
applied
sciences

Article

Self-Service Data Science in Healthcare with
Automated Machine Learning

Richard Ooms and Marco Spruit *

Department of Information and Computing Sciences, Utrecht University, 3512 JE Utrecht, The Netherlands;
r.l.j.ooms@students.uu.nl
* Correspondence: m.r.spruit@uu.nl

Received: 3 March 2020; Accepted: 21 April 2020; Published: 25 April 2020
����������
�������

Abstract: (1) Background: This work investigates whether and how researcher-physicians can
be supported in their knowledge discovery process by employing Automated Machine Learning
(AutoML). (2) Methods: We take a design science research approach and select the Tree-based Pipeline
Optimization Tool (TPOT) as the AutoML method based on a benchmark test and requirements
from researcher-physicians. We then integrate TPOT into two artefacts: a web application and a
notebook. We evaluate these artefacts with researcher-physicians to examine which approach suits
researcher-physicians best. Both artefacts have a similar workflow, but different user interfaces
because of a conflict in requirements. (3) Results: Artefact A, a web application, was perceived as
better for uploading a dataset and comparing results. Artefact B, a Jupyter notebook, was perceived
as better regarding the workflow and being in control of model construction. (4) Conclusions: Thus,
a hybrid artefact would be best for researcher-physicians. However, both artefacts missed model
explainability and an explanation of variable importance for their created models. Hence, deployment
of AutoML technologies in healthcare remains currently limited to the exploratory data analysis phase.

Keywords: automated machine learning; applied data science; self-service data science;
healthcare analytics

1. Introduction

After reviewing the literature on the state of data analysis in healthcare, it becomes evident that
there is still significant progress to be made in the application of analytics in healthcare [1,2]. One of the
ways to progress, is the automation of the knowledge discovery process in healthcare [1]. Automation
of the knowledge discovery process can increase the adoption of analytics by enabling domain experts
to contribute to the knowledge discovery in the field using state-of the art techniques in adaptive
analytic systems, especially with the amount of data that is available in healthcare. The introduction of
the Electronic Health Record (EHR) accelerated the digitalisation of this formerly unavailable dataset.
Combining this available EHR data with analytics provides great potential to improve the healthcare
industry by making the data available for automatic processing [3].

The concept of self-service data science was first described in [4] and has been defined as “the
engineering discipline in which analytic systems are designed and evaluated to empower domain professionals to
perform their own data analyses on their own data sources without coding in a reliable, usable and transparent
manner within their own daily practices” [5]. Figure 1 visualises self-service data science research in
the context of adjacent data science research disciplines. Bridging purely foundational and purely
applied research processes, both applied data science [6] and self-service data science studies pursue a
translational (e.g., application-oriented) research process, often including CRISP-DM as the knowledge
discovery process of choice [7].

Appl. Sci. 2020, 10, 2992; doi:10.3390/app10092992 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9237-221X
http://dx.doi.org/10.3390/app10092992
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/9/2992?type=check_update&version=2

Appl. Sci. 2020, 10, 2992 2 of 18
Appl. Sci. 2020, 10, 2992 2 of 18

Figure 1. Self-service data science research in context of related data science disciplines.

The Machine Learning (ML) community has noticed the need to enable access for non-expert
users to ML techniques. The need to enable non-experts to use machine learning is one of the drivers
that gave birth to the fast-paced research area of AutoML [8], [9]. The AutoML community aims to
automate all steps in the process of creating a machine learning pipeline. However, to the best of our
knowledge, no AutoML applications were tested in real-world situations with non-expert users in
the healthcare domain. Hence our research question is: How can we support the knowledge discovery
process of domain experts in healthcare using automated machine learning? To answer this question, we
answer three sub-research questions in Section 4:

1. Which AutoML method performs best on a benchmark test, given medical datasets?
2. What are the requirements of healthcare professionals for starting to use AutoML in their daily

practice?
3. How does the selected AutoML method suit healthcare professionals in their knowledge

discovery process?

Each question is answered in a subsection of Section 4.

2. Overview of AutoML Methods

In this section, we summarize and categorize the AutoML methods that we found during the
literature review. In our analysis we only consider the newest versions of the methods and only
include non-commercial AutoML methods. First, we compare two AutoML methods that are
developed for the healthcare domain. Second, we discuss methods with a fixed pipeline length. Third,
we discuss the AutoML methods that build neural nets. Fourth, we discuss evolutionary methods.
Fifth, we discuss distributed methods. Finally, we provide a detailed overview of the AutoML
methods discussed in this chapter.

2.1. Healthcare

FLASH [10] and AutoPrognosis [11] have both been developed for healthcare or with funds for
healthcare, but with different incentives. FLASH was developed to improve the efficiency of creating
and evaluating pipelines. It proposes a two-layer Bayesian Network approach to improve search
efficiency. AutoPrognosis has recently been developed with the practitioner in mind. It follows a
principled Bayesian approach in all components. AutoPrognosis uses Bayesian model averaging for
pipeline construction. Meta-learning is used to find similar groups of patients. Both clinical and
statistical features of datasets are used for Warm-starting. FLASH is a black-box tool, as most AutoML
tools are. In contrast, AutoPrognosis is the only AutoML method that contains an explainer to justify
its recommendations to a clinician.

We cannot compare the performances of both methods, as there is no benchmark test available
featuring both methods at the time of writing. FLASH tested its performance on a medical dataset
with the binary classification task of predicting drug non-responders. In this case, it outperformed
other methods based on TPE and SMAC using error rate as the performance metric [10].
AutoPrognosis outperformed Auto-WEKA, Auto-Sklearn, and TPOT on multiple datasets in its own
comparison with other methods [11].

2.2. Fixed Pipelines

Auto-WEKA [8], [12], Hyperopt-Sklearn [13], Auto-Sklearn [14], PoSH Auto-Sklearn [15], and
ML-Plan [16] are all methods that have a fixed pipeline length. Auto-WEKA searches the search space
by a tree-based BO method: SMAC [8], [17]. Hyperopt-Sklearn searches the search space is using

Foundational
Data Science

Applied
Data Science

Self-Service
Data Science

Citizen
Data Science

Figure 1. Self-service data science research in context of related data science disciplines.

The Machine Learning (ML) community has noticed the need to enable access for non-expert
users to ML techniques. The need to enable non-experts to use machine learning is one of the drivers
that gave birth to the fast-paced research area of AutoML [8,9]. The AutoML community aims to
automate all steps in the process of creating a machine learning pipeline. However, to the best of our
knowledge, no AutoML applications were tested in real-world situations with non-expert users in the
healthcare domain. Hence our research question is: How can we support the knowledge discovery process of
domain experts in healthcare using automated machine learning? To answer this question, we answer three
sub-research questions in Section 4:

1. Which AutoML method performs best on a benchmark test, given medical datasets?
2. What are the requirements of healthcare professionals for starting to use AutoML in their

daily practice?
3. How does the selected AutoML method suit healthcare professionals in their knowledge

discovery process?

Each question is answered in a subsection of Section 4.

2. Overview of AutoML Methods

In this section, we summarize and categorize the AutoML methods that we found during the
literature review. In our analysis we only consider the newest versions of the methods and only include
non-commercial AutoML methods. First, we compare two AutoML methods that are developed for
the healthcare domain. Second, we discuss methods with a fixed pipeline length. Third, we discuss the
AutoML methods that build neural nets. Fourth, we discuss evolutionary methods. Fifth, we discuss
distributed methods. Finally, we provide a detailed overview of the AutoML methods discussed in
this chapter.

2.1. Healthcare

FLASH [10] and AutoPrognosis [11] have both been developed for healthcare or with funds for
healthcare, but with different incentives. FLASH was developed to improve the efficiency of creating
and evaluating pipelines. It proposes a two-layer Bayesian Network approach to improve search
efficiency. AutoPrognosis has recently been developed with the practitioner in mind. It follows a
principled Bayesian approach in all components. AutoPrognosis uses Bayesian model averaging for
pipeline construction. Meta-learning is used to find similar groups of patients. Both clinical and
statistical features of datasets are used for Warm-starting. FLASH is a black-box tool, as most AutoML
tools are. In contrast, AutoPrognosis is the only AutoML method that contains an explainer to justify
its recommendations to a clinician.

We cannot compare the performances of both methods, as there is no benchmark test available
featuring both methods at the time of writing. FLASH tested its performance on a medical dataset with
the binary classification task of predicting drug non-responders. In this case, it outperformed other
methods based on TPE and SMAC using error rate as the performance metric [10]. AutoPrognosis
outperformed Auto-WEKA, Auto-Sklearn, and TPOT on multiple datasets in its own comparison with
other methods [11].

2.2. Fixed Pipelines

Auto-WEKA [8,12], Hyperopt-Sklearn [13], Auto-Sklearn [14], PoSH Auto-Sklearn [15], and
ML-Plan [16] are all methods that have a fixed pipeline length. Auto-WEKA searches the search

Appl. Sci. 2020, 10, 2992 3 of 18

space by a tree-based BO method: SMAC [8,17]. Hyperopt-Sklearn searches the search space is
using Hyperopt, which makes use of either random search or Tree Parzen Estimators (TPE) with
BO [18]. To improve efficiency in search, Hyperopt-Sklearn makes a distinction between conditional
and non-conditional hyperparameters. Conditional parameters always need to be assigned, and
non-conditional parameters depend on the chosen algorithm in the pipeline [13]. PoSH-Auto-Sklearn is
an extension of Auto-Sklearn method described above and builds on the scikit-learn library. Successive
halving was introduced in the search process to improve the efficiency of the method. In addition
to this, they build a portfolio based on OpenML datasets [19], which contained meta-information to
warm-start the search process. Finally, the ensemble technique of Auto-Sklearn was altered to exclude
poor performing models. In PoSH Auto-Sklearn a model is not added to the ensemble if it performs
over 3% worse than the best model. ML-plan uses a hybrid approach to construct pipelines. It combines
the ideas and concepts from two different approaches: the idea of evaluating candidates at runtime [8]
and the idea of using hierarchical task networks [20] for pipeline planning [16]. ML-Plan contributes
to the existing knowledge base by proposing a two-phase search with HTN and a dedicated system to
prevent overfitting. The authors of ML-Plan claim to have invented the first AutoML technique that
prevents overfitting [16].

PoSH Auto-Sklearn outperforms all other methods as it is the winner of the latest AutoML
competition at the time of writing [9]. Auto-WEKA, Hyperopt-Sklearn, and Auto-Sklearn were the first
three methods that were developed to tackle the CASH problem. What is noteworthy to observe is that
Auto-Sklearn has served as a basis for multiple other AutoML systems, whereas the other two methods
have not. We assume that this is due to the warm-start procedure that is built into Auto-Sklearn.

2.3. Neural Networks

The first version of AutoNet [21] was the first to automate the configuration of a Neural Network.
It laid the groundwork for its successor and the inception of AlphaD3M [22] and Auto-Keras [23].
Besides laying the groundwork for these applications, it incentivised the inception of a lot of commercial
applications. Most commercial applications that automatically tune Neural Networks are inspired
by the first version of Auto-Net [9]. This is because Auto-Net was the first AutoML program to beat
human experts in configuring a pipeline [9,21].

AlphaD3M is the only AutoML method that makes use of reinforcement learning and is much
faster than any other method in the field. In one case, it was 32 times faster than TPOT. However,
AlphaD3M does not outperform other AutoML methods. In comparison with three other methods,
its average rank is third, based on mean scores. As AlphaD3M ranks first on some datasets, it is still
competitive [22]. It is striking to see if reinforcement learning gets widely adopted as a search strategy
for pipeline configuration.

2.4. Evolutionary Methods

Evolutionary methods can create pipelines of flexible length. These are TPOT [24], LTPOT [25],
RECIPE [26], and Autostacker [27]. They can do so due to their search strategy. The downside of
evolutionary algorithms is that they can produce invalid pipelines and get stuck at local optima.
RECIPE and LTPOT have independently overcome these downsides. RECIPE uses grammar to
overcome this whereas LTPOT uses a maximum evaluation time for a pipeline.

TPOT was a reaction to the fixed-length pipeline methods discussed above. TPOT uses Gaussian
Processes (GP) to construct pipelines; the building blocks of a pipeline are GP primitives to build a
tree. These trees are an arbitrary representation of the ML pipeline, consisting of multiple datasets,
pre-processors, and classification operators. Each node uses the output of its preceding node as
input. Layered TPOT [25] is the successor of TPOT with a focus on improving the efficiency of the
pipeline generation. It improves efficiency by implementing the idea of an Age Layered Population
Structure [28] in addition to the original TPOT algorithm. RECIPE [26] is an evolutionary method
based on GP that makes use of grammar to improve its efficiency compared to other GP methods.

Appl. Sci. 2020, 10, 2992 4 of 18

RECIPE uses grammar to prevent the creation of invalid pipelines and focusses on classification tasks.
Autostacker is an AutoML method that focusses on providing a set of potential useful pipelines for
users without any pre-processing steps based on the scikit-learn and the XGBoost library. Pipelines are
built using a stacking mechanism based on an evolutionary algorithm and should generalize well to
new data [27].

2.5. Distributed Methods

Two AutoML methods can process data in a distributed matter: Autostacker [27] and ATM [29].
It is remarkable, that there are only two systems that can run in a distributed manner, when taking the
computing cost of creating a pipeline in mind. Autostacker can use parallel processing as it proposes
the best pipelines to its user. Hence it needs the performance scores of the pipelines. ATM is the only
method which can run in parallel on different machines and is set up to be distributed and scalable.
ATM is developed to support a multi-user machine learning platform in a cloud or cluster. The aim is
to provide standardized abstractions in a library to become as influential for the AutoML community
with a library as scikit-learn is to the machine learning community [29]. The development of ATM
and integration with the methods described above is one of the most attractive developments in
AutoML. An incentive to spur this development could be having a separate performance challenge for
distributed AutoML methods.

2.6. Overview of Methods

Figure 2 visualizes the relations between AutoML methods discussed in this section. It makes a
distinction between methods that build NNs and methods that use traditional classifiers or regressors
in their pipeline. Arrows between methods point out a relationship between methods. The colors of
the methods indicate the search strategy that is applied in a method to create a pipeline. A tabular
overview of the discussed AutoML methods is available in Appendix A, including the prediction tasks,
a link to the code repository and more information about the pipeline creation.

Appl. Sci. 2020, 10, 2992 4 of 18

any pre-processing steps based on the scikit-learn and the XGBoost library. Pipelines are built using
a stacking mechanism based on an evolutionary algorithm and should generalize well to new data
[27].

2.5. Distributed Methods

Two AutoML methods can process data in a distributed matter: Autostacker [27] and ATM [29].
It is remarkable, that there are only two systems that can run in a distributed manner, when taking
the computing cost of creating a pipeline in mind. Autostacker can use parallel processing as it
proposes the best pipelines to its user. Hence it needs the performance scores of the pipelines. ATM
is the only method which can run in parallel on different machines and is set up to be distributed and
scalable. ATM is developed to support a multi-user machine learning platform in a cloud or cluster.
The aim is to provide standardized abstractions in a library to become as influential for the AutoML
community with a library as scikit-learn is to the machine learning community [29]. The development
of ATM and integration with the methods described above is one of the most attractive developments
in AutoML. An incentive to spur this development could be having a separate performance challenge
for distributed AutoML methods.

2.6. Overview of Methods

Figure 2 visualizes the relations between AutoML methods discussed in this section. It makes a
distinction between methods that build NNs and methods that use traditional classifiers or regressors
in their pipeline. Arrows between methods point out a relationship between methods. The colors of
the methods indicate the search strategy that is applied in a method to create a pipeline. A tabular
overview of the discussed AutoML methods is available in Appendix A, including the prediction
tasks, a link to the code repository and more information about the pipeline creation.

Figure 2. Overview of AutoML methods.

3. Research Method

We used the Design Science research framework [30] to answer the research questions. To do so,
we first performed a benchmark test using the framework of Gijsbers and colleagues [31] on all
available medical datasets from the OpenML100 [32] to find out if one AutoML method performed
best on medical tasks. We ran medical binary-classification tasks on four datasets: Breast cancer [33],
Diabetes [34], Indian Liver Patient [34], and Sick dataset [35]. All selected methods received a time
budget of one hour in a 10-fold cross-validation set-up to create the best pipeline on the given
datasets. The time limit is set on one hour, as longer runs do not significantly provide better results
[31], a finding that was also confirmed during our experiments. To baseline the performance of the

Figure 2. Overview of AutoML methods.

3. Research Method

We used the Design Science research framework [30] to answer the research questions. To do
so, we first performed a benchmark test using the framework of Gijsbers and colleagues [31] on all
available medical datasets from the OpenML100 [32] to find out if one AutoML method performed
best on medical tasks. We ran medical binary-classification tasks on four datasets: Breast cancer [33],

Appl. Sci. 2020, 10, 2992 5 of 18

Diabetes [34], Indian Liver Patient [34], and Sick dataset [35]. All selected methods received a time
budget of one hour in a 10-fold cross-validation set-up to create the best pipeline on the given datasets.
The time limit is set on one hour, as longer runs do not significantly provide better results [31], a finding
that was also confirmed during our experiments. To baseline the performance of the AutoML methods
in the benchmark test, we added a decision tree and a constant predictor. Following Gijsbers et al. [31],
we used Area Under the Receiver Operator Curve (AUROC) for scoring. All tests have been run on
Amazon Web Services using m5.2xlarge machines (32 GB memory, 8 vCPUs (Intel Xeon Platinum 8000
series Skylake-SP processor with a sustained all core Turbo CPU clock speed of up to 3.1 GHz). The OS
used is Amazon Linux (https://aws.amazon.com/ec2/instance-types/m5/) to get constant circumstances
and enough computing power for the AutoML methods. In our research we only used the AutoML
methods available in the benchmark set to create an even playing field. Hence, no industrial tools were
considered in this research.

To understand the needs of domain experts we elicited requirements using semi-structured
interviews. We selected semi-structured interviews as the best method for requirements elicitation
for three reasons. First, semi-structured interviews are considered to be the most effective way for
requirements elicitation [36]. Second, it is an accepted method for conducting qualitative research in
healthcare [37]. Third, semi-structured interviews have the benefits of eliciting people’s own views and
uncovering issues or concerns that have not been considered beforehand by the researcher [38]. For our
interviews, we constructed an interview protocol following the guidelines for interview research [39].
The sample consisted of five domain experts who were active in the scientific department of a regional
hospital in the Netherlands. The interviewees have decided to participate voluntarily and hold different
roles and medical expertise within non-academic hospitals in the Netherlands. The interviewees
are active in the research fields of cancer, orthopedy, and cardiology and participate in medical
research, either full-time or part-time. The sample consists of three women and two men. We evaluated
the capabilities of the AutoML methods to the requirements of the domain experts. Based on the
requirements we created two artefacts and evaluated these with the interviewees. The first artefact had
a graphical user-interface, the second artefact had a code-based interface. We used artificial summative
evaluation as part of the framework for evaluating design science research [40]. We evaluated the
artefacts on the user story categories from the previous research question. To be able to evaluate the
artefact properties, we used refined hypotheses [41].

4. Results

This section describes the result of the benchmark test, the requirements evaluation and
artefact evaluation.

4.1. Benchmark Test

The benchmark test was ran using a time budget of one hour with a total of 160 hours of
computational time. Figure 3 contains the visualization of results; the datasets are on the X-axis, the
Y-axis shows the AUROC score. A colored dot marks the score for an AutoML method on each of
the ten folds. A Kruskal–Wallis H test indicated that there was a statistically significant difference in
the distribution for the Breast (H = 11.36, p < 0.001), Diabetes (H = 18.64, p < 0.001), Liver (H = 17.93,
p < 0.001), and Sick dataset (H = 27.87, p < 0.001) between the AutoML methods, see Table 1 for statistics.

Table 1. Statistics for Kruskall Wallis test.

Breast Diabetes Liver Sick

H-statistic 11.36 18.64 17.93 27.87
P-value 0.995 ** 0.324 ** 0.455 ** 0.386 **

** p < 0.001.

https://aws.amazon.com/ec2/instance-types/m5/

Appl. Sci. 2020, 10, 2992 6 of 18

What is noteworthy in Figure 3 is that on the Liver dataset, the decision tree and Hyperopt-Sklearn
do not always outperform the constant predictor. On the Diabetes dataset, Hyperopt-Sklearn lags
compared the three other methods, but performs better than the constant predictor and has a similar
performance to the decision tree. On the Breast dataset, all AutoML methods have the maximum
score in at least one fold. All methods perform well on the Breast set, given their median scores and
distribution. The performance of the decision tree indicates that it is not a hard prediction problem.
For the results on the Sick dataset, we see that TPOT and Auto-Sklearn outperform the other two
methods in both consistency and score of their predictions despite the fact that the set has missing
values. Hyperopt-Sklearn is again not better than the decision tree.Appl. Sci. 2020, 10, 2992 6 of 18

Figure 3. One hour benchmark test results.

two methods in both consistency and score of their predictions despite the fact that the set has missing
values. Hyperopt-Sklearn is again not better than the decision tree.

Overall, TPOT registered the highest median score after running for one-hour on all sets but the
Breast dataset, in which autosklearn registered the best median performance. A Mann–Whitney U
test indicated that autosklearn significantly outperforms the decision tree (U = 2.0, p < 0.001) and
hyperoptsklearn (U = 17.5, p < 0.01) on the Breast set. TPOT significantly outperforms the decision
tree on the datasets Diabetes (U = 0.0, p < 0.001), Liver (U = 8.0, p < 0.001) and Sick (U = 0.0, p < 0.001).
Furthermore, TPOT outperforms hyperoptsklearn significantly on the datasets Diabetes (U = 2.0, p <
0.001), Liver (U = 7.0, p < 0.001) and Sick (U = 0.0, p < 0.001). Finally, AutoWEKA is significantly
outperformed on the Sick dataset by TPOT (U = 0.0, p < 0.001). This is probably because AutoWEKA
does not impute data for missing values. Autosklearn and TPOT do impute values for missing data
and have significantly better results. The statistics for the Mann–Whitney U test are available in Table
2. The table shows the p-values and U statistics for each method compared to the best performing
method on each dataset. TPOT and autosklearn do not significantly differ in performance for any of
the datasets.

From the benchmark test we can conclude that no method consistently outperforms all others.
However, we see that TPOT records the highest median scores on three of the four tasks in this test
but this performance is not significantly better than the performance of other methods. Autosklearn
and AutoWEKA get similar results to TPOT, only AutoWEKA is outperformed on the Sick dataset.

Table 2. P-values and U statistic for Mann–Whitney U test compared to best performer.

 Breast Diabetes Liver Sick
 p U p U p U p U

DecisionTree 0.164 ** 2.0 0.908 ** 0.0 0.895 ** 8.0 0.913 ** 0.0
TPOT 0.236 40.0

AutoWEKA 0.395 46.0 0.455 48.0 0.263 40.0 0.913 ** 0.0
Autosklearn 0.425 47.0 0.213 39.0 0.5 49.5

Hyperoptsklearn 0.8 * 17.5 0.164 ** 2.0 0.657 ** 7.0 0.913 ** 0.0
* p < 0.01 ** p < 0.001.

Figure 3. One hour benchmark test results.

Overall, TPOT registered the highest median score after running for one-hour on all sets but the
Breast dataset, in which autosklearn registered the best median performance. A Mann–Whitney U
test indicated that autosklearn significantly outperforms the decision tree (U = 2.0, p < 0.001) and
hyperoptsklearn (U = 17.5, p < 0.01) on the Breast set. TPOT significantly outperforms the decision tree
on the datasets Diabetes (U = 0.0, p < 0.001), Liver (U = 8.0, p < 0.001) and Sick (U = 0.0, p < 0.001).
Furthermore, TPOT outperforms hyperoptsklearn significantly on the datasets Diabetes (U = 2.0,
p < 0.001), Liver (U = 7.0, p < 0.001) and Sick (U = 0.0, p < 0.001). Finally, AutoWEKA is significantly
outperformed on the Sick dataset by TPOT (U = 0.0, p < 0.001). This is probably because AutoWEKA
does not impute data for missing values. Autosklearn and TPOT do impute values for missing data
and have significantly better results. The statistics for the Mann–Whitney U test are available in
Table 2. The table shows the p-values and U statistics for each method compared to the best performing
method on each dataset. TPOT and autosklearn do not significantly differ in performance for any of
the datasets.

From the benchmark test we can conclude that no method consistently outperforms all others.
However, we see that TPOT records the highest median scores on three of the four tasks in this test but
this performance is not significantly better than the performance of other methods. Autosklearn and
AutoWEKA get similar results to TPOT, only AutoWEKA is outperformed on the Sick dataset.

Appl. Sci. 2020, 10, 2992 7 of 18

Table 2. P-values and U statistic for Mann–Whitney U test compared to best performer.

Breast Diabetes Liver Sick

p U p U p U p U

DecisionTree 0.164 ** 2.0 0.908 ** 0.0 0.895 ** 8.0 0.913 ** 0.0
TPOT 0.236 40.0

AutoWEKA 0.395 46.0 0.455 48.0 0.263 40.0 0.913 ** 0.0
Autosklearn 0.425 47.0 0.213 39.0 0.5 49.5

Hyperoptsklearn 0.8 * 17.5 0.164 ** 2.0 0.657 ** 7.0 0.913 ** 0.0

* p < 0.01 ** p < 0.001.

4.2. AutoML Requirements Evaluation

We elicited twenty-one requirements of domain experts in the form of user stories, as shown in
part in Appendix B. These are texts that capture a desired functionality and a reason for the desire
from the end-users of a product. The user stories are categorized in four categories: User interaction,
model construction, model usage and model explanation. We only consider the AutoML methods that
participated in the benchmark test for comparison with user stories. Furthermore, we only include
user stories that were mentioned by at least two participants, leaving us with fifteen user stories.
For user stories, we use the template of Cohen [42]: “As a <type of user>, I want <goal>, [so that
<some reason>].” Table A1 provides the collection of elicited user stories that are requested by two or
more interviewees. There are three user stories in the user interaction (UI) category with the AutoML
artefact. These are in conflict, two out of five domain experts prefer to use code to do their analysis, so
they have more control over what is happening, e.g., “I like SPSS for its syntax function, not so much
for its clicking”. In contrast, two other domain experts prefer to have a GUI, as small coding errors cost
a lot of time to solve, e.g., “Just an interface? That would be great!”.

For model construction (MC) there are five user stories. Automatic model configuration as well as
the possibility to set a time budget is covered by the concept of AutoML, e.g., “Using R is a bit a too
far removed from my interests”. The restriction of only using logistic regression can only be satisfied
by TPOT and AutoWEKA, e.g., “If you do not use it (logistic regression), then the reviewers do not
know what is happening, so they reject your paper. Not because it is bad, just because they do not
understand it”. Autosklearn and TPOT are the methods that satisfy the requirement of an explanation
on handling missing data. There is only one user story about using the created model in practice (MU).
Using the created model on unseen data is supported by all assessed AutoML methods.

Over half of the user stories are about model explanation (MX). The domain experts are interested
in what variables are important, what the statistical power of a model is and what decisions are made
during model creation, e.g., “Being accurate is one thing, but how explainable is it?”. However, none
of the assessed AutoML methods could satisfy any of these requirements. It is possible to integrate
comparison of created models and an explanation of regression in the artefacts.

The word cloud in Figure 4 illustrates the need for an explanation of the variables and
understanding of the process of creating a model. The word cloud is made from the transcripts
of the answers to the why questions on the individual evaluations of the interviewees. The words
variable, model, happening, explanation, control and understand all stand out. Most interviewees do
not consider the output of TPOT as a model, e.g., “It does not show an answer to my question. I do
not consider this a model.” We noted that the interviewees only wanted logistic regression models,
which limits the power of using AutoML methods. Furthermore, it was evident that the interviewees
wanted to keep in control of creating the model. Without the rationale of the AutoML method on
the creation of the model they considered it useless. There was no trust in the method as it was so
opaque. In addition to that it was unhelpful that the subjects found the machine output of the model
unreadable. This was due to the fact that there was no description of importance of variables.

Appl. Sci. 2020, 10, 2992 8 of 18

Appl. Sci. 2020, 10, 2992 7 of 18

4.2. AutoML Requirements Evaluation

We elicited twenty-one requirements of domain experts in the form of user stories, as shown in
part in Appendix B. These are texts that capture a desired functionality and a reason for the desire
from the end-users of a product. The user stories are categorized in four categories: User interaction,
model construction, model usage and model explanation. We only consider the AutoML methods
that participated in the benchmark test for comparison with user stories. Furthermore, we only
include user stories that were mentioned by at least two participants, leaving us with fifteen user
stories. For user stories, we use the template of Cohen [42]: “As a <type of user>, I want <goal>, [so
that <some reason>].” Table A1 provides the collection of elicited user stories that are requested by
two or more interviewees. There are three user stories in the user interaction (UI) category with the
AutoML artefact. These are in conflict, two out of five domain experts prefer to use code to do their
analysis, so they have more control over what is happening, e.g., “I like SPSS for its syntax function,
not so much for its clicking”. In contrast, two other domain experts prefer to have a GUI, as small
coding errors cost a lot of time to solve, e.g., “Just an interface? That would be great!”.

For model construction (MC) there are five user stories. Automatic model configuration as well
as the possibility to set a time budget is covered by the concept of AutoML, e.g., “Using R is a bit a
too far removed from my interests”. The restriction of only using logistic regression can only be
satisfied by TPOT and AutoWEKA, e.g., “If you do not use it (logistic regression), then the reviewers
do not know what is happening, so they reject your paper. Not because it is bad, just because they do
not understand it”. Autosklearn and TPOT are the methods that satisfy the requirement of an
explanation on handling missing data. There is only one user story about using the created model in
practice (MU). Using the created model on unseen data is supported by all assessed AutoML
methods.

Over half of the user stories are about model explanation (MX). The domain experts are
interested in what variables are important, what the statistical power of a model is and what decisions
are made during model creation, e.g., “Being accurate is one thing, but how explainable is it?”.
However, none of the assessed AutoML methods could satisfy any of these requirements. It is
possible to integrate comparison of created models and an explanation of regression in the artefacts.

The word cloud in Figure 4 illustrates the need for an explanation of the variables and
understanding of the process of creating a model. The word cloud is made from the transcripts of the
answers to the why questions on the individual evaluations of the interviewees. The words variable,
model, happening, explanation, control and understand all stand out. Most interviewees do not
consider the output of TPOT as a model, e.g., “It does not show an answer to my question. I do not
consider this a model.” We noted that the interviewees only wanted logistic regression models, which
limits the power of using AutoML methods. Furthermore, it was evident that the interviewees
wanted to keep in control of creating the model. Without the rationale of the AutoML method on the
creation of the model they considered it useless. There was no trust in the method as it was so opaque.
In addition to that it was unhelpful that the subjects found the machine output of the model
unreadable. This was due to the fact that there was no description of importance of variables.

Figure 4. Word cloud of all comments on artefact evaluation questions.

After comparing the four AutoML methods to the user stories, we can conclude that TPOT is the
most appropriate AutoML method for this set of requirements. TPOT satisfies five of the fifteen

Figure 4. Word cloud of all comments on artefact evaluation questions.

After comparing the four AutoML methods to the user stories, we can conclude that TPOT is
the most appropriate AutoML method for this set of requirements. TPOT satisfies five of the fifteen
assessed requirements compared to four out of fifteen by Auto-WEKA and Auto-Sklearn. What is
noteworthy to see is the inability of all AutoML methods to explain the created models. The need for
explainability is evident: Model explanation is the biggest category in the user story categorization.
Besides that, explaining model decisions is obligatory in Europe since the introduction of the General
Data Protection Regulation Law [43] (pp. 40–42). Table 3 contains an overview of the AutoML methods
in each category. We have not included the user-interaction category into the table as it contains
conflicting user stories and does not apply to AutoML methods, only to the artefacts. As TPOT
performs better than autosklearn on the requirements we integrated TPOT in the artefacts.

Table 3. AutoML method scores on user story categories.

Category/Method Auto Sklearn Auto-WEKA TPOT Hyperopt-Sklearn

User interaction (UI) n/a n/a n/a n/a
Model construction (MC) 3 3 4 2
Model explanation (MX) 0 0 0 0

Model usage (MU) 1 1 1 1
Total matches 4 4 5 3

4.3. Artefact Evaluation

Based on the user stories we created two artefacts to automate a part of the data preparation
phase and the complete modelling phase of CRISP-DM [44]. The data preparation activities involve
the possibility to include or exclude variables, data imputation for missing values and the recoding of
categorical variables to numerical variables, as TPOT cannot handle non-numerical data as input. Due to
the conflict in user-interaction requirements, we designed two artefacts with the same functionalities,
but a different user interface. The artefacts can be used to create logistic regression models and users
who do not know how to code should be able to use the artefacts. The artefacts contain a description of
missing data handling, as well as the possibility to compare the different models.

The two artefacts are a Flask web application (GUI artefact) to satisfy the graphical user interface
preference and a Jupyter notebook (Code artefact) to satisfy the coding preference, as shown in
Figures A1–A3 in Appendix C, respectively. The source codes for the web application as well as the
Jupyter notebook are available at this URL: https://github.com/richooms/healthcare_automl.

Using the risk and efficacy strategy from the framework for evaluation in design science [40].
We created a set of refined hypotheses based on the user story categories to evaluate the artefacts with
the domain experts. The hypotheses are available in Appendix D. For the user-interaction we tested
on four elements: Uploading a dataset, creating a subset, the workflow of the application and the
workflow explanation. Only for uploading a dataset the GUI artefact was preferred. For all other
actions the code artefact was preferred, as the interviewees felt more in control of the process. The same
was the case for model construction and the progress reporting on model construction as parts of the
model construction category. The model explanation category consisted of comparing of different

https://github.com/richooms/healthcare_automl

Appl. Sci. 2020, 10, 2992 9 of 18

results, explanation of missing data handling and readability. In this category artefact A was preferred
over artefact B for all interactions except for explanation of missing data handling. An overview of the
preferences and categories is available in Table 4. The preference column demonstrates the type of
artefact that was preferred for that part of the artefact interaction. The score column indicates how
many subjects had the preference.

What we found is that a hybrid version of the two artefacts is preferred to interact with AutoML
by the interviewees. To keep control over the process of creating a model they prefer coding, for the
relatively simple tasks such as uploading a set or comparing results, they prefer a graphical user
interface. Furthermore, TPOT needs to explain variable importance to make it usable in their research
practice as it is considered a must-have for the adoption of AutoML by domain experts.

Table 4. Artefact preferences of the five domain experts.

Category Preference Score

User interaction
Upload dataset GUI 4/5
Create a subset Code 3/5

Workflow Code 4/5
Workflow explanation Code 4/5
Model construction
Progress reporting Code 4/5
Model construction Code 5/5
Model explanation

Compare results GUI 4/5
Explanation missing data Code 4/5

Readability GUI 4/5

5. Discussion

This section discusses the conducted research. First, we discuss the lessons learned. Second,
we discuss the validity of this research.

5.1. Lessons Learned

In this section, we discuss two lessons learned during this research project. First, we discuss
the suitability of AutoML for healthcare practitioners. Second, we discuss the bias in medical
(analytics) publications.

5.1.1. Suitability of AutoML Methods for Researcher-Physicians

After the elicitation of requirements, we found that researcher-physicians prefer to create logistic
regression models in their research. There are multiple reasons why we find that AutoML in the way
we assessed it, is not the best way to create models for researcher-physicians. First, AutoML originates
from the CASH problem. If the algorithm type is pre-selected, AutoML can only contribute to HPO.
As logistic regression only has two hyperparameters [8], we question the need for using AutoML to
tune these hyperparameters.

Second, even if we drop the constraint of logistic regression for model construction, previous
research found that other ML models do not significantly outperform logistic regression models in
medical studies [45]. Even when we drop the logistic regression model constraint, we still doubt the
usability of AutoML due to the results of Christodoulou et al. although other researchers do not find
the same results on general datasets [46,47].

Third, there is no explanation of variable importance by the tested AutoML method. As model
explainability and variable importance are essential requirements for researcher-physicians, this makes
AutoML unsuitable in its current form. If the given explanations are satisfactory, AutoML might
be useful in research. More on variable importance is available in the future research section below.

Appl. Sci. 2020, 10, 2992 10 of 18

If AutoPrognosis can deliver on its promises it can be a promising technology considering the user
stories on model explanation.

Fourth, there is no structure in the pipelines created by TPOT; this can lead to very complicated
pipelines in with three or four logistic regression models, all using each other’s results as input. These
constructions are hard to understand for domain experts, if we would use grammar to represent the
pipeline like in RECIPE [26]. The grammar can help to create more understandable pipelines for
researcher-physicians. Another option could be using fixed-pipeline methods based on BO. Although
they performed worse on the benchmark test, they can compensate if their results make more sense
to the researcher-physicians. Finally, we have learned that there is a gap in the knowledge level of
ML between literature and practice for researcher-physicians. The literature on AutoML states that
AutoML aims to aid non-expert users of ML techniques [8]. However, we find that most non-expert
users have no knowledge or education in programming. Hence, the current offering of AutoML
techniques are still too technical for non-expert users in healthcare.

5.1.2. Bias in Medical Analytics Publications

Most publications about healthcare analytics that we have come across during this research,
have all published a positive result. [48] noticed the same: there is a need to publish every positive
result, but there are no real tests for the value of ML solutions in healthcare. If we add the findings of
Christodoulou et al. [45] to the fact that ML models do not perform significantly better than traditional
methods in medical research we find a discrepancy between what is published and what is improving
healthcare. Hence, we think that it would be helpful for the development of accurate methods for
analytics in healthcare to publish results that do not provide a direct benefit. In this way, funding for
research can be either used for improving methods that do not yet work in healthcare or in researching
different methods for solving the same problem. When negative results are not published, we fear a
waste of research funding by researchers continually reinventing the wheel and thus stalling research
and innovation.

5.2. Validity

In this section, we address the “subjective” nature of the data collection and analysis of this
research [49]. To assess the validity of this study, we look at three of the five aspects of validity for
qualitative research, as proposed by Burke Johnson [50]. We do not discuss theoretical validity as the
goal of design science research is on artefact creation instead of theory creation. We do not aim to
explain a phenomenon. We also do not discuss Internal validity, as we do not aim to answer a question
about a causal phenomenon. The main research question of this research is a “how”-question.

5.2.1. Descriptive Validity

Descriptive validity is on the factual accuracy of the account of events as reported by the
researcher [50]. As a single researcher has conducted this research, hence there is a bias in data
collection. A researcher is subjective by nature, and so are his data collection and analysis [49].
Besides that, the relationship between the researcher and participants significantly influences what
the participants reveal to the researcher [51] (pp. 11–30). To mitigate this validity threat, we used
a framework to set up the semi-structured interviews and the framework for evaluation of design
science to set up the artefact evaluation. We recorded all interactions with the participants, and we
took part in sessions to obtain peer-feedback on our research to increase the descriptive validity.

5.2.2. Interpretive Validity

Interpretive validity is about accurately portraying the meaning that was attached by the
participants to the objects that were studied [50]. To mitigate this threat, we have sent the elicited
user-stories to the participants to obtain feedback on our findings [49]. Furthermore, we used
data-triangulation by tapping into other sources to confirm our findings. To make sure we portrayed

Appl. Sci. 2020, 10, 2992 11 of 18

the meaning of the participants well, we used low inference descriptors by quoting participants in this
research [50].

5.2.3. External Validity

External validity is crucial if we want to generalize our findings to a larger part of the population [50].
Although generalizability is not the primary purpose of this research, we will touch upon the subject.
As this research conducts a case-study, the best way to generalize its findings is to find the similarity in
subjects, objects and issues [52]. As the sample size and characteristics are not valid for generalizability,
the best method to generalize our findings is to identify similarity in other situations.

Characteristics that make the sample inapplicable for generalization to medical professionals are
the limited set of medical domains in which the participants operate and the fact that all participants
decided to participate voluntarily. Hence, insights derived from this study are hard to generalize but
could be a steppingstone for future research.

6. Conclusions

The main research question of this study was “How can we support healthcare professionals
in their knowledge discovery process by applying Automated machine learning?”. We found that
AutoML is currently only suitable for the data understanding phase of the CRISP-DM method when
using TPOT as AutoML method. TPOT performed best on the benchmark test along with Auto-Sklearn,
but satisfied more requirements than Auto-Sklearn. Although the assessed AutoML methods are
capable of modelling and data pre-processing, it misses an explanation for the decisions made in
the modelling process. Part of medical knowledge discovery is finding the cause of a medical event.
Because modelling decisions are not shared and variable importance is absent in the result, AutoML
does not support the discovery of new knowledge. However, the domain experts point out that they
see the added value of automatically finding out possible scores for their datasets. Furthermore, they
mention that AutoML can help them in getting an understanding of their data in the data understanding
phase of their knowledge discovery process.

7. Future Research

In this section we discuss three possibilities for future research, first we discuss model uncertainty
of AutoML created models. Second, we discuss possible new use-cases for AutoML methods. Finally,
we discuss interpretability as a direction for future research.

7.1. AutoML Model Uncertainty

One of the benefits that are proposed by AutoML is the reproducibility of created ML
pipelines [8,9,12]. However, these authors state that the outcome of the creation of an ML pipeline with
an AutoML method is dependent on the time budget allocated to the AutoML method. Besides that,
EA based AutoML methods start with a random population. Thus, it is harder to reproduce the result
of a single run without explicitly setting the seed. [53] investigated model uncertainty in a medical
context. They have found that as much as changing the seed can influence the prediction outcome for
an individual patient. Hence, we argue that there should be more research on the stability of AutoML
pipelines in the medical domain.

7.2. AutoML Use Cases

In our synthesis in Section 2, we explain that AutoML is applicable for tuning neural networks
and creating classification and regression models. In healthcare, the fields with the most significant
potential for the application of ML are image recognition and natural language processing [48]. Because
researcher-physicians accept black boxes in image recognition and natural language processing more
than in traditional research, these ML tasks might be better suited to enable domain experts to work

Appl. Sci. 2020, 10, 2992 12 of 18

with AutoML in healthcare. Hence, we argue that the scope of AutoML use-cases could be widened to
NLP and image recognition tasks if we want to accelerate the adoption of analytics in healthcare.

7.3. AutoML Interpretability

As pointed out in Section 5, the explainability of ML models is crucial to adoption for domain
experts in healthcare [54]. Molnar [55] argues that ML interpretability is crucial to the adoption of
black-box algorithms in every sector. In healthcare, this barrier to adoption is even higher, as being
able to explain decisions is part of the medical culture and vital to patient-doctor interaction. Hence,
AutoML methods must become more interpretable for non-expert users. The interpretability technique
should be model agnostic. In that way, the technique is suitable for all pipelines created by the AutoML
methods [56]. To improve the interpretability of AutoML models we propose three areas for further
research on the interpretability of AutoML: Surrogate models, Local Interpretable Model-agnostic
Explanations (LIME) [55] and Shapley values [57]. However, others argue that we should improve the
trust in artificial intelligence in healthcare rather than improving the interpretability. If the trust is high
enough, the researcher-physicians will start using the black boxes [58]. Most researcher-physicians also
do not precisely know how a car works. However, they still use cars in their daily lives. We believe
that the addition of interpretability will ignite the adoption rate of AutoML methods in healthcare and
other sectors to enable self-service data-science.

Author Contributions: Conceptualization: M.S.; Methodology, Software, Formal Analysis, Investigation: R.O.;
Validation: R.O., M.S.; Writing—Original Draft Preparation: R.O.; Writing—Review & Editing: M.S., R.O.;
Supervision: M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
Table A1. Overview of Automated Machine Learning (AutoML) methods.

Tool Library/
Package Optimization Pre-

Processor
Post-

Processor
Extra

Feature(s) Analysis Capabilities Code Link

Auto-Weka
2.0 WEKA Tree-based

hierarchical BO Yes No
Binary classification

Multi-label classification
Regression

https://github.com/
automl/autoweka

Auto-
Sklearn scikit-learn Tree-based BO Yes Yes Meta-learner

Binary classification
Multi-label classification

Regression

https://github.com/
automl/auto-sklearn

Hyperopt-
Sklearn scikit-learn Tree-based BO Yes No Binary classification

Multi-label classification

https://github.com/
hyperopt/hyperopt-

sklearn

TPOT scikit-learn
DEAP Tree-based GP Yes No

Binary classification
Multi-label classification

Regression

https://github.com/
EpistasisLab/tpot

Layered
TPOT scikit-learn Tree-based GP Yes No

Binary classification
Multi-label classification

Regression

https:
//github.com/PG-

TUe/tpot/tree/layered

Auto-Net
1.0 Lasagne

Feed-forward NN
on Stochastic

Gradient Descent
Yes No

Binary classification
Multi-label classification

Regression

No implementation
found

Auto-Net
2.0 PyTorch

BO and
Hyperband

(BOHB)
Yes No

Binary classification
Multi-label classification

Regression

No implementation
found

FLASH scikit-learn BO with expected
improvement Yes No Pipeline

caching Binary classification https://github.com/
yuyuz/FLASH

RECIPE scikit-learn Grammar-based
GP Yes No Binary classification https://github.com/

RecipeML/Recipe

Auto-
Prognosis scikit-learn BO and GP Yes Yes Meta-learner,

Explainer

Binary classification
Survival analysis

Temporal analysis

https://github.com/
ahmedmalaa/

AutoPrognosis

ML-Plan WEKA
scikit-learn HTN and EA Yes No Binary classification

Multi-label classification
https://github.com/

fmohr/ML-Plan

https://github.com/automl/autoweka
https://github.com/automl/autoweka
https://github.com/automl/auto-sklearn
https://github.com/automl/auto-sklearn
https://github.com/hyperopt/hyperopt-sklearn
https://github.com/hyperopt/hyperopt-sklearn
https://github.com/hyperopt/hyperopt-sklearn
https://github.com/EpistasisLab/tpot
https://github.com/EpistasisLab/tpot
https://github.com/PG-TUe/tpot/tree/layered
https://github.com/PG-TUe/tpot/tree/layered
https://github.com/PG-TUe/tpot/tree/layered
https://github.com/yuyuz/FLASH
https://github.com/yuyuz/FLASH
https://github.com/RecipeML/Recipe
https://github.com/RecipeML/Recipe
https://github.com/ahmedmalaa/AutoPrognosis
https://github.com/ahmedmalaa/AutoPrognosis
https://github.com/ahmedmalaa/AutoPrognosis
https://github.com/fmohr/ML-Plan
https://github.com/fmohr/ML-Plan

Appl. Sci. 2020, 10, 2992 13 of 18

Table A1. Cont.

Tool Library/
Package Optimization Pre-

Processor
Post-

Processor
Extra

Feature(s) Analysis Capabilities Code Link

Auto-
stacker

scikit-learn
XGBoost

Hierarchical
stacking and EA No No Binary classification

Multi-label classification
No implementation

found

Alpha3DM PyTorch NN and Monte
Carlo Tree Search Yes Yes

Binary classification
Multi-label classification

Regression

No implementation
found

PoSH
AUTO-
sklearn

scikit-learn BO with
successive halving Yes Yes Meta-learner

Binary classification
Multi-label classification

Regression

No implementation
found

Auto-Keras scikit-learn
BO guided

network
morphism

Yes No Binary classification
Multi-label classification

https:
//autokeras.com/

ATM scikit-learn Conditional
Parameter Tree Yes No Meta-learner

Binary
classificationMulti-label

classification

https://github.com/
HDI-Project/ATM

Appendix B

Table A2. Collection of the Top-15 elicited user stories, sorted on descending frequency.

User Story Frequency Category

1 As a researcher-physician, I want to know how a prediction mechanism
works, so that I can trust it more easily. 5 MX

2
As a researcher-physician, I want to be able to perform ML without
having to code, so that I do not have to spend time learning how to
program.

5 MC

3 As a researcher-physician, I want to use logistic regression, so that I can
follow the medical guidelines for research. 4 MC

4 As a researcher-physician, I want to see which variables are included and
excluded in the model, so that I can assess variable importance. 4 MX

5 As a researcher-physician, I want to see the difference between models
with different variables included so that I can assess variable importance. 4 MX

6 As a researcher-physician, I want to transfer my model into a calculation
tool, so that it can be used in clinical practice. 4 MU

7 As a researcher-physician, I want to have results within a day, so that I do
not have to wait. 4 MC, MU

8 As a researcher-physician, I want to know the statistical power of a
created model, so that I know if I can use it. 4 MX

9 As a researcher-physician, I want that the AutoML method explains its
decisions, so that I can check its reasoning. 3 MX

10 As a researcher-physician, I want to have a graphical user interface, so
that the chance of making errors is less than while coding. 2 UI

11 As a researcher-physician, I want to see the importance of each variable.
So that I can check the reasoning of the computer. 2 MX

12 As a researcher-physician, I want to use code, so that I can trace back the
decisions that I have made. 2 UI, MX

13 As a researcher-physician, I want to know what happens with missing
data, so that I can evaluate the model correctly. 2 MC, MX

14 As a researcher-physician, I want to get suggestions for variables to
include by the computer, so that I can improve my models. 2 MC

15 As a researcher-physician, I want to see the amount of variance that is
explained by my model, so that I can assess the model quality. 2 MX

https://autokeras.com/
https://autokeras.com/
https://github.com/HDI-Project/ATM
https://github.com/HDI-Project/ATM

Appl. Sci. 2020, 10, 2992 14 of 18

Appendix C

Appl. Sci. 2020, 10, 2992 14 of 18

Appendix B

Table B1. Collection of the Top-15 elicited user stories, sorted on descending frequency.

User Story Frequency Category

1
As a researcher-physician, I want to know how a prediction
mechanism works, so that I can trust it more easily. 5 MX

2
As a researcher-physician, I want to be able to perform ML without
having to code, so that I do not have to spend time learning how to
program.

5 MC

3
As a researcher-physician, I want to use logistic regression, so that I
can follow the medical guidelines for research. 4 MC

4
As a researcher-physician, I want to see which variables are
included and excluded in the model, so that I can assess variable
importance.

4 MX

5
As a researcher-physician, I want to see the difference between
models with different variables included so that I can assess
variable importance.

4 MX

6 As a researcher-physician, I want to transfer my model into a
calculation tool, so that it can be used in clinical practice.

4 MU

7 As a researcher-physician, I want to have results within a day, so
that I do not have to wait.

4 MC, MU

8
As a researcher-physician, I want to know the statistical power of a
created model, so that I know if I can use it. 4 MX

9
As a researcher-physician, I want that the AutoML method explains
its decisions, so that I can check its reasoning. 3 MX

10
As a researcher-physician, I want to have a graphical user interface,
so that the chance of making errors is less than while coding. 2 UI

11
As a researcher-physician, I want to see the importance of each
variable. So that I can check the reasoning of the computer. 2 MX

12
As a researcher-physician, I want to use code, so that I can trace
back the decisions that I have made. 2 UI, MX

13
As a researcher-physician, I want to know what happens with
missing data, so that I can evaluate the model correctly. 2 MC, MX

14
As a researcher-physician, I want to get suggestions for variables to
include by the computer, so that I can improve my models. 2 MC

15
As a researcher-physician, I want to see the amount of variance that
is explained by my model, so that I can assess the model quality. 2 MX

Appendix C

Figure C1. Screenshot 1 of of AutoML artefact A, the Web application interface (preference: GUI).

Figure A1. Screenshot 1 of of AutoML artefact A, the Web application interface (preference: GUI).Appl. Sci. 2020, 10, 2992 15 of 18

Figure C2. Screenshot 2 of of AutoML artefact A, the Web application interface (preference: GUI).

Figure C3. Screenshot of AutoML artefact B, the Jupyter notebook interface (preference: Code).

Appendix D

Overview of the refined hypotheses. For user interaction the hypotheses are:

1. Artefact A is preferred over Artefact B to upload a dataset.
2. Artefact A is preferred over Artefact B to create a subset.
3. Artefact B is preferred over Artefact A to find the way in the different steps.
4. Artefact B is preferred over Artefact A for the explanations of the workflow.

For model construction the hypotheses are:

1. Artefact B is preferred over Artefact A for progress reporting on model construction.
2. Artefact B is preferred over Artefact A for model construction.

Figure A2. Screenshot 2 of of AutoML artefact A, the Web application interface (preference: GUI).

Appl. Sci. 2020, 10, 2992 15 of 18

Figure C2. Screenshot 2 of of AutoML artefact A, the Web application interface (preference: GUI).

Figure C3. Screenshot of AutoML artefact B, the Jupyter notebook interface (preference: Code).

Appendix D

Overview of the refined hypotheses. For user interaction the hypotheses are:

1. Artefact A is preferred over Artefact B to upload a dataset.
2. Artefact A is preferred over Artefact B to create a subset.
3. Artefact B is preferred over Artefact A to find the way in the different steps.
4. Artefact B is preferred over Artefact A for the explanations of the workflow.

For model construction the hypotheses are:

1. Artefact B is preferred over Artefact A for progress reporting on model construction.
2. Artefact B is preferred over Artefact A for model construction.

Figure A3. Screenshot of AutoML artefact B, the Jupyter notebook interface (preference: Code).

Appl. Sci. 2020, 10, 2992 15 of 18

Appendix D

Overview of the refined hypotheses. For user interaction the hypotheses are:

1. Artefact A is preferred over Artefact B to upload a dataset.
2. Artefact A is preferred over Artefact B to create a subset.
3. Artefact B is preferred over Artefact A to find the way in the different steps.
4. Artefact B is preferred over Artefact A for the explanations of the workflow.

For model construction the hypotheses are:

1. Artefact B is preferred over Artefact A for progress reporting on model construction.
2. Artefact B is preferred over Artefact A for model construction.

Because no user-stories matched a model explanation requirement, the first two hypotheses are
about the model comparison. The latter hypotheses are about the desired explainability mentioned in
the user-stories.

1. Artefact A is preferred over Artefact B for comparing results of model creation.
2. Artefact A is preferred over Artefact B for the explanation of missing data handling.
3. Artefact B is preferred over Artefact A for reading the produced model.
4. Users consider accuracy to be a good measure of model performance.
5. Users want to know the statistical power of the created model.
6. Users want to know the importance of each variable in the created model.

References

1. Wang, X.; Noor-E-Alam, M.; Islam, M.; Hasan, M.; Germack, H. A Systematic Review on Healthcare Analytics:
Application and Theoretical Perspective of Data Mining. Healthcare 2018, 6, 54.

2. Chawla, N.V.; Davis, D.A. Bringing big data to personalized healthcare: A patient-centered framework.
J. Gen. Intern. Med. 2013, 28, 660–665. [CrossRef] [PubMed]

3. Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Heal. Inf. Sci. Syst.
2014, 2, 1–10. [CrossRef] [PubMed]

4. Spruit, M.; Lytras, M. Applied data science in patient-centric healthcare: Adaptive analytic systems for
empowering physicians and patients. Telemat. Inform. 2018, 35, 643–653. [CrossRef]

5. Spruit, M.; Vries de, N. Self-Service Data Science for Adverse Event Prediction with AutoCrisp. In Proceedings
of the Springer Proceedings in Complexity, Research & Innovation Forum, Athens, Greece, 15–17 April 2020.

6. Spruit, M.; Jagesar, R. Power to the People!—Meta-Algorithmic Modelling in Applied Data Science.
In Proceedings of the 8th International Conference on Knowledge Discovery and Information Retrieval,
Porto, Portugal, 9–11 November 2016; Volume 1, pp. 400–406.

7. Spruit, M.R.; Dedding, T.; Vijlbrief, D. Self-Service Data Science for Healthcare Professionals: A Data
Preparation Approach. In Proceedings of the 13th International Joint Conference on Biomedical Engineering
Systems and Technologies (BIOSTEC 2020)—Volume 5: HEALTHINF, Valletta, Malta, 24–26 February 2020;
pp. 724–734.

8. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined Selection and
Hyperparameter Optimization of Classification Algorithms. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 22–27 August 2013.

9. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automatic Machine Learning: Methods, Systems, Challenges; Springer:
New York, NY, USA, 2019.

10. Zhang, Y.; Bahadori, M.T.; Su, H.; Sun, J. FLASH: Fast Bayesian Optimization for Data Analytic Pipelines.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1–21.

11. Alaa, A.M.; van der Schaar, M. AutoPrognosis: Automated Clinical Prognostic Modeling via Bayesian
Optimization with Structured Kernel Learning. In Proceedings of the International Conference on Machine
Learning, Stockholm, Sweden, 10–15 July 2018; pp. 139–148.

http://dx.doi.org/10.1007/s11606-013-2455-8
http://www.ncbi.nlm.nih.gov/pubmed/23797912
http://dx.doi.org/10.1186/2047-2501-2-3
http://www.ncbi.nlm.nih.gov/pubmed/25825667
http://dx.doi.org/10.1016/j.tele.2018.04.002

Appl. Sci. 2020, 10, 2992 16 of 18

12. Kotthoff, L.; Thornton, C.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Auto-WEKA 2.0: Automatic model
selection and hyperparameter optimization in WEKA. J. Phys. B At. Mol. Opt. Phys. 2017, 18, 1–5.

13. Komer, B.; Bergstra, J.; Eliasmith, C. Hyperopt-Sklearn: Automatic HyperparameterConfiguration for
Scikit-Learn. ICML Work. AutoML 2014, 2825–2830. [CrossRef]

14. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Efficient and Robust
Automated Machine Learning. In Proceedings of the 28th International Conference on Neural Information
Processing Systems, Montreal, QC, Canada, 7–12 December 2015; MIT Press: Cambridge, MA, USA, 2015;
pp. 2755–2763.

15. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Practical Automated Machine Learning for
the AutoML Challenge 2018. In Proceedings of the ICML 2018 AutoML Workshop, Stockholm, Sweden,
10–15 July 2018.

16. Mohr, F.; Wever, M.; Hüllermeier, E. ML-Plan: Automated machine learning via hierarchical planning. Mach.
Learn. 2018, 107, 1495–1515. [CrossRef]

17. Bergstra, J.S.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings
of the Advances in Neural Information Processing Systems, Granada, Spain, 12–14 December 2011;
pp. 2546–2554.

18. Bergstra, J.; Yamins, D.; Cox, D.D. Hyperopt: A Python Library for Optimizing the Hyperparameters of
Machine Learning Algorithms. Comput. Sci. Discov. 2013, 1–8. [CrossRef]

19. Vanschoren, J.; van Rijn, J.N.; Bischl, B.; Torgo, L. OpenML: Networked science in machine learning. ACM
SIGKDD Explor. Newsl. 2014. [CrossRef]

20. Nau, D.; Au, T.C.; Ilghami, O.; Kuter, U.; Murdock, J.W.; Wu, D.; Yaman, F. SHOP2: An HTN planning
system. J. Artif. Intell. Res. 2003, 20, 379–404. [CrossRef]

21. Mendoza, H.; Klein, A.; Feurer, M.; Springenberg, J.T.; Hutter, F. Towards Automatically-Tuned Neural
Networks. Proc. Work. Autom. Mach. Learn. 2016, 64, 58–65.

22. Drori Krishnamurthy, Y.; Rampin, R.; Lourenço, R.; Ono, J.P.; Cho, K.; Silva, C.T.; Freire, J. AlphaD3M:
Machine Learning Pipeline Synthesis. In Proceedings of the ICML 2018 AutoML Workshop, Stockholm,
Sweden, 10–15 July 2018.

23. Jin, H.; Song, Q.; Hu, X. Auto-Keras: Efficient Neural Architecture Search with Network Morphism. arXiv
2018, arXiv:1806.10282.

24. Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning.
In Work. Automated Machine Learning; Springer: New York, NY, USA, 2006; pp. 66–74.

25. Gijsbers, P.; Vanschoren, J.; Olson, R.S. Layered TPOT: Speeding up tree-based pipeline optimization.
In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases, Skopje, Macedonia, 18–22 September 2017; pp. 49–68.

26. de Sá, A.G.C.S.; Pinto, W.J.G.S.; Oliveira, L.O.V.B.; Pappa, G.L. RECIPE: A grammar-based framework for
automatically evolving classification pipelines. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinform.) 2017, 10196 LNCS, 246–261.

27. Chen, B.; Wu, H.; Mo, W.; Chattopadhyay, I.; Lipson, H. Autostacker: A Compositional Evolutionary
Learning System. In Proceedings of the Genetic and Evolutionary Computation Conference, Kyoto, Japan,
15–19 July 2018; pp. 402–409.

28. Hornby, G.S. ALPS: The Age-Layered Population Structure for Reducing the Problem of Premature
Convergence. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
Seattle, DC, USA, 8–12 July 2006.

29. Swearingen, T.; Drevo, W.; Cyphers, B.; Cuesta-Infante, A.; Ross, A.; Veeramachaneni, K. ATM: A distributed,
collaborative, scalable system for automated machine learning. In Proceedings of the 2017 IEEE International
Conference on Big Data, Big Data 2017, Boston, MA, USA, 11–14 December 2017; pp. 151–162.

30. Hevner, A.R.; Ram, S.; March, S.; Park, J. Design Science in Information Systems. MIS Q. 2004, 28, 75–105.
31. Gijsbers, P.; Ledell, E.; Thomas, J.; Poirier, S.; Bischl, B.; Vanschoren, J. An Open Source AutoML Benchmark.

In Proceedings of the ICML Workshop on AutoML, Long Beach, CA, USA, 14 June 2019; pp. 1–8.
32. Bischl, B.; Casalicchio, G.; Feurer, M.; Hutter, F.; Lang, M.; Mantovani, R.G.; van Rijn, J.N.; Vanschoren, J.

OpenML Benchmarking Suites and the OpenML100. arxiv 2017, arXiv:1708.03731.

http://dx.doi.org/10.25080/majora-14bd3278-006
http://dx.doi.org/10.1007/s10994-018-5735-z
http://dx.doi.org/10.1088/1749-4699/8/1/014008
http://dx.doi.org/10.1145/2641190.2641198
http://dx.doi.org/10.1613/jair.1141

Appl. Sci. 2020, 10, 2992 17 of 18

33. Mangasariona, O.L.; Wolberg, W.H. Cancer Diagnosis via Linear Programming. SIAM News 1990, 23, 1–18.
34. Dua, D.; Graff, C. UCI Machine Learning Repository. 2019. Available online: https://archive.ics.uci.edu/ml/

index.php (accessed on 28 April 2019).
35. Quinlan, J.R. Simplifying decision trees. International journal of man-machine studies. Int. J. Man Mach.

Stud. 1987, 27, 221–234. [CrossRef]
36. Davis, A.; Dieste, O.; Hickey, A.; Juristo, N.; Moreno, A.M. Effectiveness of Requirements Elicitation

Techniques: Empirical Results Derived from a Systematic Review. In Proceedings of the 14th IEEE
International Requirements Engineering Conference, Minneapolis/St. Paul, MN, USA, 11–15 September 2006;
pp. 179–188.

37. Al-Busaidi, Z.Q. Qualitative research and its uses in health care. Sultan Qaboos Univ. Med. J. 2008, 8, 9–11.
[PubMed]

38. Pope, C.; van Royen, P.; Baker, R. Qualitative methods in research on healthcare quality. Qual. Saf. Health
Care 2002, 11, 52–148. [CrossRef]

39. Castillo-Montoya, M. Preparing for interview research: The interview protocol refinement framework. Qual.
Rep. 2016, 21, 811–831.

40. Venable, J.; Pries-Heje, J.; Baskerville, R. FEDS: A Framework for Evaluation in Design Science Research.
Eur. J. Inf. Syst. 2016, 25, 77–89. [CrossRef]

41. Offermann, P.; Levina, O.; Schönherr, M.; Bub, U. Outline of a Design Science Research Project. In Proceedings
of the 4th International Conference Design Science Research in Information Systems and Technologies,
Philadelphia, PA, USA, 6–8 May 2009.

42. Cohen, M. User Stories Applied: For Agile Software Development; Addison-Wesley Professional: Boston, MA,
USA, 2004.

43. Janssen, J.H.N. The Right to Explanation: Means for ‘White-Boxing’ the Black-Box? Master’s Thesis, Tilburg
University, Tilburg, The Netherlands, 2019.

44. Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.; Shearer, C.; Wirth, R. The CRISP-DM user
guide. In Proceedings of the 4th CRISP-DM SIG Workshop, Brussels, Belgium, 18 March 1999; Volume 1999.

45. Christodoulou, E.; Ma, J.; Collins, G.S.; Steyerberg, E.W.; Verbakel, J.Y.; van Calster, B. A systematic review
shows no performance benefit of machine learning over logistic regression for clinical prediction models.
J. Clin. Epidemiol. 2019, 110, 12–22. [CrossRef] [PubMed]

46. Gareth, J.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R;
Springer: New York, NY, USA, 2013.

47. Kotsiantis, S.B. Supervised Machine Learning: A Review of Classification Techniques. Informatica 2007, 31,
249–268.

48. Vollmer, S.; Mateen, B.; Bohner, G.; Király, F.; Ghani, R.; Jonsson, P.; Cumbers, S.; Jonas, A.; McAllister, K.;
Myles, P.; et al. ine learning and AI research for Patient Benefit: 20 Critical Questions on Transparency,
Replicability, Ethics and Effectiveness. arXiv 2018, arXiv:1812.10404.

49. Kaplan, B.; Maxwell, J. Qualitative Research Methods for Evaluating Computer Information Systems.
In Evaluating the Organizational Impact of Healthcare Information Systems; Springer: New York, NY, USA, 2005.

50. Burke Johnson, R. Examining the Validity Structure of Qualitative Research. Education 1997, 118, 282–292.
51. Kiegelmann, M. The Role of the Researcher in Qualitative Psychology; Ingeborg Huber Verlag: Tübingen,

Germany, 2002.
52. Polit, D.F.; Beck, C.T. Generalization in quantitative and qualitative research: Myths and strategies. Int. J. Nurs.

Stud. 2010, 47, 1451–1458. [CrossRef]
53. Michael, W.D.; Dustin, T.; Edward, C.; Jonas, K.; Jeremy, N.; Ghassen, J.; Katherine, H.; Andrew, M.D.

Analyzing the Role of Model Uncertainty for Electronic Health Records. arXiv 2019, arXiv:1906.03842.
54. Sung, N.; Crowley, J.W.F.; Genel, M.; Salber, P.; Sandy, L.; Sherwood, L.M.; Johnson, S.; Catanese, V.; Tilson, H.;

Getz, K.; et al. Central Challenges Facing the National Clinical Research Enterprise. JAMA J. Am. Med. Assoc.
2003, 289, 1278–1287. [CrossRef]

55. Molnar, C. Interpretable Machine Learning; Leanpub: Munich, Germany, 2019.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://dx.doi.org/10.1016/S0020-7373(87)80053-6
http://www.ncbi.nlm.nih.gov/pubmed/21654952
http://dx.doi.org/10.1136/qhc.11.2.148
http://dx.doi.org/10.1057/ejis.2014.36
http://dx.doi.org/10.1016/j.jclinepi.2019.02.004
http://www.ncbi.nlm.nih.gov/pubmed/30763612
http://dx.doi.org/10.1016/j.ijnurstu.2010.06.004
http://dx.doi.org/10.1001/jama.289.10.1278

Appl. Sci. 2020, 10, 2992 18 of 18

56. Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-Agnostic Interpretability of Machine Learning. In Proceedings of
the ICML Workshop on Human Interpretability in Machine Learning, New York, NY, USA, 23 June 2016.

57. Shapley, L.S. A value for n-person games. In Contributions to the Theory of Games; Princeton University Press:
Princeton, NJ, USA, 1953; pp. 307–317.

58. Bartoletti, I. AI in Healthcare: Ethical and Privacy Challenges. In Artificial Intelligence in Medicine; Elsevier:
Amsterdam, The Netherlands, 2019; pp. 7–10.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of AutoML Methods
	Healthcare
	Fixed Pipelines
	Neural Networks
	Evolutionary Methods
	Distributed Methods
	Overview of Methods

	Research Method
	Results
	Benchmark Test
	AutoML Requirements Evaluation
	Artefact Evaluation

	Discussion
	Lessons Learned
	Suitability of AutoML Methods for Researcher-Physicians
	Bias in Medical Analytics Publications

	Validity
	Descriptive Validity
	Interpretive Validity
	External Validity

	Conclusions
	Future Research
	AutoML Model Uncertainty
	AutoML Use Cases
	AutoML Interpretability

	
	
	
	
	References

