  ( t )  =  (  x  ( t )  , y  ( t )   )   



(2)







Then, the centroid of the object is obtained by Equation (3), as shown in Figure 3a.


  C  ( t )  =  (   x c   ( t )  ,  y c   ( t )   )   



(3)







Specifically, each xc and yc is simply formulated as in Equation (4).


   x c  =   ∑  i = 1  N      x i   N  ,          y c  =   ∑  i = 1  N      y i   N     



(4)







	
Secondly, a vertical line from the top-most row to the bottom-most row is created along the x axis of the centroid, as shown in Figure 3b.



	
Thirdly, a horizontal line from the left column to the right column is created along the y axis of the centroid at the bottom-most row, as shown in Figure 3c.



	
Finally, a point for VGP(t) is marked on the horizontal line of the bottom row along the y axis where the vertical line on the x axis extends from the centroid. Figure 3d describes the final result for VGP, which can be formulated as in Equation (5).


VGP(t) = (xVGP(t), yVGP(t))



(5)










We noticed that the virtual grounding point (VGP) can be simply obtained from the object centroid. In addition, the patterns of posture can be analyzed by observing pairs of changes in C and VGP, as shown in Figure 4. The underlying pattern in Figure 4a indicates that the distance between C and VGP is initially quite short, and then lengthens as the pattern of the person’s position changes from lying down to getting up. The distance between points C and VGP in the pattern for sitting down is quite short, and it shortens during the transition from standing to sitting, as shown in Figure 4b. Therefore, the differences between VGP and C are regarded as values for the supportive features for abnormal and normal patterns, as formulated in Equation (6).


  d  ( t )  =  y  V G P    ( t )  −  y c   ( t )   



(6)




where d is the distance of VGP from C along the y axis, yVGP(t) means the virtual grounding point along the y axis at time t, and yc(t) represents the centroid along the y axis at time t.



Moreover, information on the regularity of the object shape related to VGP is obtained by calculating the area. Finally, the aspect ratio (r) of the object is simply calculated to predict the posture as in Equation (7). The concepts for calculating area and aspect ratio are shown in Figure 5.


  r  ( t )  = w  ( t )  / h  ( t )   



(7)




where r(t) represents the aspect ratio of the object at time t, and w and h refer to the width and height of the object, respectively.




3.3. Abnormal and Normal Event Analysis


In the analysis determining whether events are abnormal or normal, we first observe the features of VGP on xVGP(t), yVGP(t), d, area and r, starting with observed features for xVGP(t)and yVGP(t), as illustrated in Figure 6a. In the analysis for walking as shown in this Figure, xVGP(t) decreases at each pixel location before the turning point. The turning point indicates where the person is walking from, or standing to, the right or the left, and then turns to the left or the right. After this turning point, xVGP(t) again increases significantly. At that time, yVGP(t) also decreases during a finite period before the turning point, and then increases for an extended period after the turning point. Therefore, the period of actions can be clearly analyzed. Comparisons between distance d and yVGP(t) can be considered supportive VGP features in analyzing changes in the object’s position, as shown in Figure 6b. Then, aspect ratio (r) is added as a feature to efficiently analyze the object’s posture. The person remains in the same posture for a period of the time, as shown by orange and blue dashed lines in Figure 6c. Therefore, determining whether events are abnormal or normal depends on distance (d) and aspect ratio (r), as performed using the three steps described in the following sub-sections.



3.3.1. Moving Average (MA)


In analyzing the data points statistically, the moving average is first calculated on the series of data. An odd length symmetric moving average (MA) is computed, which can be utilized at points to smooth time series data in order to estimate the expected trend of abnormal events. We here propose a formula for moving average (MA) as in Equation (8).


  M A  (  t , F , N  )  =  1  2 N + 1     ∑  f = t − N   f = t + N    F  ( f )  ,       F  ( t )  = d  ( t )  , r  ( t )     



(8)




where MA(t,F,N) represents the average period in N at time t, N means the number of time periods, F(t) represents the computation on two features, namely point distance (d) and aspect ratio (r). We here set the optimal value of N at Th (MA(t, d, Th), and MA(t, r, Th)), to determine the detection rule by analyzing the crossing point. The optimal value of Th depends on the frame rate, and here we set Th = 51. The idea behind making observations from the crossing point of the moving average is demonstrated in Figure 7a,b.




3.3.2. Modified Difference (MD)


The difference calculus is formulated to determine stationary points on the moving average of aspect ratio (r) and point distance (d), as shown in Equation (9). The observation can clearly provide information on the high possibility of an abnormal point, confirmed according to the crossing point of moving average and the maximum or minimum stationary point.


  M D  (  t , F ,  N 0  ,  N 1   )  = M A  (  t , F  (  t +  N 0  +  N 1   )  ,  N 1   )  − M A  (  t , F  (  t −  N 0  −  N 1   )  ,  N 1   )   



(9)




where MD(t,F,N0,N1) represents the modified difference for the selected features (r and d) at time t between the predefined moving averages. The selected optimal value for N0 is 0 and N1 is 51.



Since the possibility of an abnormal point is estimated when the aspect ratio decreases relative to the pixel’s location, the maximum difference value (lmax) on the moving average of aspect ratios can give the highest abnormal action point. When a person falls, point distance d and its moving average immediately increases relative to the pixel’s location. In that case, a minimum difference value (lmin) must be considered in order to detect an abnormal event. Concepts for consideration are sketched out in Figure 8a,b.




3.3.3. Half Width Value (vhw)


In order to more precisely detect the periods of abnormal events, we here consider a parameter called half width value (vhw) on the curve of the modified difference. The starting point (f1) and the ending point (f2) are set at the half of the largest curve which can represent the irregular event. Then, the periods for abnormal and normal events are obtained by calculating the distance of f1 and f2, as in Equation (10), and the consideration of vhw is described in Figure 9.


vhw = |f1 − f2|



(10)




where vhw is the half width value of MD, f1 and f2 mean the estimated starting and ending periods of a fall event, respectively.





3.4. Decision Making Process


We first apply a support vector machine (SVM) in order to classify the abnormal and normal events. The main reason for selecting an SVM approach is that it can work well if the training dataset is small, or occupies a high dimensional space. For the extracted aspect ratio (r), lmax and vhw are used as inputs to SVM. Then, for the extracted point distance (d), lmin and vhw are used as inputs to SVM. Distance D extends to a point as a linear discriminating line, formulated by employing an implicit function to classify events. The formula for the observed aspect ratio (r) is


  D  ( r )  = a * r  (   l  max    )  − b * r  (   v  h w    )  + c ,        {     l 1     if    D  ( r )  ≥ 0      l 2    o t h e r w i s e      



(11)




where D(r) represents the distance between a point (support vector) and a linear straight line for the feature of aspect ratio r. lmax and vhw are local maximum and half width values from the observed modified difference, respectively. c means the SVM optimization value to avoid misclassifying each training example. l1 and l2 represent “abnormal” and “normal” events, respectively.



Then, the feature called point distance (d), from VGP to C is formulated as,


  D  ( d )  = a * d  (   l  min    )  − b * d  (   v  h w    )  + c ,        {     l 1     if    D  ( d )  ≥ 0      l 2    o t h e r w i s e      



(12)




where D(d) represents the distance between a point (support vector) and a linear straight line for the observed point distance between virtual grounding point and centroid. lmin and vhw are local minimum and half width values from the observed modified difference, respectively.



When we observe vhw for abnormal and normal events, we also notice that the period of an abnormal event is longer than that of a normal event. The reason is that a person who has fallen may take time to recover. If such a person does not get up for a long time, that would indicate a dangerous situation. An evaluation of the period of an event can be used to detect a fall.



To do this, we define the sets of abnormal events as A = {a1, a2, ..., ak}, and of normal events as N = {n1, n2, ..., nk}. We can then compute,


   α 1  = M I N  (   v  h w     )  ∈ A  



(13)






   α 2  = M A X  (   v  h w     )  ∈ N  



(14)







After that, the period detection (PD) of a fall for the observed aspect ratio (r) is obtained by,


  P D  ( r )  =  (   α 1   ( r )  +  α 2   ( r )   )  / 2 ,        {     l 1     if     v  h w   > P D  ( r )       l 2       otherwise       



(15)







Then, the period detection (PD) for point distance (d) is computed by,


  P D  ( d )  =  (   α 1   ( d )  +  α 2   ( d )   )  / 2 ,        {     l 1     if     v  h w   > P D  ( d )       l 2       otherwise       



(16)




where PD(r) and PD(d) mean period detection for abnormal and normal events for two features (aspect ratio r and point distance d, respectively). α1 represents the minimum period value for abnormal events. α2 represents the maximum period value for a normal event. l1 and l2 are the class labels for “abnormal” and “normal” events, respectively.



In setting the decision-making rules, the “undecided” class is nominated in order to save the failed states. For example, when a “normal” case is misclassified as an “abnormal” case, it can be considered low risk. Therefore, the decision rules are set to include the undecided class. In doing so, the rules for abnormal and normal event classification are verified with the ground truth, which refers to the information provided by direct observation. If the value for label l1 equals that for the ground truth, l1 is considered an “abnormal” event. If the value for label l2 equals that for the ground truth, l2 is considered a “normal event”, otherwise it is “undecided.”





4. Experiments


4.1. Dataset


In order to illustrate the proposed system, the experiments were conducted using the Le2i fall detection dataset [28], which represents a realistic video surveillance setting taken by a single RGB camera. The frame rate was 25 fps and the size was 320 × 240. The video sequences presented typical difficulties, such as occlusions, clutter, and textured backgrounds. In the video scenes, falls and normal daily activities were simulated at different locations, such as home and office. Different types of fall events were recorded to include falls caused by a loss of balance, as well as forward and backward falls. In the dataset, 20 videos were randomly selected to confirm the effectiveness of the proposed system. In the video sequences, four healthy subjects including three males and one female performed the simulated falls. Some of the video sequences used in the experiments are as shown in Figure 10.




4.2. Implementation and Results


In the experimental work, step-by-step procedures for object detection were conducted. Then, the acquired silhouetted objects were used to extract useful features through VGP. After that, the extracted features from the human body were analyzed to detect falls. At this point, we stress the importance of using step-by-step methodologies of statistical analysis for precisely detecting abnormal and normal events. We first calculated the moving average (MA) by observing details of human behavior and posture. For estimating the possibility of an abnormality through the crossing point, we performed approval calculations for the modified difference (MD), including its local maximum (lmax), and local minimum (lmin). In addition, the period of the falling event was analyzed using the half width value (vhw). In order to classify events as abnormal or normal, the lmax and vhw of aspect ratio (r), lmin and vhw of point distance (d) were used as the input features into a support vector machine (SVM). To visualize the input features, Figure 11 and Figure 12, respectively, illustrate r and d conducting the linear discriminating line for classification. Then, period detection (PD) using the half width value was performed to confirm falls. In addition, some of the experimental results for distinguishing abnormal from normal events are illustrated in Figure 13, Figure 14 and Figure 15, respectively. The analytical results for fall trajectories were demonstrated as shown in Figure 16.



For Figure 16, the following explains fall scenarios obtained from the trajectories.



	
Scenario 1: In the video scene, the person is walking from the right side to the chair near the window. Then, the person turns back and immediately falls down.



	
Scenarios 2, 3 and 8: In the video scenes, the person immediately falls down while walking from right to left, falling sideways, forward, and backwards, respectively.



	
Scenario 4: The person is standing near the window and then immediately falls while turning back.



	
Scenario 5: The person is walking from the left and then immediately falls down.



	
Scenario 6: The person walks from the right, and sits on a chair. While getting up from the chair, she immediately falls down.



	
Scenario 7: The person walks from the left, stands near a table and walks toward a chair near the window. After that, he immediately falls on the bedsheet.







4.3. Performance Evaluation


To evaluate the performance of the proposed methods, 3-fold cross-validation was conducted in which variables for learning and testing were swapped. We here suppose that the abnormal A = {a1, a2,…,a13}, and the normal N = {n1, n2,…,n7}. We then classified abnormal into three groups: A1 = {a1,…,a4}, A2 = {a5,…,a8}, A3 = {a9,…,a13}, and also for normal: N1 = {n1, n2}, N2 = {n3, n4}, N3= {n5,…,n7}. Then, we performed 3-trials with L1, L2, L3 representing the learning process, and T1, T2, T3 signifying the testing process for trials 1, 2 and 3, respectively. In trial 1, we assumed that L1 was (A2∪A3) ∪ (N2∪N3) for learning, and T1 was A1 ∪ N1 for testing. In trial 2, L2 was (A1∪A3) ∪ (N1∪N3) for learning, and T2 was A2 ∪ N2 for testing. In trial 3, L3 was (A1∪A2) ∪ (N1∪N2) for learning and T3 was A3 ∪ N3 for testing. After computing the learning process for each trial, L1, L2 and L3, the detection rate was obtained by using the testing T1, T2 and T3, respectively. The overall accuracies of the system were finally computed for each of the features by applying SVM and PD.



There are four possible results in classifying abnormal and normal events, and the definitions and symbols are described as follows.



	
Detected Abnormal (P11): A video includes an abnormal event, and is correctly classified into class “Positive Abnormal.”



	
Undetected Abnormal (P12): A video includes an abnormal event and is classified into class “Negative Normal.”



	
Normal (N11): A video does not include an abnormal event, and is correctly classified into class “Negative Normal.”



	
Misdetected Normal (N12): A video does not include an abnormal event, and is incorrectly classified into class “Positive Abnormal.”






The precision, recall, and accuracy were used for evaluating performance, calculated as follows.


  Precision =    P  11      P  11   +  N  12     * 100  



(17)






  Recall =    P  11      P  11   +  P  12     * 100  



(18)






  Accuracy =    P  11   +  N  11      P  11   +  N  11     * 100  



(19)




where accuracy was considered by including the undecided area. The concepts for calculating precision, recall, and overall accuracy are illustrated in Figure 17.



The detection precision achieved 93.33% by utilizing SVM and PD for each of the features: aspect ratio and point distance. The percentage of recall by applying SVM and PD were 100% and 93.33% for the two features, respectively. Table 1 provides a comparison of our proposed detection method for abnormal and normal events versus existing approaches.



The proposed system was implemented in MATLAB 2018b on an academic license using C++. All of the experiments were performed on a Microsoft Windows 10 Pro with an Intel (R) Core (TM) i7-4790 CPU@3.60 GHz and 8GB RAM. Comparing runtime with existing systems is difficult, due to the various programming and optimization levels in use. The overall average computation time for our proposed system is 0.72 s per frame. We expect that implementation on a tuned GPU would be faster, and could provide real-time monitoring.




4.4. Comparative Studies of the Effectiveness and Limitations of the Proposed System


Charfi, 2013 [24] proposed an approach to detect falling events in a simulated home environment. The processes of the system are motion detection and tracking using background subtraction. The extracted binary image is used to construct the coordinates of the bounding box, aspect ratios, and ellipse orientation. Then, SVM and the Adaboost-based method are utilized to classify falls. This system is robust regarding the location changes and taking into account a tolerance on the instant of detection.



The proposed system by Gunale, 2018 [25] extracts four visual features: motion history image (MHI), aspect ratio, orientation angles using ellipse approximation, and the thresholds below the referenced line. After that, these features are inputted into five different machine learning algorithms (i.e., SVM, K-NN, SGD, GB and DT) to recognize falling problems. The DT provides the optimal result to confirm the effectiveness of the system. The limitations of the applied methods are not widely discussed and the deep learning models could be utilized to improve the detection rates in future work.



The system proposed by Suad, G. A, 2019 [26] investigated the effectiveness of motion information by using tMHI, the variations of shape which are fixed in the approximated ellipse around the silhouette body and the standard deviation of the difference for both horizontal and vertical histograms. Then, the neural network is applied to detect falls. The limitations are that the performance of the system depends heavily on multiple fixed thresholds. Thus, it is essential to judge the thresholds which are the best for detecting falls. In addition, these threshold parameters are needed to observe the adaptation for different persons in the monitoring system.



In our proposed system, background subtraction using MOG and foreground refinement using graph cut are performed to obtain the silhouette images with low loss of useful information. Then, the concept of VGP and the related visual features are properly presented to retrieve significant abnormal and normal action patterns. In the analysis component, we emphasize that detection of a falling point within the falling period depends on the modified difference of moving average. Finally, these features are put into SVM and PD. The proposed system shows the effectiveness of the system with high detection rates. The system scope is limited to attaining a real-time monitoring system due to the time-consuming object detection techniques that provide good foreground images. The current research works focuses on day-time visual abnormal and normal event detection. However, providing a 24-h service requires extending the monitoring period to include night-time monitoring. Moreover, a better understanding of the environment and of human–object interaction should be developed to create an improved home-care monitoring system.





5. Conclusions


The research work reported in this paper mainly focused on image processing technologies to assist in providing care for dependent persons, using a new approach for reliably detecting a fall or abnormal event. In brief, this approach uses an enhanced background subtraction method for object detection, as well as a simple and effective feature extraction method incorporating the new concept of a virtual grounding point. Moreover, a step-by-step approach is used for detailed considerations in correctly selecting useful features by employing moving average and difference calculus. Finally, abnormal and normal events are classified using a machine learning method employing a support vector machine and our proposed period detection for events. Experimental results indicate that the detection rate using the proposed approach achieves 100% with a low risk for error. However, our purpose is not only to detect abnormal events such as falls, but also the details of human behavior during normal activities by embedding an understanding of the environment. Future research in developing a robust home care monitoring system will be enhanced by considering when and where normal and abnormal activities occur.
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Figure 1. Overview of the proposed system. 
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Figure 2. Foreground refinement by using graph cut. 
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Figure 3. Constructing a virtual grounding point by (a) centroid of object, (b) vertical line from top row to bottom row across the x axis, (c) horizontal line from the left to right columns across the y axis, (d) virtual grounding point. 
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Figure 4. Example action patterns obtained from constructing the virtual grounding point. (a) Getting up pattern by changing centroid (C) and virtual grounding point (VGP). (b) Pattern for sitting down by changing centroid (C) and virtual grounding point (VGP). 
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Figure 5. Illustration for area, width and height of object. (a) Area of object. (b) Width (w) and height (h) of object. 
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Figure 6. Concepts for observation of human posture. (a) Observation on the features xVGP(t) and yVGP(t). (b) Observation on the features yVGP(t) and d(t). (c) Observation on the features d(t) and r(t). 
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Figure 7. Analysis for possibility of abnormal event by using moving average. (a) Moving average calculation on aspect ratio. (b) Moving average calculation on point distance. 
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Figure 8. Analysis for possibility of abnormal event by using modified difference. (a) Calculation of modified difference on moving average of aspect ratio. (b) Calculation of modified difference on moving average of point distance. 
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Figure 9. Analysis for possibility of abnormal period by calculating half width value. (a) Half width value (vhw) on aspect ratio. (b) Half width value (vhw) on point distance. 






Figure 9. Analysis for possibility of abnormal period by calculating half width value. (a) Half width value (vhw) on aspect ratio. (b) Half width value (vhw) on point distance.



[image: Applsci 10 03005 g009]







[image: Applsci 10 03005 g010 550] 





Figure 10. Example video sequences which include the falls. 
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Figure 11. Results for abnormal and normal event classification using aspect ratio. (a) Event classification based on local maximum (lmax) and vhw. (b) Linear discrimination for class categories. 
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Figure 12. Results for abnormal and normal event classification using point distance. (a) Event classification based on local minimum (lmin) and vhw. (b) Linear discrimination for class categories. 
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Figure 13. Analyzing abnormal and normal events in scenario 1. (a) Abnormal event analysis based on lmax. (b) Abnormal event analysis based on lmin. 
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Figure 14. Analyzing abnormal and normal events in scenario 2. (a) Abnormal event analysis based on lmax. (b) Abnormal event analysis based on lmin. 
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Figure 15. Analyzing abnormal and normal events in scenario 3. (a) Abnormal event analysis based on lmax. (b) Abnormal event analysis based on lmin. 
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Figure 16. Experimental results for trajectory of fall scenarios where blue line indicates MA of the person, red line shows the period of a fall event by vhw, and orange point represents a falling point by lmax or lmin. 
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Figure 17. Illustration of performance evaluation from the classified abnormal and normal events. In this figure, (a) represents four different class labels, (b) represents the consideration for precision calculation (P11/(P11+N12)), (c) represents the recall calculation (P11/(P11+P12)), (d) represents the calculation of accuracy (P11+N11/P11+N11) where the undecided area is an empty set. 
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Table 1. Comparison with existing approaches using the same dataset.
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	Methods
	Precision
	Recall
	Accuracy





	Charfi 2013 [24]
	95.91%
	92.15%
	99.42%



	Gunale 2018 [25]
	95%
	94%
	95%



	Suad 2019 [26]
	100%
	95.27%
	99.82%



	Ours (SVM)
	93.33%
	100%
	100%



	Ours (PD)
	93.33%
	93.33%
	100%
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