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Abstract: The main aim of this study was to evaluate the applicability of the co-kriging method for
modeling the vertical movements of the Earth’s crust based on data acquired with the use of precision
leveling techniques and measurements conducted by permanent Global Navigation Satellite System
(GNSS) stations. Data were processed with the use of empirical, theoretical, and directional variograms
(semivariograms), as well as variogram maps. Large-scale spatial variability was determined using
polynomial regression. The relationships between the length of the semi-major and semi-minor axes vs.
the root mean square (RMS) and the standard error of the estimate were analyzed. The relationships
between the anisotropic direction and the number of lags were determined, and other parameters
were calculated. Preliminary data fitting produced non-stationary surfaces. The leveling data were
anisotropic, and the GNSS data were isotropic. Nugget effects were observed in both datasets,
in particular in the GNSS data. The size of the ellipse was strongly correlated with the RMS and σ

(average standard deviation of prediction). The anisotropy angle was determined using the number
of lags. Co-kriging was found to not be a suitable method for modeling the vertical movements of
the Earth’s crust based on data from various sources. The final result was strongly influenced by
the initial dataset. The obtained results show how the method of combining data sets (interpolation,
network adjustment) affected the final cartographic model.
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1. Introduction

The vertical movements of the Earth’s crust are caused by environmental, tectonic, geological,
and climatic changes. Cartographic models of the vertical movements of the Earth’s crust are used in
economics, Earth sciences, and reference systems. Data for cartographic models are acquired through
the use of direct (geodetic measurements) and indirect (geological, geophysical, geomorphological,
and hydrological data) techniques [1–5]. Geodetic datasets differ in their sources, measurement
methods, spatial and temporal resolutions, levels of reference, data processing methods, and data
trends. Cartographic models are also influenced by the applied interpolation method [6]. The choice
of interpolation method is particularly important when different datasets are used [7].

The main aim of this study was to evaluate the applicability of the co-kriging method for modeling
the vertical movements of the Earth’s crust based on data acquired with the use of precision leveling
techniques and measurements conducted using permanent GNSS stations.

The advancements in measurement techniques, the development of measurement systems with a
longer life cycle, and higher spatial and temporal resolution of measurements support the determination
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of the vertical movements of the Earth’s crust with unprecedented accuracy. The oldest datasets
(Figure 1) originated from precision leveling campaigns that were carried out every 20 years. These data
were used to develop vertical movement networks. The node points in vertical movement networks
are evenly distributed and mutually interconnected. Vertical movements are observed along leveling
segments (lines) with a length of several dozen to several hundred meters. The vertical movements
of the Earth’s crust are usually observed relative to a point on the Earth’s surface that is fixed or
has a “known” velocity. The advantage of this method is that it minimizes the influence of local
terrain deformations. Models of the vertical movements of the Earth’s crust based on daily data from
permanent Global Navigation Satellite System (GNSS) stations are the most widely used (Figure 1).
These movements represent the absolute motion relative to an ellipsoid of revolution. The quality of
GNSS data is determined mainly by the station’s operating time (minimum of 3 years) and how data
are processed by the system operator. The calculated velocities can represent local movements when
GNSS stations are separated by a considerable distance (several dozen kilometers) and when they
are not interconnected (do not form a network). The vertical movements of the Earth’s crust are also
analyzed based on satellite images, laser measurements, radar interferometry, altimetry measurements,
gravimetry missions, and tide gauge data [8–14].

The combination of leveling data and GNSS data from the permanent stations is difficult to
achieve due to various systems and working methods used [15] and the application of various solutions
in the process of creating vertical crustal movement models, ranging from mathematical models to
geophysical models [16].
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Figure 1. Leveling network (blue triangles) and distribution of GNSS stations (red frames). Source:
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The largest possible amount of available data (leveling and GNSS data) should be used to increase
the spatial resolution of the network points. Statistical and mathematical methods for adjusting several
networks, as well as interpolation techniques, are used for this purpose [17]. All datasets must have a
network structure to be processed with the use of statistical methods. As mentioned earlier, vertical
movements based on GNSS data do not have a network structure. In our previous study [18], the
vertical movements of the Earth’s crust were determined based on GNSS data as relative movements
rather than absolute movements. A network structure based on Delaunay triangulation was proposed,
where the observations were based on the vertical movements between GNSS stations that constitute
triangle vertices [19]. This approach was adopted to adjust the network.

Connecting nodes have to be identified to link several independent networks of vertical movements.
A solution to this problem was proposed by [20]. An analysis of unadjusted vertical movement changes

mapy.geoportal.gov.pl


Appl. Sci. 2020, 10, 3004 3 of 15

on selected leveling lines used to estimate the maximum distance between nodal points and GNSS
permanent stations was conducted. Therefore, points from a double-leveling network and a network
of GNSS stations ASG EUPOS (Active Geodetic Network - European Position Determination System)
can be considered as corresponding to the same nodal point (pseudo-nodal point). These points should
less than 10 km apart. Connecting nodes are defined to simultaneously adjust independent networks
of vertical movements and to generate a cartographic model of the vertical movements of the Earth’s
crust. The model can also be developed with the use of interpolation methods.

In this study, a least-squares collocation was selected as the optimal method due to the use of
geophysical data, differences in the spatial and temporal distribution of network points, and the possible
presence of anisotropy and data trends. This group of methods involves kriging and its modification,
namely co-kriging, which was developed for modeling surfaces based on several datasets. Co-kriging
interpolation with a variogram (semivariogram) analysis was deployed in this study. This advanced
method supports the evaluation of data during the selection of interpolation algorithm parameters.
The relationships between data are modeled to adjust for the effect of extreme values and derive
skeleton lines [21–24]. Variogram analyses are performed to determine the correlations between the
location of network points and point values. Variogram analyses support the description of anisotropic
directions, the magnitude of nugget effects, and the variance. The selection of the optimal variogram
significantly influences the quality of the generated model. An excessive variance could be indicative
of low-quality data that requires additional processing. The nugget effect denotes undesirable local
extremes in the process of modeling the vertical movements of the Earth’s crust. These extremes have
to be reduced or eliminated to obtain an accurate cartographic model. Data analyses also provide
information about the homogeneity of datasets, which is particularly important in hybrid models of
vertical crustal movements (for example models that rely on leveling data and GNSS data). Statistical
analyses are performed before and after interpolation to assess the quality of the model and its
applicability for research.

In this study, the information about the relative vertical movements of the Earth’s crust was acquired
from precision leveling campaigns and GNSS measurements on the territory of Poland (465 points).
Poland is situated in Central Europe, and its landform is influenced by glacial movements and, to a
minor extent, plate tectonics and geological events caused mainly by fossil mining. The characteristics
of the existing maps (cartographic models) of vertical crustal movements on the territory of Poland are
presented in Table 1. None of the existing models describe anisotropy or nugget effects, and none of
them combine leveling data with GNSS data.

Table 1. Characteristics of maps (cartographic models) of the vertical movements of the Earth’s crust
on the territory of Poland [25–29].

Authors Data Type Type of Data
Processing

Form Maps
(Models) Interpolation Determination

of Anisotropy

Additional
Isoline

Corrections

[25] Precise
leveling Point Adjustment Analog Linear No Geological

[26] Precise
leveling Point Adjustment Analog Linear No Geological

[27] Precise
leveling Point Adjustment

Analog,
numerical (grid:

20′ × 20′)

Collocation
using the
Hirvonen
analytical
function

No No

[28]
Data from

GNSS
stations

Point Development of
time series Analog

Kriging method
with the linear
semivariogram

No data No

[29]
Data from

GNSS
stations

Point
Development of

time series,
adjustment

Analog
Kriging method
with the linear
semivariogram

No No
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The obtained results show how the method of combining data sets (interpolation, network
adjustment) affects the final cartographic model.

2. Materials and Methods

Four precision leveling campaigns have been carried out in Poland (#1: 1926–1937, #2: 1953–1955,
#3: 1974–1982, #4: 1997–2003). Most of the collected data covers the territory of Poland after World
War II. The first campaign was weakly documented and the relevant data were not used in this study.
The remaining data were used to develop maps of the vertical crustal movements (Table 2, datasets A
and B). The vertical movements were determined at points in the double-leveling network (vertical
movement network). Successive movements were determined at network points based on data from
the second, third, and fourth campaign (Table 2, dataset C), which determined the relative vertical
movements of the Earth’s crust based on data from permanent GNSS stations (with a life cycle of
5 years) (Table 2, dataset D). For this article, the first joint alignment of vertical motion networks based
on leveling and GNSS data was carried out. (Table 2, dataset E).

Table 2. Characteristics of datasets used in the analysis. GNSS: Global Navigation Satellite System.

Data Set Leveling Data GNSS Stations
Data

Number of Nodal
Points

Number of Leveling
Campaing

A + − 98 #2, #3

B + − 222 #3, #4

C + − 228 #2, #3, #4

D − + 123 −

E + + 345 #3, #4

All values in the analyzed datasets relate to the same point with a constant velocity. The same
adjustment method was used to facilitate the analysis and compare the generated models. Datasets
differed in their spatial and temporal resolutions (Figure 2).
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The spatial distribution of points in each dataset was determined by the density of the
double-leveling networks (A, B, C) and the location of permanent GNSS stations (D). Due to the shape
of the leveling network, dataset A was composed of sparsely distributed points on leveling lines.
The remaining datasets had a higher spatial resolution. Datasets C and E were used as the reference.

A fully functional model can be derived from a limited set of representative data with the use of
kriging interpolation [30]. The interpolated values are determined based on the correlations between
the value and the location of the analyzed points. Kriging differs from other interpolation methods in
that it relies on interpolation algorithms to identify, describe, and eliminate trends from representative
data [23]. Kriging is a non-uniform method. The same data can be processed in many ways to produce
radically different results that highlight and expose trends and information according to the preset
parameters. Kriging methods can be classified based on the sampling interval for interpolation (local
kriging, global kriging) and their application (ordinary kriging, block kriging, indicator kriging, and
co-kriging, i.e., kriging with an additional variable). Simple kriging, ordinary kriging, and universal
kriging methods are the most popular. Similar to least-squares collocation, kriging relies on the
assumptions of the least-squares adjustment method. In kriging, the estimated value is expressed as the
weighted average of the observation vector, and weights are assigned based on the distance between
observations and the distance between observations and the location of the interpolated points [23].
This solution is used to identify significant discontinuities and their parameters, to determine the
predicted value, and to evaluate the estimated value (variance estimation). In co-kriging, various
datasets can be merged and analyzed in terms of their characteristic features.

The relationships between random variables are typically determined with the use of
variant–covariant matrices. The structure of the matrix defines the strength of the correlations
between variables based on the similarities between points. In co-kriging, parameters are selected with
the use of a variogram. A variogram [31] describes the spatial differentiation of data. A variogram
or a semivariogram, a simplified version of a variogram, is used to describe the spatial structure of
data, and it provides information about the range, strength, and direction of the correlations between
data. A semivariogram is half a variogram, where the semivariance increases with an increase in
distance [32]. Semivariance increases to a certain point, after which point, it is stabilized. The maximum
variance of a dataset is represented by a sill, which is used in large-scale studies to describe pairs of
distant points. If a dataset contains random errors, measurement errors, or other inconsistencies, the
semivariance increases rapidly for small distances (semivariogram limits), and this increase is referred
to as the nugget effect [31]. A variogram is optimized with the use of lag intervals. Every dataset is
described using an empirical variogram that is not linear due to the presence of random variables in
the dataset. A variogram can only be used in interpolation if it is described using an environmental
function. Predefined functions are fit to data with an empirical variogram. A highly irregular dataset
(with many random variables) can be described with several functions. Typical predefined functions
include the nugget effect, spherical function, exponential function, Gaussian function, linear function,
and power function [33].

Datasets can be divided into the following categories based on the randomness of the data:

(a) Isotropic: On isotropic surfaces, changes in attribute values are influenced by distance but not by
direction; therefore, attribute values change identically in all directions.

(b) Anisotropic: On anisotropic surfaces, changes in attribute values are influenced by both
distance and direction; therefore, attribute values change irregularly in space and they differ in
various directions.

Anisotropic surfaces can be further divided into:

(a) Geometric anisotropy: Attribute values change similarly in all directions but vary with distance;
therefore, the same variability is achieved in different directions when points are separated by a
varied distance.
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(b) Zonal anisotropy: Variability is not regularly distributed in space; this type of anisotropy results
from data trends.

The type and parameters of anisotropic datasets are identified with directional variograms.
A variogram map presents an alternative to several directional variograms. The analyzed area is
covered by a single semivariance map. The anisotropic direction is described by generating variograms
for angular segments with a given tolerance. The tolerance defines the angle at which points will be
analyzed relative to the defined direction.

3. Calculation

3.1. Variogram Maps for Evaluating Dataset Coherence: Anisotropy and Isotropy of Data

Datasets (A, B, C, D, E), as well as their combinations (AB, BD, BD, DB, F, G), were analyzed
using co-kriging to achieve the main research objective. Datasets (AB, BA, BD, DB) were merged using
co-kriging. The first letter denotes the initial dataset in the co-kriging. Set F contained datasets A and B
as a single file, and dataset G contained datasets B and D. All datasets were analyzed for the presence
of trends, and their coherence was evaluated. Trends were determined using polynomial regression.
The degree of the polynomial was selected empirically by analyzing the coefficient of determination
R2. The results of the coherence analysis are presented in the semivariogram maps in

An analysis of the semivariogram maps (Figure 3) revealed anisotropy of the data in datasets
where vertical movements were based on leveling data. Anisotropy was determined in datasets A and
B, and in merged datasets (C, AB, and BA). Dataset F was the only exception, which indicates that
leveling data were influenced by an additional external factor. In paper [34] autors demonstrated that
adjustments introduced to leveling data, in particular normal adjustments, could be responsible for
such external effects. Dataset D (vertical movements based only on GNSS data) was isotropic, similar
to datasets BD and DB, where vertical movements from both sources were used. The above implies
that the even distribution of GNSS stations significantly influenced the data coherence. However, this
observation was not confirmed by an analysis of dataset G or the combined adjustment of the network of
vertical movements based on leveling data and GNSS data, which indicates that leveling data exerted a
considerable effect on the adjustment process (set E). The weights calculated for each observation using
inverse distance weighing played a more important role in this process [18]. The anisotropic direction
varied across the analyzed datasets. Datasets A and AB had a northeastern orientation, whereas the
remaining datasets (B, C, E, BA, G) had a northwestern to western orientation. The variation was
higher around the central point of each dataset, which points to differences in the values of neighboring
points (nugget effect). The above resulted from the merger of datasets, where vertical movements at the
same points or proximal points were determined in two different processes (which is well illustrated in
dataset F). This observation can also be attributed to a local increase in vertical movements caused by
mining operations and geological features. Figure 3.
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3.2. Empirical Variograms and the Selection of Theoretical Variograms

The analysis of data anisotropy supported the determination of the major anisotropic directions
(Figure 3) and the selection of data during interpolation.

The empirical semivariogram was used to determine similarities in the point values relative to
their distance and orientation. The major directions and the range of anisotropy were defined for each
dataset to assign theoretical variograms to empirical variograms.

Each dataset was analyzed using a directional variogram in the major anisotropic directions
(Figure 4). Figure 4 presents the examples of variograms: fluctuations in the variance (Figure 4AB),
greatest differences between the minimum and maximum values (Figure 4G), nugget effect (Figure 4BD),
and isotropic collection (Figure 4D). The empirical variogram was approximated with a linear function.
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The fluctuations in the variance were observed in datasets A, B, C, AB, BA, E, and G. The greatest
differences between the minimum and maximum values were observed in datasets AB, BD, F, and G,
which confirms data anisotropy (Figure 3). The model’s behavior pointed to a nugget effect in datasets
BA, D, BD, DB, and F. These datasets were classic examples of the nugget effect. Datasets D, BD, and F
were isotropic despite considerable fluctuations in the variance.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 16 
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3.3. Calculation of the Interpolation Parameters

The interpolation parameters were calculated based on the adopted theoretical variograms.
The length and direction of semi-major and semi-minor axes in the ellipse, number of sectors, partial
sills, interpolation points in sectors, and maximum and minimum neighbors were analyzed in each set.
Standardized root mean square (RMS) and the average standard deviation of prediction (σ) were the
main selection criteria. The relationships between changes in the semi-major and semi-minor axes
vs. RMS and σ are presented in Figures 5 and 6, respectively. The values of RMS and σ were closest
to 1 when the semi-major axis and the semi-minor axis were increased six-fold. The influence of the
number of lags on the values of the direction, partial sill, predicted value, RMS, and σ for dataset A
is presented in Figure 7. The selection of four sectors in all datasets supported the calculation of the
remaining parameters.
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The value of RMS was stabilized with a multiplier higher than 10 (Figure 6). The direction changed
in a non-continuous manner with an increase in the number of lags.

The values of the nugget effect, anisotropy, direction, and partial sill in each dataset are presented
in Table 3.

Table 3. Values of the nugget effect, anisotropy, direction, and partial sill in the analyzed datasets.

Data
Collections

Nugget Efect Anisotropy Direction
Partial Sill

[1][0] [1][1] [1][0] [0][1] [1][1]

A 0.01 2.44 10.01 0.39

B 0.05 1.83 142.73 0.21

C 0.11 1.65 139.74 0.17

D 0.59 1 0 0

AB 0 0.24 1.64 21.79 0.44 −0.01 0.0003

BD 0.23 0.59 1 0 0 0 0

DB 0.60 0.16 1 0 0 0 0

E 0.26 2.46 146.60 brak brak 0.28

The values in Table 3 confirm the anisotropy and the nugget effect. Datasets A and E were the most
anisotropic, which points to the presence of factors that strongly influenced the vertical movements.
Minor nugget effects were observed in datasets A, B, C, and E (proximal points with different values of
vertical movements were rarely encountered), which could be attributed to the combined adjustment
of data. The nugget effect was greater in dataset D, which could be explained by the presence of GNSS
stations where vertical movements differed considerably from those in other stations for geological and
technical reasons. In datasets merged using co-kriging, anisotropy was observed only when vertical
movements were based on leveling data only. Datasets were isotropic in the remaining two cases.
The nugget effect was nearly four times greater in dataset BD than in dataset DB. Semivariance values
were highest in the dispersed datasets A and E.
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4. Results

The developed datasets and the calculated parameters were used in the co-kriging interpolation.
The resulting models (Figure 8) present the relative vertical movements of the Earth’s crust in Poland
from each dataset.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 16 
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Figure 8. Cartographic models of relative vertical crustal movements developed using co-kriging.

Cartographic models were evaluated visually. Model C was compared with model AB, and
models BD and DB were compared with model E. Model AB was highly influenced by dataset A, and
it was characterized by a low correlation with model C. Model BA was highly influenced by dataset B,
and it was highly correlated with dataset C. Models BD and DB were highly correlated with model E,
and they were highly influenced by datasets B and D, respectively. Model BD was more correlated
with model B, and model DB was more correlated with model D. The merged dataset F (A + B) was
also analyzed relative to model C, and the merged dataset G (B + D) was analyzed relative to model E.
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Dataset F was more correlated with dataset C than datasets AB and BA. Model G was relatively well
correlated with dataset E and dataset BA.

5. Discussion

An analysis of datasets containing information about the vertical movements of the Earth’s
crust in the territory of Poland and the resulting models revealed that datasets based on leveling
data were anisotropic. The anisotropic direction differed across the evaluated datasets, and most
datasets had a northwestern orientation. Anisotropy was confirmed using statistical analyses [34]
of datasets A and B, which revealed unidentified disruptions. Nugget effects were identified in the
analysis performed using a directional variogram. Nugget effects were detected in datasets where
neighboring points had significantly different values (datasets F and D). These findings indicate that
vertical movements calculated based on GNSS data differed from those determined based on leveling
data (for proximal points), or even differed considerably within dataset D containing GNSS data only.
The above could point to data errors or external influences, including anthropogenic or geophysical
factors [35]. The number of lags significantly affected the anisotropy angle (Figure 7). The values of
RMS and σ were stabilized when the length of both semi-axes of the ellipse increased several-fold.
Models developed based on simultaneously adjusted data (C and E) were characterized by a better
distribution of σ (Figure 9).
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Models C and E were characterized by smaller variations and a smaller number of isolines with
gentle curves, which could be attributed to data fitting during the adjustment procedure. In the
remaining models that were generated using co-kriging, isolines differed from those noted in the
reference models (C and E). The above was particularly visible in the models developed based on
dataset A (models A and AB). Even greater variations were noted in the models created from datasets
that had been merged before interpolation. These models were characterized by considerable nugget
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effects. The values of the standard error of the estimate for the analyzed datasets are presented in
Table 4.

Table 4. Standard error of the estimate for the analyzed datasets.

A B C D E F G AB BA BD DB

Mean standard error 0.69 0.85 1.60 4.66 1.23 2.31 2.05 2.11 0.94 1.35 4.71

The average standard error of the estimate was the highest in datasets D, F, and G. These datasets
contained points that deviated from the remaining values of σ. The presence of outliers could mainly
be attributed to differences in the values of proximal points, which was confirmed by the presence of
nugget effects.

6. Conclusions

Co-kriging is an advanced interpolation method that supports additional evaluations of datasets
and limits the influence of factors, such as data anisotropy, data trends, and nugget effects.
These considerations are important in analyses of dispersed data (GNSS) that are affected by a
station’s geological configuration and “artificially” adjusted leveling data.

The selection of interpolation parameters is largely subjective. The interpolated surface was
non-stationary in all datasets. An analysis of the correlations between the semi-major and semi-minor
axes of the ellipse vs. RMS and σ produced satisfactory results. The anisotropic direction was correlated
with the number of lags, and indirectly, with the minimum possible values of RMS and σ.

The leveling data were anisotropic. The nugget effect was highest for GNSS data. A high nugget
effect led to smoother estimates, and consequently, an increase in the value of RMS (Figure 5).

Numerous datasets can be combined using co-kriging. The initial dataset significantly influences
the final model. Models AB, BA, DB, and DB clearly illustrated this trend. A larger amount of data
in the successive set did not play a role. The results of this study confirmed that co-kriging is a
non-uniform method and that the same initial datasets could produce different models. The mean
standard error was lowest for dataset E (combined adjustment of vertical movements based on leveling
data and GNSS data).

Models of the vertical movements of the Earth’s crust generated using co-kriging with the use of
varied datasets (method and time of measurement) have different isolines. From a statistical point of
view, models based on simultaneously adjusted datasets best fit the data. Models generated from data
that are merged into a single set are more correlated with the reference models than those based on
datasets that are combined using co-kriging. The merger of anisotropic and isotropic datasets produces
isotropic datasets. The use of data from various sources can limit the influence of anisotropy on the
model’s quality.

The anisotropic directions, data trends, and nugget effects have to be taken into consideration in
cartographic models of vertical movements. The application of a model based on GNSS data only
will not produce reliable results in analyses evaluating the effects of glacial isostatic adjustment (GIA)
(Figure 8). This study demonstrated that co-kriging did not produce satisfactory results when datasets
relating to the vertical movements of the Earth’s crust were combined. Several networks had to be
simultaneously adjusted before the analysis to produce the desired outcome.

In the future, attempts will be made to determine the causes of the above-average standard error
of the estimate in the analyzed datasets.
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