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Abstract: This paper presents a high performance (low computationally demanding) monocular
vision-based system for a hovering Autonomous Underwater Vehicle (AUV) in the context of
autonomous docking process-MViDO system: Monocular Vision-based Docking Operation aid.
The MViDO consists of three sub-modules: a pose estimator, a tracker and a guidance sub-module.
The system is based on a single camera and a three spherical color markers target that signal the
docking station. The MViDO system allows the pose estimation of the three color markers even
in situations of temporary occlusions, being also a system that rejects outliers and false detections.
This paper also describes the design and implementation of the MViDO guidance module for the
docking manoeuvres. We address the problem of driving the AUV to a docking station with the help
of the visual markers detected by the on-board camera, and show that by adequately choosing the
references for the linear degrees of freedom of the AUV, the AUV is conducted to the dock while
keeping those markers in the field of view of the on-board camera. The main concepts behind the
MViDO are provided and a complete characterization of the developed system is presented from
the formal and experimental point of view. To test and evaluate the MViDO detector and pose an
estimator module, we created a ground truth setup. To test and evaluate the tracker module we used
the MARES AUV and the designed target in a four-meter tank. The performance of the proposed
guidance law was tested on simulink/Matlab.

Keywords: hovering AUV; docking; vision-based tracking system; monocular; guidance system

1. Introduction

This work presents a monocular vision-based system for a hovering Autonomous Underwater
Vehicle (AUV) in the context of the autonomous docking process. In this work, we developed a
complete approach to bring a hovering AUV to a docking station using only one sensor: a single
camera. The aim was to explore the development of a system to assist autonomous docking based
on a single cost-effective sensor only. It was intended to realize how far we can get by using only
the image in determining the relative pose and tracking the target. Space limitations onboard the
AUV and energy limitations dictated the requirements for the development of this work. Based only
on the data collected by a low-cost camera it was possible to reach a guidance law that drives the
AUV to the cradle of a docking station. This work was intended to observe the target at a rate of
10 frames per second minimum (processing time less than 100 ms). This is due to the fact that the
control operates at 20Hz and it is not desired that there is more than one estimation between two
consecutive frames. As can be seen from the results (Section 5, Section 5.2.2, Figure 31), this objective
has been achieved. The detector and relative pose estimation algorithm provides 12 frames per second
(83 ms) to which adds the processing time of the developed filter which for 1000 particles per marker
occupies 13 ms of the total processing time. We propose algorithms that should be able to run in a
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low power consumption and low-cost system with minimal interference with existing HW modules
of AUV MARES [1]. Being our goal to develop high-level algorithms and not to develop hardware,
we have chosen a generic platform called Raspberry Pi 2, which we can classify in general as a low
power consumption and low-cost system. So, instead of considering data sources from other sensors
and increase the computation cost for sensor fusion, we choose to explore the maximum capabilities
of data provided by the image sensor, as we will explain at Section 2. Our approach, considering
Raspberry Pi 2 processing constraints, should be able to get more than 10 estimations per second
(a requirement for smooth control of MARES). In this work, in addition to presenting the developed
vision-based system that detects and tracks the docking station visual markers, we also address the
problem of defining a guidance law for a hovering AUV when performing a docking maneuver.
We used as a case study the docking of MARES, a small size modular AUV [1], but our approach
is pretty general and can be applied to any hovering vehicle. The results presented in this paper
are the outcome of continuous effort made by the center for robotics at INESC TEC for autonomous
docking of AUVs. This work has started with the localization and positioning of an Autonomous
Surface Vehicle (ASV), assuming parallel target and camera planes [2]. Then the efforts were devoted
to the preliminary characterization of relative position estimation and vehicle positioning. In that
work [3], it was demonstrated that the hovering AUV MARES (Figure 1) was capable to track and
position itself with regard to the target, at a given pre-specified depth. The estimation of the relative
position, based solely on the image, is subject to abrupt variations as well as indeterminate solutions
in the absence of one of the markers. There was a need to persist with the tracking even in the case
of partial or momentary occlusions of the markers that compose the target. The solution we found
to overcome this problem is presented on Section 2 (Section 2.3). The proposed solution allowed not
only to maintain the estimates of the relative pose even during the occlusion of one or more markers,
but also to reduce the number of outliers detections (Section 5). In order to drive the AUV MARES
from any point within the camera field of view to the point where the cradle of the docking station
is, we designed and developed a guidance law (Section 4). The proposed law allows always keeping
the markers in line of sight during the docking maneuver. We show that by adequately choosing the
references for the linear degrees of freedom (DOF) of the AUV it is possible to dock while keeping the
target markers in the field of view of the on-board camera.

Figure 1. MARES tracking the visual target.

This document is organized as follows:

• Section 1 contains a survey of the state of the art related to our work; the contributions of our work
and the methodology followed for the development of the presented system.

• Section 2 contains the developed system for docking the AUV MARES using a single camera.
In particular, the pose estimation method, the developed tracking system and the guidance law,
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• Section 3 contains a theoretical characterization of the used set camera-target,
• Section 4 describes the developed guidance law,
• Section 5 describes the experimental setup and presents the experimental results: an experimental

validation of the developed algorithms under real conditions such as the sensor noise,
lens distortion and the illumination conditions,

• Section 6 contains the results of tests to the guidance law performed in a simulation environment,
• Section 7: a discussion about the results,
• Section 8: conclusions.

1.1. Related Works

In the context of autonomous docking a hovering AUV, our work was concerned in four
main issues:

• build a target composed by well identifiable visual markers,
• visually detect the target through image processing and estimate the relative pose of the AUV with

regard to the target: the success of the docking process relies in accurate and fast target detection
and estimation of the target relative pose,

• ensure target tracking: the success of the docking process depends on a robust tracking of the
target even in situations of partial target occlusions and the presence of outliers,

• define a strategy to guide the AUV to the station’s cradle without ever losing sight of the target.

Taking these concerns into account, a survey of the state of the art, related to each of these issues,
was made and the different approaches were analyzed.

1.1.1. Vision-Based Approaches to Autonomous Dock An Auv

In recent years, the use of artificial vision and identifiable markers for pose estimation in an
underwater environment, has become a subject of interest for the scientific community working in
subaquatic robotics. Recent examples are the work of [4] where it is proposed a solution using active
light-marker localization for docking an AUV. For that, the authors use a module based on a monocular
system for detect a set of active light markers. Since the light-markers are placed in known positions of
the docking station the authors in [4] can estimate the pose between the docking station and the camera.
In order to detect the light-markers, the authors in [4] use a blinking pattern to allow the markers to
be discerned. Visual markers are one of the most used systems to help to guide the AUV to the dock,
and other approaches have been proposed by [5]. In [5] the authors propose a docking method for a
hovering AUV at a seafloor station. The proposed method is based on visual positioning and makes
use of several light sources located on the docking station to visual guide the AUV. The proposed
method is divided into two stages by distance, a first stage in which the vehicle is visual guided based
on the light sources and a final stage in which the AUV just keeps its attitude and moves forward into
a corn-shaped station. This method is not applicable to our case because the entrance of our docking
station is not corn-shaped. Note that in the method proposed in [5], the authors suspend vision-based
guidance when the AUV is at the dock entrance since the light sources are too close for the AUV to see.
The solution we propose in our work does not need to suspend guidance based on vision, allowing a
more aware docking of the docking maneuver. The use of a single camera on-board of an AUV and
multiple light markers mounted around the entrance of a docking station in order to guide visually
an AUV is also a solution presented in [6]. In this type of approach, the estimation of the relative
pose required for autonomous docking is done using the markers geometry. As in the case of the
work mentioned above ([5]), also in the work presented in [6] there was a position where the lights
on the dock were outside of the camera viewing range when the AUV was close to the dock, and the
vision-guidance is invalid in this area. In the literature, we also find works that are based on solutions
that use passive targets to signal the dock. In the case of [7] the passive targets are docking poles.
Passive markers in an underwater environment limit the process both in terms of minimum distance to
the target and visibility conditions. In the solution we propose, we tried to circumvent these limitations
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by building a hybrid target (active and passive). In other works, such as [8], the authors proposed a
method to estimate the relative pose of a docking station using a single camera. They assume that
the dock is circular so the proposed method is for a 5-DOF pose estimation neglecting the roll effects
because all the markers are physically identical, and there is no way to distinguish them. Furthermore
not considering the roll effect, the proposed method in [8] presents ambiguities in angles estimation.

1.1.2. Vision-Based Related Works

For purposes other than docking, works based on artificial vision were found. In [9] an approach
is proposed for estimating the relative pose between AUVs in tight formation. For a pose estimation
based on visual information, they use active light markers as optical markers placed on the follower
AUV. The pose estimation method in [9] is then based on the minimization of a non-linear cost function
comprising error terms from light marker projection, plus range and attitude measurements when
available. The use of a camera to estimate the relative position of an underwater vehicle also serves
other purposes, such as the work in [10], where it is intended that an AUV performs an autonomous
home into a subsea panel in order to perform an intervention. For the subsea panel detection and
subsequent relative position estimation, the authors in [10] propose a method in which the images
gathered by a single camera on-board AUV are compared with a priori known template of the subsea
panel. There are other works whose approach is based on stereo vision, such as the work in [11],
where the authors use dual-eye cameras and an active 3D target. The real-time pose estimation is made
by means of 3D model-based recognition and multi-step genetic algorithm. Although we recognize the
advantage in using stereo vision, the energy and space requirements available in our vehicle dictated a
solution based only on a single camera. Vision-based homing has been widely implemented in the
ground and aerial robotics [12] and its concepts have been translated to underwater robotics in some
works such as [13].

1.1.3. Approaches Based on Different Sensors

An alternative homing method (non vision-based) was proposed by [14]. The proposed method
in [14] uses electromagnetic waves emitted and received by means of large coils placed in both the
docking station and the AUV. The overall system makes it possible to compute bearing to the dock
at distances up to 35 m in seawater. Bearing was also employed by [15] using an USBL (ultra-short
baseline) sensor carried on the vehicle. The control law derived just has to ensure that the bearing
angle is null along the trajectory to home. However, it is well known that, in USBL systems, the angle
resolution decreases with the distance and the sensor may not be omnidirectional, thus being possible
to measure angles and ranges only when the beacon is located at a given angular position, with regard
to the USBL sensor. In [16], an extremum-seeking algorithm was introduced to find the maximum
approach rate to a beacon. Nevertheless, the method in [16] requires initialization otherwise the AUV
may be driven to a stable equilibrium point in the opposite direction of the beacon. In works such
as [17], a priori information on the area is used to generate an artificial potential field combined with a
sliding mode control law to home an AUV to its docking station.

1.1.4. Vision-Based Relative Localization

The detection of markers and the computation of the position and attitude of the AUV with
respect to them have been addressed in several works [5,18]. In the context of vision-based relative
localization estimation, there are strategies such as ego-motion based on cameras. Ego-motion is
defined as the 3D motion of an agent in relation to its environment, that strategy consists in estimating
a camera motion relative to a rigid scene. Ego-motion using a single camera-Monocular Visual
Odometry (MVO)-consists of sequential estimation process of camera motions depending on the
perceived movements of pixels in the image sequence. MVO operates by incrementally estimating
the pose of the vehicle through the examination of the changes that motion induces on the images
of its onboard camera. For MVO to work effectively, there should be sufficient illumination in the
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environment and a static scene with enough texture to allow apparent motion to be extracted [19].
Furthermore, consecutive frames should be captured by ensuring that they have sufficient scene
overlap. For accurate motion computation, it is of utmost importance that the input data do not
contain outliers. Outlier rejection is a very delicate step, and the computation time of this operation is
strictly linked to the minimum number of points necessary to estimate the motion [19]. The work [20]
proposes robust methods for estimating camera egomotion in noisy, real-world monocular image
sequences in the general case of unknown observer rotation and translation with two views and a
small baseline. The recent works have demonstrated that the computational complexity of ego-motion
algorithms is a challenge for embedded systems because there are iterative operations that limit the
processing speed. However, the recent work [21] proposes a hardware architecture for the “ego-motion
challenge” that consists of using look-up tables and a new feature matching algorithm. The camera
motion is estimated with no iterative loop and no geometrical constraints. The authors in [21] claim
that their algorithm complexity is low and that a small size GPU-based implementation is feasible and
suitable for embedded applications. The major drawback of the camera-based ego-motion approach is
due to image analysis which is typically computationally expensive [21]. Perspective-n-points (PnP)
algorithms can accurately solve points-based pose estimation (see work [22]), but a drawback of PnP
algorithms, just like the other methods found in the literature, is that they fail in estimating poses
in cases where not all markers are detected and a partial occlusion of the target, i.e., an incomplete
observation is highly possible in a docking process. In our work, for estimate the relative position of an
AUV with regard of the target we consider the algorithm presented on [23]. The algorithm presented
in [23] serves our needs with regard to position estimation, however, in terms of the relative attitude
estimation the algorithm presented in [23] has some assumptions and simplifications that do not fit
our problem. There are two ambiguities when using a target with only three markers: an ambiguity
in the signal when the target is rotated around the x axis and another ambiguity when the target is
rotated around the y axis. For that reasons, we decided to develop a new alternative algorithm for
attitude estimation (presented in Section 2.2).

1.1.5. Tracking: Filtering Approaches

In the literature we could find some classical approaches to Bayesian nonlinear filtering such as the
ones described in [24,25]. The most common choice lies in the Kalman Filter, but do not serve our case
considering the nonlinearity of the particular problem that we want to solve and a non-Gaussian sensor
noise. On the other hand, the Extended Kalman filter could be applied for nonlinear non-Gaussians
models, however, the linearized model considers Gaussian noise. Despite other approaches such as the
Point Mass Filter approach applies to any nonlinear and non-Gaussian model [24], the main limiting
issue is the dimensionality of the grid size and the algorithm is of quadratic complexity in the grid
size. In fact, in grid based systems, adjusting the grid size by varying the cell size in order to lead
to less expensive computational cost will not be a good choice because by increasing the grid size
would reduce the system resolution. A Particle Filter approach has advantages of simple calculation
and fast processing. Particle Filters can be implemented for arbitrary posterior probability density
function, which arises in particular when faced with nonlinear observations and evolution models or
non-Gaussian noises [26]. On the other hand, in particle filter, the tradeoff between estimation accuracy
and computational load comes down to adjusting the number of particles [26]. The particle filters can
propagate more general distributions and that is of particular benefit in underwater visual tracking.

1.1.6. Docking: Guidance Systems

In the literature we found some works focused on the purpose of guiding an AUV to a dock using
a vision-based system. We highlight here two:

• In [27] a monocular vision guidance system is introduced, considering no distance information.
The relative heading is estimated and an AUV is controlled to track a docking station axis line
with a constant heading, and a traditional PID control is used for yaw control,
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• In another work [28], two phases compose the final approach to the docking station: a crabbed
approach where the AUV is supposed to follow the dock centerline path. The cross-track error
is computed and fed-backed; and a final alignment to eliminate the contact of the AUV and the
docking station.

None of the works found in the literature takes into account our concern to never lose sight of the
target until the AUV is fully anchored in the cradle. For this reason, a new solution was developed
that is presented in this paper.

1.2. Contributions of This Work

Taking into account the state of the art, we highlight the following points as being the contributions
of our work:

• A module for detection and for attitude estimate of an AUV dock station based on a single
camera and a 3D target: for this purpose, a target was designed and constructed whose physical
characteristics maximize its observability. The developed target is a hybrid target (active/passive)
composed by spherical color markers which could be illuminated from the inside allowing to
increase the visibility of the markers at a distance or in very poor visibility situations. It was also
designed an algorithm for detecting the target that responds to needs of low computational cost
and that can be run in low power, low size computers. A new method for estimate the relative
attitude was also developed in this work.

• A novel approach for tracking by visual detection in a particle filtering framework. In order to
make the pose estimation more resilient to markers occlusions, it was designed and implemented a
solution based on Particle Filters that considers geometric constraints of the target and constraints
of the markers in the color space. These specific approaches have improved the pose estimator
performance, as presented in the results section. The innovation in our proposal for the tracking
system consists of the introduction of the geometric restrictions of the target, as well as the
restrictions in the color space as a way to improve the filtering performance. Another contribution
is the introduction, in each particle filter, of an automatic color adjustment. This allowed not only
to reduce the size of the region of interest (ROI), saving processing time, but also to reduce the
likelihood of outliers.

• It was developed a method for real-time color adjustments during the target tracking process,
which improves the performance of the markers detector through better rejection of outliers.

• It was designed and implemented an experimental process, with Hardware-in-the-loop,
to characterize the developed algorithms.

• A guidance law was designed to guide the AUV with the aim of maximizing the target’s observance
during the docking process. This law was designed from a generalist perspective and can be
adapted to any system that bases its navigation on monocular vision, or another sensor whose
field of view is known.

1.3. Requirements

For the purpose of design and implement the MViDO system, it would be necessary to find
a specific solution to meet certain requirements. One of the requirements for the development of
that system was that its implementation was done on a computer that was small enough to be
accommodated onboard the AUV-embedded low-cost hardware. Such a requirement implied a
more limited processing feature, i.e., a high performance (low computationally demanding) system.
By commitment to the control system of the AUV, the NViDO system should not exceed 0.011 s to
process each frame received from the camera. Another requirement was that the system be based
only on a single camera so that the AUV dynamics were the least changed possible, i.e., it was not
intended to alter the MARES body, so any extra equipment (sensor) to be installed in the vehicle would
necessarily have to be incorporated into the housing available for that purpose. On the other hand,
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the space on board the vehicle is limited and the energy available as well. The housing available to add
a sensor only supports a camera and a light source. Furthermore, using more than one camera would
create more drag and consume more energy. These were the starting points for the development of the
MViDO system.

Components Specifications

The developed system is integrated as an independent module in the MARES AUV system. All the
developed algorithms, presented here, were implemented on a Raspberry Pi 2 model B, a computer
that is small enough to be accommodated onboard the MARES AUV. The single camera used for
the vision system was a Bowtech underwater camera with a Sony 1/3′′ EX-View HAD CCD sensor.
The camera and lens specifications are those shown in Tables 1 and 2.

Table 1. Camera sensor specifications.

Sensor Size (mm) 3.2 × 2.4

Resolution (pixels) 704 × 576

Pixel Size (µm) 6.5 × 6.25

Table 2. Camera lens specifications.

Focal length (mm) 3.15

Diagonal Field of View (degrees) 65

Maximum Aperture f 1.4

1.4. Methodology

We had to deal with a specific problem and we proposed a concrete solution. Taking into
account the requirements, it was necessary to find a solution based on a monocular system and with
limited processing capacity (a solution that can be run in low power, smaller computers). Whereas
it was intended to estimate the relative position and attitude of the AUV in relation to a dock using
a single camera, and taking into account that, in the vicinity of the dock, the AUV’s camera may
not necessarily be facing the dock, we chose to construct a target to attach to the dock and whose
markers were visible on different points of view. On the other hand, we chose to use different colors
for each of the markers in order to avoid ambiguities in the relative pose estimation. In order to
estimate a 3D relative pose of the AUV in relation to the built target, we propose an algorithm of low
computational cost that detects, identifies and locates the spherical color markers in the image and
then estimates the position and orientation of the target with regard to the camera frame mounted
onboard AUV. The module developed for the detection of markers and relative pose estimation
presents fairly satisfactory estimates and with sufficient accuracy to feed the control, especially with
accurate orientation information needed in the final docking phase. We propose here a particular
solution to deal with situations of partial occlusion of the target (absence of one or more markers) or
appearance of outliers that affect the estimate of the 3D relative pose. Our particular solution, based on
particle filters, rather than following the more common approach of throwing particles over the target
as a whole, considers a particle filter for each of the markers and considers the geometric constraints of
the target and the constraints of the markers in the color space. The proposed solution also considers
real-time color adjustments which allow, in a scenario with features of color similar to our markers,
a greater number of outliers is avoided and the weight of the particle of the filter has a more adjusted
value and that the results are more accurate.
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2. Mvido: A Monocular Vision-Based System for Docking a Hovering Auv

This section presents three components of the modular MViDO system developed in order to
assist the autonomous docking process of an AUV. Here are three of our contributions: the target,
the attitude estimator, and the tracking system. The total MViDO system is also composed of other
contribution-the developed guidance law-which is presented in a separate Section 4.

2.1. Target and Markers

The docking station choice plays an important role in vision-based docking. We believe that
choosing a target composed of well-identifiable markers to attach the dock aids in 3D pose estimation.
In the context of this work, a target was designed and built. The developed target is formed by
three color spherical markers rigidly connected. Our solution for the dock’s target based on spherical
markers, as shown in Figures 2 and 3, allows the target to be viewed from different points of view
and without shadows to make image segmentation easier We chose to use different colors for each
of the markers in order to avoid ambiguities in the relative pose estimation. The first solution was
based on passive visual markers, occasionally illuminated outside only in certain circumstances of
visibility. This solution proved not to be the best since lighting from outside created unwanted shadows.
A second solution was developed (Figure 2) based on hybrid visual markers. In this hybrid target,
the markers could be illuminated from the inside allowing to increase the visibility of the markers
at a distance or in very poor visibility situations. The interior lighting intensity is controllable from
the docking station. The fact that the lighting is controllable allows us to adjust the intensity so that
the colors continue to be noticeable. In a limit situation, where a stronger interior lighting is required,
when the camera is facing the color lightning marker, what we see is very bright ellipses and a colored
halo around that ellipses and in this way we continue to have color information. In situations of good
visibility or in close proximity to the target, interior lighting is almost unnecessary and the target
becomes quasi-passive avoiding energy consumption. In certain situations, the fact that the markers
can be illuminated can also serve as a first beacon signaling the presence of the target. The choice
of dimensions for the target (see Figure 2a) was related to three factors: the maximum operating
distance Camera-Target, the field of view of the lens and the constructive characteristics of the dock
(see Figure 3). The target presents different distances on the two axes a and b (see Figure 2a) in order to
avoid ambiguities in the relative position estimation.

0.100m

b=0.240 m

a=0.150 ma=0.150 m

(a)

(b)

Figure 2. The hybrid target. (a) The Target dimensions: different distances on the two axes. (b) The
developed hybrid Target: the interior lighting intensity is controllable from the docking station.
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Figure 3. Docking station.

2.2. Attitude Estimator

In our previous work [3], we develop an algorithm to visually detect the target formed by the
three-color spherical markers rigidly connected. The detection algorithm is based on an image color
segmentation which detects the center of mass of each of the markers after an iterative process where,
for each captured frame, a threshold is made for the range of the reference colors of the markers.
When the three points in the image are identified, we proceed to relative pose estimation. For the 3D
pose estimation, the developed algorithm is based on a u, v image that determines the target position
and orientation with regard to the camera frame-mounted onboard AUV.

For estimate the relative position of the AUV MARES with regard of the target (see Figure 4),
we use the algorithm presented on [23] and we consider the pinhole camera model presented on
Figure 5. A relative position vector is defined as represented bellow:

d =
[

xr yr zr

]T
(1)

where xr, yr, zr are the estimated relative distances of the centre of the color markers from the camera
along xc, yc, zc directions. The estimate of zr can be obtained from the following equation in z2

r :

z4
r (k2k3 − k1k4)

2 − z2
r

(
k2

1 + k2
2 + k2

3 + k2
4

)
+ 1 = 0, (2)

where, k1, k2, k3 and k4 are known constants, determined in function of the coordinates of the markers
in the image, the focal length of the camera and the fixed real distances between the markers on the
target. That constants are given by:

k1 =
uC − uA
2 ∗ a ∗ f

(3)

k2 =
vC − vA
2 ∗ a ∗ f

(4)

k3 =
uA + uC − 2 ∗ uB

2 ∗ b ∗ f
(5)

k4 =
vA + vC − 2 ∗ vB

2 ∗ b ∗ f
, (6)

where (uA, vA); (uB, vB); (uC, vC) are the image coordinates of the markers, a is the distance from the
marker A and C to the center of the target reference frame and b is the distance from the marker B to
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the center of target reference frame, f is the focal length of the lens, More details of the algorithm can
be found in [23].

Y
r

X
r

Z
r

A
B

C

B
A

TARGET CENTERED
REFERENCE FRAME

a
C a

b

X
c

Y
c

v
u

LENS

f

AUV MARES

TARGET

IMAGE
PLANE

CAMERA CENTERED
REFERENCE FRAME

Z
c

X
b

Z
b

Y
b

Figure 4. Definitions of the camera and target reference frames for relative localization.

v

u

x

y

f

IMAGEREAL SCENE

Z

Figure 5. Pinhole camera model.

In terms of the relative orientation estimation, the algorithm presented in [23] has some
assumptions and simplifications that do not fit our problem. There are two ambiguities when using a
target with only three markers: an ambiguity in the signal when the target is rotated around the x axis
and another ambiguity when the target is rotated around the y axis. For that reasons, we decided to
develop a new algorithm for attitude estimation. For that, we considered the Figure 6. In first place,
we rotate the ’plane r’ (the plane of the target) in order to place it parallel to the ’plane c’ (a mirror
plane of the CCD sensor of the camera). Then, a scale factor is applied in order to obtain the same
limits for both planes. Finally, a translation is applied to match the two planes.
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Plane r

Plane c

p̄c
A

p̄c
B

p̄c
C

p̄r
C

p̄r
B

p̄r
A

Figure 6. Pose estimator. In the figure, the ‘plane r’ is the plane of the target and the ‘plane c’ is a mirror
plane of the sensor of the camera.

This will allow us to transform any point from one referential frame into the other:

pc = αRpr + tr (7)

In this perspective projection α is a scale factor (which depends on the focal length), R is the
rotation matrix, tr is the translation term, pc and pr are a point in the plane c (a mirror plane of the
sensor of the camera) and in the plane r (plane of the target) respectively. With reference to Figure 4
and according to the Figure 6 the vectors p̄c and p̄r are defined as:

p̄c ∈ R3 : p̄c =

pcu

pcv

0

 (8)

p̄r ∈ R3 : p̄r =

prx

pry

prz

 . (9)

Beginning by eliminating the translation term in Equation (7):
p̄A

c − p̄B
c = αR

(
p̄A

r − p̄B
r
)

p̄A
c − p̄C

c = αR
(
p̄A

r − p̄C
r
)

p̄B
c − p̄C

c = αR
(
p̄B

r − p̄C
r
)

RRT = I

(10)

In matricial form:
Ppc =

[
p̄A

c − p̄B
c p̄A

c − p̄C
c p̄B

c − p̄C
c

]
∈ R3x3 (11)

Ppr =
[
p̄A

r − p̄B
r p̄A

r − p̄C
r p̄B

r − p̄C
r

]
∈ R3x3. (12)

Once,
Ppc = αRPpr , (13)

then, [
p̄A

c − p̄B
c p̄A

c − p̄C
c p̄B

c − p̄C
c

]
= (14)

= αR
[
p̄A

r − p̄B
r p̄A

r − p̄C
r p̄B

r − p̄C
r

]
. (15)

In order to solve this, a pseudo-inverse is applied:

Ppc Ppr
T = αRPpr Ppr

T . (16)
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Then we determine αR:
αR = Ppc Ppr

T
(

Ppr Ppr
T
)−1

, (17)

converting the rotation matrix R into quaternion elements:
q2

0 + q2
1 − q2

2 − q2
3 = R11

2q1q2 + 2q0q3 = R12

2q1q2 − 2q0q3 = R21

q2
0 − q2

1 + q2
2 − q2

3 = R22

, (18)

where R11, R12, R21 and R22 are the coefficients of the matrix R and q0, q1, q2 and q3 are the
quaternion elements.

Now, solving the equations in order to the quaternion elements:

⇔



q4
0 −

(
1
2

)
(R11 + R22) q2

0 −
(

1
16

)
(R12 − R21) = 0

q2 =
(

1
4q1

)
(R12 + R21)

q3 =
(

1
4q0

)
(R12 − R21)

−q4
1 −

(
1
2

)
(R22 − R11) q2

1 +
(

1
16

)
(R12 + R21)

2 = 0

(19)

q =


q0

q1

q2

q3

 · 1

‖
[
q0 q1 q2 q3

]
. ‖

(20)

This is how we compute the attitude.

2.3. Resilience to Occlusions and Outliers Rejection

Just by itself, the color-based detector algorithm proved to be insufficient for a robust later pose
estimation because of the false detections, the outliers and the noise in the color detections. On the
other hand, partial occlusions of the target implies only a partial detection which would not allow
a pose estimation. To overcome these limitations, we decided to develop a filter algorithm in a
color-based context. The implemented algorithm allows an adaptive color detection, in the sense
that each marker model is updated over time in order to make it more robust against changes in
water turbidity conditions and underwater illumination changes. The main goal is to track the state
of each of the three markers in the captured images. In our color tracker, we used a probabilistic
Bayesian approach and in particular a sequential Monte Carlo technique and we considered two types
of constraints related to the target in order to improve the performance of the filter: the geometrical
constraints of the target and the constraints of the markers in the color space. The developed solution
allowed to improve the performance of the relative pose estimator by rejecting outliers that occurs
during the detection process and made it possible to obtain pose estimates in situations of temporary
occlusion of the markers.

For the proposed tracking system, we developed the filters based on a particle filter framework.
For the formal model of the particle filter we adopt the one presented on [24] and we choose the
resampling method presented in [29]. The Figure 7 presents the scheme we propose for the proposed
tracking system. As shown in the Figure 7, the filter block appears between the markers detector block
and the pose estimator block. The filter block consists of three particle filters, one filter per each marker.
Each particle filter receives from the detector block the position u, v and the radius R of the respective
marker in the image.
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IMAGE [u,v,R]

COLOR
SEGMENTATION

PARTICLE
FILTER

DETECTORCAMERA

POSE
ESTIMATOR

- DATA FROM IMU
- CONST. VELOCITY/ACCELERATION MODEL

- CONTROL ACTIONS

TO UPDATE

TO PREDICTION

[u,v,R]

TO UPDATE

[u,v,R]

TO UPDATE

PARTICLE
FILTER

PARTICLE
FILTER

COLOR CONSTRAINTS

GEOMETRIC
CONSTR.

GEOMETRIC
CONSTR.

Figure 7. Proposed approach for tracking the target in video captures and to estimate the relative pose
of the AUV with regard to that target. In the Figure, the elements u, v and R are the position of the blob
on the image and the blob radius on the image.

2.3.1. Problem Formulation

Considering an image I composed by a set of pixels I
{

xi, yj
}

where i ∈ N [0 Iwidth] and j ∈
N
[
0 Iheight

]
, in the Hue, Saturation, Value (HSV) space IHSV where is extracted a set of color blobs

Bl =
[

Blred, Blyellow, Blgreen

]
. Considering that in HSV color space, the Hue refers to the perceived

color; the Saturation measures its dilution by white light (the “vividness” of the color); and the Value
is the intensity information. The detector block is used to detect the color blobs in the HSV space.
Based on that visual sensing, the position and the radius of each detected color blob Bli

k is extracted
from the image with some uncertainty. Each detected color blob in the image is represented by
Bli

k = [u, v, rdBl ]. Where u, v is the position of the blob on the image and rdBl is the blob radius on the
image. The blobs are selected considering the colour likelihood model, which is defined in a way that
privilege the hypotheses with HSV values which are close to the reference HSV values and the blobs
with bigger radius.

P(Bli
color) = C1 ∗ Pcolor(Bli

color) +
C2 ∗ rdBli

color

max(rdBlcolor
)

, (21)

where C1 and C2 are parameters to weight the values given by the model color and radius. Pcolor is
a function that returns the mean probability of all pixels inside the circle defined by [u, v, rdBl ] and
considering the function (24).

Analyzing Equation (21), the probability P(Bli
color) of being the color blob i will result from the

sum (a fusion) of two terms. The first term C1 ∗ Pcolor(Bli
color) concerns to constraints in the color space.

The second term
C2∗rd

Blicolor
max(rdBlcolor

)
concerns to the geometric constraints of the target.

We want to use a particle filter per each marker that compose the target, to determining the
position of each marker in an image. For each marker, a particle filter is implemented in order to
make the system reliable under one marker occlusion. With three particle filters we increase the
system redundancy making it more reliable. For each color marker BlCk, we have a state vector as
presented below:

BlCk =
[
u, v, rdBl , cx, cy, crdBl

]
, (22)

where k is the marker index, u, v is the position of the marker on the image, rdBl is the marker radius
on the image and cx, cy, cz is the linear velocity. The BlCk is initialized with the values of Bli

k which
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has the higher probability (max(P(Blcolor)) on the set Blk. Each filter uses a constant velocity model
(see Figure 7).

2.3.2. Considering Geometrical Constraints

In the filter block (see Figure 7) we consider geometrical constraints related to the target in order
to improve the performance of the filter. Since the target geometry is well-known, such as the distance
between the three markers (see Figure 8) and the radius of each marker, we used this information to
condition filter estimates.

A B

C

d
AB
d
AB

d
BC

d
AC

Figure 8. Estimated distances for the target.

If the underwater scene contains other objects with a similar color to that of the markers, the colour
cues became more prone to ambiguity. For that reason, it is necessary to use the target geometry
constraints to allow the markers to be located with low ambiguity. When we take into account the
geometric constraints, the procedure we implemented is as follow: considering the first instant t = 0
when the markers A and B are detected, the estimated distance dAB at t = 0 is d0

AB. Supposing a time
progression, at the instant t = 1, the distance d1

AB will change according to the movement of the AUV,
that is:

d1
AB = d0

AB + uI
AUV , (23)

where uI
AUV is the movement of the AUV projected in the frame I of the camera. That movement

depends on the proximity and pose of the AUV with regard to the target, and depend on the properties
of the camera sensor and lens, namely the sensor size and the focal length:

uI
AUV = Ḟ (x, y, z, θ, φ, Ψ, f , sx) = ḋAB, (24)

where θ, φ, Ψ are the angles of pitch, roll and yaw respectively and sx is the physical dimension of the
CCD sensor in the x axis.

Knowing that,

(xc, yc) =

(
f

xw

zw
, f

yw

zw

)
, (25)

where xw, yw, zw are coordinates in the referential associated with the center of the camera lens W ,
xc, yc are the coordinates in the referential associated with the CCD of the camera C, f is the focal
length of the camera lens. We could say that,

(
dAB

)2
=

(
f

xA
w sx

zA
w
− f

xB
wsx

zB
w

)2

+

(
f

yA
w sx

zw A − f
yB

wsx

zwB

)2

. (26)

The uI
AUV depends on the pose of the AUV, However, if the initialized distance is based on a

wrong marker position extraction, since the system has three particle filters, one per marker, the system
will automatically reset the wrong initialized particle filter.
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Considering that the movement uncertainty is described by a Gaussian function:

G(x) =
1

σ
√

2π
e
−(x−µ)2

2σ2 . (27)

The probability of the particle ptA
i is given by:

P
(

ptA
i

)
=

e
−(dpti

−d0
AB−uI

AUV)
2σ2

σ
√

2π
, (28)

where dpti is the distance of particle pti to the marker of reference (see Figure 9), and σ is the value of
the standard deviation.

P

d AB
0

d AB
1

xx xxx x

pt
1

A
pt
2

A
pt
3

A
pt
4

A
pt
5

A

uAUV
I

d AB

Figure 9. Illustration of the proposed approach to the geometric constraint in the filter.

When there is no AUV velocity feedback in the particle filter, then:

2.3.3. Considering Constraints in the Color Space

In the filter block (see Figure 7) we also consider constraints in the color space in order to improve
the performance of the filter. The assignment of weights to the particles takes into account the color
information that is sampled from the image at the inside of each particle. σ = max

(
uI

AUV
)

and
uI

AUV = 0.
In order to consider the color constraints, we developed and implemented the follows procedure:

For each particle pti with position pi ∈ R2 in the image, will be evaluated N points of color pocj ∈ R3

(HSV color space), at positions oj ∈ R2 such as:

pocj
(
oj
)

, pocj ∈ R3, oj ∈ R2, j ∈ {1, · · · , N} :
∥∥pi − oj

∥∥ < rd, (29)

where rd is the estimated radius of the corresponding marker.
Considering the particle ptA

i referring to the marker A and described by the parameters u, v and
rd, where u, v are the localization of the particle in the image, and rd is the estimated radius for the
marker A. See the Figure 10

The probability P
(

ptA
i
)

will be the result of nine samples such as:

P
(

ptA
i
)
= PA

(
i(u,v)

)
× PA

(
i(u∓a,v)

)
× PA

(
i(u,v∓a)

)
×

×P̄A
(

i(u∓b,v)

)
× P̄A

(
i(u,v∓b)

)
.

(30)

P
(

ptA
i

)
=

9

∏
j=1

PA (oj
)

(31)
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oj =

[
u∓ rd∓ δ

v∓ rd∓ δ

]
(32)

o0 =

[
u
v

]
, (33)

where δ is a constant adjustable parameter that serves to place the sample on the periphery of the
markers edges. PA

(
i(u,v)

)
is a value according to the color of the pixel i(u,v), positioning at position

u, v of the image I. The PA
(

i(u,v)

)
= FA (H, S, V), where FA (H, S, V) is a discrete function and with

auto adjustable value.

(u , v)

rd

Figure 10. description of a particle by the u, v and rd parameters.

If the components H, S, V of the i(u,v) are within the pre-defined reference HSV range (See the

Figure 11), then PA
(

i(u,v)

)
= 1. Otherwise, PA

(
i(u,v)

)
= γmin. Where, γmin is a parameter of non-zero

value that ensures that in case of an outlier in color, do not lead to P
(

ptA
i
)
= 0.

1

1

1

P
H

γmin

γmin

γmin

Hmin

V min

S min

Hmax

S max

V max

2550

P
S

P
V

H

S

V

Figure 11. Reference range of the Hue, Saturation, Value (HSV) components.

2.3.4. Automatic Color Adjustment

In an underwater environment, the color changes along the water column due not only to the
luminosity but also to the turbidity of the water. The idea here is to readjust the graph of the Figure 11
for the actual context of the system and in this way, obtain a more adjusted definition of the color of the
marker in order to reduce the probability of a false detection of the marker being assumed to be true.

We pick a sample of the color components H, S, V at the most representative particles, the particles
with greater weight. With that samples we construct a histogram of occurrences of each component
value. Instead of using the reference intervals for each component H, S, V we started to use that
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histogram, and the reference values for the color components becomes that which occurs more often.
Considering for example the marker with the red color, the probability function of the red marker is
initialized as:

Pred
H,S,V =



1 i f Hred
min < H < Hred

max
∧ Sred

min < S < Sred
max

∧Vred
min < V < Vred

max
0.5 i f S > Ssat ∧ V > Vsat

0 otherwise

(34)

The function is discretized in N values in the space of each component. In this way, an occurrence
histogram, HI, is created for each color component, H, S, V (See the Figure 12). Assuming initially the
value 0 in each Bin of the histograms

(
HIk

H , HIk
S, HIk

V

)
.

H

V

S

...

...

...

HI
H

k

HI
S

k

HI
V

k

Figure 12. Occurrence histograms.

At the first instant in which the target is tracked then, for each marker the N particles of greater
probability are selected. Using the inner five pixels (the same used for color constraints Section 2.3.3),
Pixel

(
i(u,v)

)
, Pixel

(
i(u∓a,v)

)
and Pixel

(
i(u,v∓a)

)
. The values of the HSV components of that pixels

will be used to increment the histograms
(

HIk
H , HIk

S, HIk
V

)
for each marker. That is,

HIk
H = HIk−1

H + HIPixel 0 ,Particle 0
H + · · ·+ HIPixel 5 ,Particle N

H
HIk

S = HIk−1
S + HIPixel 0 ,Particle 0

S + · · ·+ HIPixel 5 ,Particle N
S

HIk
V = HIk−1

V + HIPixel 0 ,Particle 0
V + · · ·+ HIPixel 5 ,Particle N

V .
(35)

Since each color marker will have its histogram,
(

HIk
H , HIk

S, HIk
V

)Green
,
(

HIk
H , HIk

S, HIk
V

)Blue
and(

HIk
H , HIk

S, HIk
V

)Yellow
, then, taking the example of the red marker, at the instant T the function Pred

H,S,V
described in Equation (34) becomes:

Pred
H,S,V =

HIk
H (H)

max
(

HIk
H

) × HIk
S (S)

max
(

HIk
S

) × HIk
V (V)

max
(

HIk
V

) . (36)

The function (36) is the new probability function to be used in the Filter with constraints in the
color space.
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3. Mvido: Theoretical Characterization of the System Camera-Target

We consider here the image sensor characterized by it physical dimension sx and sy and by it
resolution in pixels, sxp and syp (see Figure 13). We consider that the target is characterized by its
dimension, sLx and sLy, and by the radius of each of the three spheres that compose the target, rdsphere
(see Figure 13). For the theoretical characterization of the system, we consider the model presented in
Figure 14, which relates the horizontal field of view of the camera HFOV, the horizontal sensor size sy

and the working distance WD for a given angle of view AOV.
Assuming that, we start by characterizing the minimum distance at which the camera could see

the target.

X

Y

CAMERA
CCD

sx = 0.0024m

sLy= 0.5m

sy = 0.0032m

sLx= 0.345m

0.100m

0.245 m

0.150 m0.150 m

Figure 13. Image sensor size and Target dimensions in xy.

SCENE

SENSOR

LENS

f

WD

HFOV

AOV

AOV

2

sy

2

s y

Figure 14. Relationship between horizontal field of view, horizontal sensor size and working distance
for a given angle of view.

For that, we consider the rectilinear lens field of view as a function of lens focal length:

HFOV = WD ∗
Sy

f
(37)



Appl. Sci. 2020, 10, 2991 19 of 39

From the Equation (37) and the model Figure 14, we can arrive at the minimum working distance,
WDmin, that will be given by:

WDmin = OPA ∗
f

OPB
(38)

where,
OPA = max

(
sLx, sLy

)
(39)

and
OPB = min

(
sx, sy

)
. (40)

We choose for OPA and for OPB the worst case, i.e., the case that is more limiting. Therefore,
OPA = sLy because for our target the measured sLy is greater than the sLx measurement, and OPB = sx

because for CCD camera sensor the measured sx is less than the sy measurement. Whereby, for the
used camera and lens and for the used target, the minimum distance between the camera and the
target that ensure that the entire target is visible in the image is:

WDmin ≈ 0.66m. (41)

We also defined the maximum distance at which each marker is detectable, considering ideal
conditions of visibility and constant luminosity. For that, let us consider the resolution of the sensor as
a function of field of view:

resolution =
Npixels
HFOV

(42)

where Npixels is the horizontal number of pixels of the camera sensor. In that way, the working
distance WD in terms of rdsphere and number of pixels Npixels of the sensor, is given by:

WD =
Npixels ∗ sy

rdsphere ∗ f
. (43)

From that, we considered that the maximum working distance (the worst case) is given by:

WDmax =
OPA1 ∗OPB
rdsphere ∗ f

, (44)

where
OPA1 = min

(
Npixelsx, Npixelsy

)
. (45)

The worst scenario is when the maximum working distance is a small value so we choose the
smaller number of pixels, i.e., Npixelsx = 576pixels and the smaller measure of the CCD sensor
sx = 0.0024 m. Therefore, for the used camera and lens and for the used target, the maximum working
distance is:

WDmax ≈ 4.4m. (46)

To define the limit pose of the camera without the target leaving the image projected in the sensor,
we considered the worst case in terms of clearance between the target and frame boundaries, that is,
we consider the target and the sensor as squares (as illustrated in Figure 15).
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Z

X

Y

CAMERA
s =0.003m

sL= 0.5m

TARGET

sL= 0.5m

Rz

Ry

Rx

Figure 15. Camera-target.

Lets consider the Figure 16,

CAMERA TARGET

SL

d HFOV
2

θ1 θ2

Figure 16. Maximum angle.

Thus, the rotation of the camera around the z-axis has no relevance, and the analysis will be done
for the rotations around x-axis and y-axis, in which case the analysis is the same.

Taking into account Figure 16 and Figure 14, then

θmax = θ1 − θ2 (47)

θ1 =
AOV

2
= tg−1

(
s

2 f

)
(48)

θ2 = tg−1
( sL

2WD

)
(49)

θmax = θ1 − θ2 (50)

θmax = tg−1
(

s
2 f

)
− tg−1

( sL
2WD

)
(51)

Given the characteristics of our CCD sensor, our lens and our target, the graph of the following
Figure 17 represents the maximum rotation of the camera in Rx or Ry as a function of the working
distance, in order not to lose the target.
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WD (m)

Angle_max (degrees)

Figure 17. Maximum rotation of the camera in Rx or Ry.

Sensitivity Analysis

We want to know how the error of the location of a marker in the image is reflected in our
estimate. The algorithm we use to estimate the relative localization, estimates Ze from the following
simplified equation:

ze =

√
f 2(b2(uC−uA)2+b2(vC−vA)2+a2(uA+uC−2uB)2+a2(vC+vA−2vB)2)

(uCvB−uCvA+uAvC+vAuB−uAvB−vCuB)2+4a2 f 4b2 , (52)

where (uA, vA), (uA, vA) and (uA, vA) are the coordinates in the image of the marker A, B and C
respectively. The uncertainty in ze is obtained by taking the partial derivatives of ze with respect to
each variable uA, uB, uC, vA, vB and vC, then, the uncertainty in ze is given by:

∆ze =

√(
∂ze
∂uA

.∆uA

)2
+
(

∂ze
∂uB

.∆uB

)2
+
(

∂ze
∂uC

.∆uC

)2
+
(

∂ze
∂vA

.∆vA

)2
+
(

∂ze
∂vB

.∆vB

)2
+
(

∂ze
∂vC

.∆vC

)2
. (53)

In an ideal case, without noise in the marker’s detection, the uncertainties associated with each
variable ∆uA, ∆uB, ∆uC, ∆vA, ∆vB and ∆vC are the uncertainty associated with the description, that is 1
(one) pixel. From the experimental validation of the detection algorithm, we know that the uncertainty
associated with each variable ∆uA, ∆uB, ∆uC, ∆vA, ∆vB and ∆vC is about 10 pixels on average. In order
to analyze how the error of the location of a marker in the image is reflected in the estimate of ze we
proceed with a linearization around a point. In this sense, the red marker was centered at zero in the
image, and we vary the projection of a in the image. We know that the real measure of a (see Figure 18)
when projected onto the image becomes a′. In the image, a′ varies depending on the distance the
target is from the camera. When the target moves away from the camera, the value of a′ decreases and
vice versa.
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IMAGE
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Figure 18. Linearize around a certain point:the red marker was centered at zero.

The graph of the following Figure 19 shows the result obtained, considering for each variable the
uncertainty associated with a description and the uncertainties on the markers detection:

a' (µm)

error (m)

Figure 19. Sensitivity analysis.

4. Mvido: Guidance Law

It is a challenge to define guidance laws that conduct the AUV to the dock, while keeping
visual markers in sight. For our point of view, the solution can be based on basic motion primitives
that are already implemented by the vehicle on-board control system. This section describes the
implementation of a guidance system for docking maneuvers for a hovering AUV. We address the
problem of driving the AUV to a docking station with the help of visual markers detected by the
vehicle on-board camera, and show that by adequately choosing the references for the linear degrees of
freedom of the AUV it is possible to conduct it to the dock while keeping those markers in the field of
view of the on-board camera. We address the problem of defining a guidance law for a hovering AUV
when performing a docking maneuver. We used as a case study the docking of AUV MARES, but our
approach is pretty general and can be applied to any hovering vehicle. During the docking, it is of
utmost importance that the visual markers are within the field of view of the camera. Considering a
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local frame with origin in the center of the markers, with the usual North-East-Down convention,
there should be a compromise between the motion on the vertical coordinate z and the motion on
the horizontal plane ρ =

√
x2 + y2 (where x and y are Cartesian coordinates) from the center of the

markers to the center of the AUV’s camera. We want to ensure that the ratio z
ρ gives a slope greater

than the slope of the cone, which is defined by the angle of view of the camera AOV. This means that
we define the condition:

ρ 6 −z.tan(
AOV

2
) (54)

As is commonly the case with AUVs, we consider here that its on-board control system is able to
independently control its DOFs. Relevant for this work is the ability to keep a fixed position on the
horizontal plane and of keeping a given depth. Such controllers are part of the Mares on-board control
system as described in [1]. For the purpose of defining the guidance law and testing its performance,
we model here the closed-loop behavior of the AUV as a first-order system, both in the horizontal
plane and in the vertical coordinate [30,31]. Two decoupled models were considered: a model for the
behavior in the horizontal plane ρ and a model for the behavior in the vertical coordinate z. In this way:

Z(s)
Zre f (s)

=
pz

s + pz
(55)

P(s)
Pre f (s)

=
ph

s + ph
, (56)

where P(s) and Z(s) are respectively the Laplace transforms of ρ and of the vertical coordinate z.
In order to drive the AUV to the cradle while keeping the markers within the camera field of view,
we propose a guidance law that can ensures a much faster convergence of ρ to zero that of z to zero.
This law is defined by:

ρre f (t) = 0 (57)

and,
zre f (t) = −ρ(t)e(|TsZ−TsP |)ερt, (58)

where (|TsZ − TsP|) is the difference between the settling times of the closed loop models (vertical and
horizontal) for a unit step input, and ερ is the actual error to the reference of ρ.

For this assumptions it is possible to conclude that

lim
t→∞

ρ(t)
z(t)

= 0. (59)

Observation: in our law, we force a restriction on the evolution generated for the reference zre f (t)
by a condition: reference values below to z0 are not considered, keeping the actual z.

5. Experimental Results: Pose Estimator and Tracking System

5.1. Experimental Setup

5.1.1. Pose Estimator

For the experimental validation of the relative pose estimates, the AUV MARES camera was
placed at a fixed position and then using tube rails, the target were moved along the longitudinal
and lateral axes to specified known positions, as illustrated in Figures 20 and 21. At each position,
the markers platform was rotated around the longitudinal, lateral and vertical axis by different known
angles. All that experimental procedure was done under a specific lighting condition. This procedure
was done with the hardware in the loop, and 109 videos captures were made with a duration of
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1 min each, taking into account the on-board storage capacity of the hardware. The resulting logs are
compared against the ground truth given by this process.

Figure 20. Pose estimator: experimental validation.
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ymax

3
∗i ymax
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Z
X

Y

Y

Ry

Rz

Figure 21. Experimental procedure for a characterization of the developed system.

5.1.2. Tracking System

To test the developed filter, the target was placed in the bottom of a tank, and the AUV Mares
started a dive from the surface, four meters from the target, towards the target. The AUV Mares stops
when arrives at close proximity of the target (1 m from the target). A video from the AUV onboard
camera was captured during the test. That video was used to test the filter. During the video an
outlier and temporary occlusions of the marks were created as detailed in the Figure 22. Contrary to
the experimental validation of the pose estimator, where ground truth was made, the experimental
validation of the filter was essentially qualitative, since no ground truth was done.
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Figure 22. Testing the filter: in this figure, we can observe three images: the left one is an image of the
target placed on the bottom of the tank, the tracking algorithm is running with a particle filter per each
marker; the middle one is an image of the target placed on the bottom of the tank with an outlier (red
point) located on the left hand; the image on the right is an image of the target placed on the bottom of
the tank with an occlusion of the green marker

5.2. Results

5.2.1. Pose Estimator

The Figure 23, give us the notion about the system precision based on error to ground truth in
working distance estimations and the standard deviation analysis. As expected, the error increases
with the working distance reaching the maximum error for the WD of 2.5 m. The worst case is when the
target was positioning at the maximum working distance and rotated 60◦ in Rx, in this case the mean
error was about eight centimetres. For the perception of the error distribution, the Figures 24–26 show
the histogram of the error in the function of three working distances: The minimum working distance
WD = 0.5 m; the maximum working distance to be operated WD = 2.5 m, and an intermediate
working distance WD = 1.3 m. For each histogram is estimated (using R) the Gaussian curve that is
closest to the obtained data. In order to analyze the impact in Ze estimation when the target is within
the limit of the field of view of the camera, we present the histogram of the error in Ze (Figure 27)
when the target is placed at a critical position, i.e., the maximium working distance to operate and
near the border of the field of view of the camera Once we have developed an algorithm for attitude
estimation, we present here the results in terms of error to ground truth when the target was rotated
around the three axes. The Figures 28–30 show the histograms that summarizes the obtained results.
Here we present three cases: Rx = 60◦, Ry = 60◦ and Rz = 90◦.

WD (m)

Ze
 e

rr
or

 (m
)

0

0.02

0.04

0.06

0.08

0.5 1 1.5 2 2.5

Rx=60º Rx=0º

Ze error and STD in function of WD 

0.005

0.02 0.01

0.03
0.02

0.015

0.02

0.04

0.04

0.03

0.05

0.03

Figure 23. Error and standard deviation in function of the working distance when the target was
rotated of Rx = 60◦ or not rotated Rx = 0◦. The points in the chart are the mean values of the error and
each point is labelled with the respective value of standard deviation.
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Histogram of Ze error for WD=0.5m 
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Figure 24. Histogram of Ze error for WD = 0.5 m. The curve in blue is the curve estimated by R as the
Gaussian curve that is closest to the obtained data.

Histogram of Ze error for WD=1.3m 
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Figure 25. Histogram of Ze error for WD = 1.3 m. The curve in blue is the curve estimated by R as the
Gaussian curve that is closest to the obtained data.

Histogram of Ze error for WD=2.5m 
 mean=0.06m  standard deviation=0.03m

Ze error (m)

Fr
eq
ue
nc
y

0.00 0.05 0.10 0.15 0.20

0
10
0

20
0

30
0

40
0

50
0

Figure 26. Histogram of Ze error for WD = 2.5 m. The curve in blue is the curve estimated by R as the
Gaussian curve that is closest to the obtained data.
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Histogram of Ze error for WD=2.5m and Y=1.43m 
 mean=0.04m  standard deviation=0.031m
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Figure 27. Histogram of Ze error when the target is placed within the limit of the field of view of the
camera. The curve in blue is the curve estimated by R as the Gaussian curve that is closest to the
obtained data.
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Figure 28. Histogram of Rx for 60◦ of rotation. The curve in blue is the curve estimated by R as the
Gaussian curve that is closest to the obtained data.

Histogram of Ry error for 60º 
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Figure 29. Histogram of Ry for 60◦ of rotation. The curve in blue is the curve estimated by R as the
Gaussian curve that is closest to the obtained data.
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Histogram of Rz error for 90º 
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Figure 30. Histogram of Rz for 90◦ of rotation. The curve in blue is the curve estimated by R as the
Gaussian curve that is closest to the obtained data.

5.2.2. Tracking System

For the parametrization of the filters, the choice of the number of particles was related to the
computational resources, namely with the processing time of each frame. It was necessary to establish
a compromise between the adjustment of the number of particles and the processing time. For the
particle number adjustment, we chose to analyze the effect of an increase in the number of particles
(per marker) at moments in which the AUV was in a hovering situation after dynamic moments.
Each time we adjust the number of particles, the threads time of the algorithm was measured as shown
in the Figure 31. This time will give us an idea of the rate at which we provide the estimation data to
the control.

In addition to the number of particles, it was also analyzed the parametrization of the uncertainties
of update (observations) and prediction (a static model) of the filter. For the update uncertainties,
the values were adjusted according to the characterization of the pose estimator. For the adjustment of
the prediction uncertainties was considered the typical velocity of the AUV Mares, the maximal diving
velocity of the AUV Mares and the characteristics of the camera.

With the parameterized filter, we compared the results by using the filter with the results without
the use of the filter. Figure 32 represents the descent of the AUV towards the target. In the graph of
Figure 32 it is possible to see the performance of the estimations algorithm with and without the use of
the filter. To generate the graph of the Figure 32, 360 frames were sampled. The outlier occurs from the
frame 44 to frame 108. The temporary occlusions occur from the frame 124 to frame 284. There were
several partial occlusions, sometimes partial occlusion of a marker, sometimes partial occlusion of
two markers.

NUMBER OF PARTICLES THREADS TIME (SEC.)

100 0.008

200 0.011

1000 0.0133

Figure 31. Threads time: in the parametrization of the filter, the adjustment of the number of particles
is made taking into account the processing time of each frame. It is intended to observe the target at
a minimum rate of 10 frames per second (less than 100 ms). This is due to the fact that the control
operates at 20 Hz and it is not desired that there is more than one estimation between two consecutive
frames. That is, it is desired that the algorithm has a processing time of less than 10 ms. The processing
time of the developed filter for 1000 particles occupies 13 ms of the total processing time. In addition to
the detector/estimator processing time (83 ms) it is found that the goal of a total processing time of
less than 100 ms has been achieved. The equipment used was the developed vision module (Camera
Bowtech + Raspberry Pi) whose characteristics are described at the beginning of this chapter.
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Z(m)

Frames

Figure 32. Descent of the Autonomous Underwater Vehicle (AUV) MARES towards the target:
estimation algorithm with and without a filter. The black curve is the estimation without filter and the
red curve is the estimation with filter.

The Figure 33 is a detail of the graph of the Figure 32, from the frame 44 to frame 108, and allows
us to observe how the algorithm behaves in the outlier zone. In the graph of the Figure 33 the resultant
curve of the pose estimator is compared with the resulting curve of the estimator with the use of the
filter, in a situation of outliers detection.

The Figure 34 is a detail of the graph of the Figure 32, from the frame 124 to frame 284, and allows
us to observe how the algorithm behaves in the partial occlusions zone.

As can be seen in Figure 34, the use of the filter allows the continuity in obtaining estimates during
situations of temporary and partial occlusions of the markers. However in areas where occlusions occur
more frequently, the performance can be improved, and for this reason the constraints of the target geometry
were added to the filter. The graph of the Figure 35 is a detail of the graph of the Figure 32, from the frame
124 to frame 284, where we can observe how the filter behaves in the temporary and partial occlusions zone
when the geometric constraints were added to the filter. In the graph of Figure 35 it is possible to compare
the estimates in the situation in which the occlusions occur more frequently.

Z(m)

Frames

Figure 33. Outlier zone: this graph is a detail of the graph of the Figure 32, from the frame 44 to frame
108, here we can compare the estimation in the outlier zone with and without the use of the filter.
The black curve is the estimation without filter and the red curve is the estimation with filter. The frame
44 was renumbered with the number 1.
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Z(m)

Frames

Figure 34. Occlusion zone: this graph is a detail of the graph of the Figure 32, from the frame 124 to
frame 284, here we can compare the estimation in the temporary occlusions zone with and without the
use of the filter. The black curve is the estimation without filter and the red curve is the estimation with
filter. The frame 124 was renumbered with the number 1.

On the other hand, in the case of outliers and false detections, the graph of Figure 36 is a detail
of the graph of the Figure 32, from the frame 44 to frame 108, and represents the results obtained in
the outlier zone. it is possible to compare the estimates without the use of the filter with the estimates
made using the filter with and without color restriction.

Z(m)

Frames

Figure 35. Occlusions zone: this graph is a detail of the graph of the Figure 32, from the frame 124 to
frame 284, here we can compare the estimation in the temporary occlusions zone with and without the
use of the filter and adding the geometric constraints to the filter. The black curve is the estimation
without filter, the red curve is the estimation with filter and the green curve is the estimation using the
filter with geometric constraints of the target. The frame 124 was renumbered with the number 1.
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Z(m)

Frames

Figure 36. Outlier zone: this graph is a detail of the graph of the Figure 32, from the frame 44 to frame
108, here we can compare the estimation in the outlier zone with and without the use of the filter and
adding the color constraints to the filter. The black curve is the estimation without filter, the red curve
is the estimation with filter and the green curve is the estimation using the filter with color constraints
of the target. The frame 44 was renumbered with the number 1.

6. Simulation Results: Guidance Law

The performance of the proposed law was tested in a simulation environment—simulink/Matlab.
We consider here a first-order model for the closed-loop behavior of the AUV in the horizontal plane ρ

and a first-order model for the closed-loop behavior of the AUV in the vertical coordinate z. Once we
propose a guidance law that can ensure a much faster convergence of ρ to zero that of z to zero, the best
way to test this law was to consider the horizontal behavior slower than the vertical one. That means
that for a first simulation, the relation between the pole of the horizontal model P(s)

Pre f (s)
, and the pole of

the vertical model Z(s)
Zre f (s)

, is:

pz > ph. (60)

The Figure 37 presents the trajectories in the (ρ, z) plane considering three different situations:
pz = 2ph; pz = 4ph; pz = 8ph.

If instead we consider that the behaviour in the horizontal plane is faster than the vertical one,
pz < ph, the resultant trajectories are those shown in the Figure 38 considering three different situations:
pz =

ph
2 ; pz =

ph
4 ; pz =

ph
8 .

Going back to the case where pz > px, if we considered that the initial rho0 is farther from the
reference rhore f = 0 than the initial z0 from reference zre f = 0, the resultant trajectory obtained is that
shown in Figure 39.

Considering now a realistic hypothesis that motion in the horizontal plane presents behavioural
differences between x axis and y axis. In this case, instead of assuming a single model for horizontal
behaviour, P(s)

Pre f (s)
, different behaviours were assumed for x and y, and for that we used two first order

models for the closed loop horizontal behaviour of the AUV, i.e.,

X(s)
Xre f (s)

=
px

s + px
(61)

Y(s)
Yre f (s)

=
py

s + py
. (62)
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Figure 37. Trajectories in the (ρ, z) plane for starting points (ρ0, z0) = (1,−1) and considering pz = 2ph;
pz = 4ph; pz = 8ph. Even at the situation at which the horizontal behaviour is the slowest one there is
a faster convergence from ρ0 to zero than from z0 to zero as intended.
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Figure 38. Trajectories in the (ρ, z) plane for starting points (ρ0, z0) = (1,−1) and considering pz =
ph
2 ;

pz =
ph
4 ; pz =

ph
8 . Even at the situation at which the vertical behaviour is the slowest one, the motion

remains tangent to the vertical axis.
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Figure 39. Trajectories in the (ρ, z) plane for starting points (ρ0, z0) = (7.1,−1) and pz > ph.
The trajectory illustrate the motion remains tangent to the vertical axis.
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In the horizontal plane, the result of assuming a slower behaviour in y coordinate than for x
coordinate, i.e., px > py, is illustrated in Figure 40.
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Figure 40. Trajectories x, y assuming a slower behaviour in y coordinate than for x coordinate, px > py.
The trajectories were generated considering that the poles start to be located at the same point in
relation to the origin px = py and then px moves away from the origin in percentages of 10 percent
making the behaviour in coordinate x faster than the behaviour in y coordinate.

Applying the guidance law that we propose, in 3D space, and assuming now that there is a
difference in behavior between the horizontal plane axes, where px > py, we obtain the trajectories
presented in Figure 41. Note that in Figure 41 we considered that the behavior in the vertical coordinate
z is faster than the behavior in the horizontal plane.
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Figure 41. Trajectories in the (x, y, z) plane considering px > py and that the the behaviour in the
vertical coordinate z is faster than the behaviour in the horizontal plane. There is convergence for the
reference (0, 0, 0) on all axes.

Analyzing the Figures 40 and 41, when considering a slower behavior on the y coordinate,
the vehicle behaves as if it is under the action of a disturbance in the direction of that coordinate.
Even in the situation where a much slower dynamic is considered for the y-coordinate with respect to
x, the vehicle remains within the visibility cone in the xy plane.
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7. Discussion

7.1. Pose Estimator

A target was constructed whose physical characteristics maximize its observability. The three color
markers are spherical in order to be observable from different perspectives. We chose to use different
colors for each of the markers in order to avoid ambiguities in the relative pose estimation. The solution
is based on passive visual markers, occasionally illuminated outside only in certain circumstances of
visibility. The choice of dimensions for the target was related to three factors: the maximum operating
distance WD, the field of view of the lens and the constructive characteristics of the dock. For the
relative pose estimation, it was intended to explore as much as possible a minimum system, based only
on visual information and with the minimum calculations processing time. The results obtained
were more than satisfactory considering that, in the worst case, the accuracy for position estimation
was around 7 cm for a working distance of 2.5 m, with the target rotated of 60◦ around the x axis.
That working distance is higher than the intended maximum working distance of 2 m. The maximum
average error in target rotation was less than four degrees for a critical situation where the target was
rotated 60 degrees on the y axis. From the experimental characterization of the system, we can also
conclude that there is an increase of the error as the target moves away from the camera, that is, as the
working distance WD increases. This increase in the value of the error is due to four reasons:

• a misalignment of the camera related to the rail: the nonexistence of a mechanical solution that
guarantees the correct alignment between the center of the camera to the tube rail. This misalignment
has influence especially on the Y axis, which means a yaw rotation of the camera related to the rail,

• the increasing offset along the z-axis is related to the non-calibration of the value of the focal length
of the cameras lens,

• small variations in markers illumination that affect the accuracy in detecting the center of mass of
each marker in the image,

• the more the target is away from the camera, any small variation in the detection of the blobs in
the image will imply a greater error in the pose estimation. The pinhole model shows that as the
target moves away (any small variation on the sensor side (IMAGE) implies a greater sensitivity
and a greater error on the SCENE side).

Despite these systematic observed errors that can be easily corrected, the results obtained for the
markers detector and pose estimator are quite satisfactory, however, the pose estimator algorithm
has an ambiguity: we know the amplitude of Rx and Ry estimated angles but we don’t know the
signal. That is, when the camera is positioned in relation to the target as shown in Figure 21, it exists
an ambiguity in the signal for the Rx and Ry rotations, however, in the context of our work, this is
an ambiguous situation that does not happen considering the way the sea-floor docking station is
approached (see Figures 1 and 3) by a hovering AUV. This situation can be resolved by adding one
more marker to the target. In this case, this fourth marker should be non-coplanar with the other
three. In terms of robustness of relative pose estimates, we recognize that there would be an advantage
in fusing the monocular vision information with inertial rate sensor measurements to generate an
estimate of the relative position between a moving observer and a stationary object. This fusion would
create redundancy and therefore increase the robustness of the estimates. That will be a future line
of work.

7.2. Resilience to Occlusions and Outliers Rejection

We have developed an approach for visual tracking in a particle filtering framework in order to
improve the performance of image markers detection, namely to make the algorithm less sensitive to
outliers and to allow estimates even in occlusion situations. In order to improve the computational
weight of the relative localization system, the image rectification step was not been considered.
This option has increased the level of complexity of the noise model for the maker’s detectors.
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However the use of a particle filter-based approached with an adaptive color tracker has proved
to be a good option and with high levels of accuracy on the positioning estimation, as can be seen in
the Figures 34–36. In detail we can conclude from the results, in situations of partial occlusion of the
markers, the longer duration of the occlusion implies a dispersion of the particles, so the filter would
eventually diverge. The inclusion of the geometric constraints in the filter solved this question and
good results were obtained. On the other hand, our color-based markers detector, uses an oversized
amplitude so that the detection can occur in a greater number of scenarios. This extended amplitude
implies the occurrence of outliers detection. For that reason, and to avoid these outliers we add a color
histogram in the filter that is adjusted along the tracking. This allows, in the presence of features with
a similar color to our markers, to avoid a greater number of outliers and the weight of a particle of the
filter has a more adjusted value which results in a more accurate estimation. To increase the cone of
visibility of a single camera, it should be explored in future work the use of a pan-tilt based solution.
This will imply the use of active perception systems for example when a UAV realizes Pitch roll this
can be compensated by the pith tilt system.

7.3. Guidance Law

From the deep system characterization, we know the zone that guarantees the best observation
of the target. Knowing that, our strategy has been to look for a way to make the target remain at
this central zone of the pyramid (from the point of view of the camera) when the AUV approaches
the docking station. We have proposed a strategy to lead the AUV from any point on the pyramid
observation zone to the point where the cradle of the docking station is (in the vicinity of the apex of
the pyramid), always keeping the target in line of sight. We show that by adequately choosing the
references for the linear degrees of freedom (DOF) of the AUV it is possible to dock while keeping
the target markers in the field of view of the on-board camera. The performance of the proposed law
was tested on simulink/Matlab. A first order model for the closed-loop behavior of the AUV in the
horizontal plane ρ and a first-order model for the closed-loop behavior of the AUV in the vertical
coordinate z were considered for the first tests. Once we propose a guidance law that can ensures a
much faster convergence of ρ to zero that of z to zero, the best way to test this law was to consider
the horizontal behavior slower than the vertical one. From the mathematical point of view and from
the simulated tests we can ensure that the AUV motion behavior in the vertical coordinate z is always
faster than the behavior in the horizontal plane, ensuring always visibility of the markers and the AUV
convergence to the docking point. In future work, we will extend the work presented here to more
general closed-loop dynamics and acquire data from real experiments with the MARES AUV.

8. Conclusions

In our conceptualization and development of a system to aid autonomous docking of a hovering
AUV, It was intended to realize how far we can get by using only a single camera and a dedicated
processing unit small enough to be accommodated onboard the MARES. In this sense the results
showed that this minimal system is a very capable system. We chose to explore the maximum
capabilities of data provided by the image sensor in an environment where visibility is very low.
The solutions found to work around this problem yielded very interesting results.

Since no target was found in the literature that would meet our needs, namely that it met the
following requirements:

• versatility (active in certain situations and passive in others)
• be easily identifiable even in low visibility situations
• allow to be seen from different points of view.

A 3D target was designed and built that meets the proposed requirements. The 3D hybrid target
maximizes the observability of the markers from the point of view of the AUV camera and proved to
be a successful solution.
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Since an algorithm for estimating the relative attitude that fit our needs was not found in the
literature, namely, a low computational cost algorithm, an algorithm was developed from the ground
up. Together with the marker detection algorithm, the developed algorithm occupies 83 ms of
processing time, which satisfies our requirements.

Not having been found in the literature a solution for situations of partial occlusion of the target
and the presence of outliers (which affect the performance of the pose estimator), an innovative
solution was developed that presented very satisfactory results. One of the challenges of this work
was the persistence of tracking the target even in the case of partial or momentary occlusions of the
markers, this challenge was met with good results as a consequence of the implementation of the
filters that were designed. The particle filter-based solution also allowed a significant reduction in
false detections, which improved pose estimator performance.

Regarding the need for a guidance law for docking the AUV, none of the works found in
the literature takes into account our concern to never lose sight of the target until the AUV is
fully anchored in the cradle. For that reason, it was necessary to find a solution to this problem.
With the characterization of the system, it was possible to gain knowledge of the system as a whole,
which allowed us to advance in choosing an approach to the problem of how to ensure that during
docking maneuvers the vehicle is guided to the dock station without losing sight of the target markers.
For this purpose, a guidance law was defined. Such law can ensure a much faster convergence in the
horizontal mode to zero that of vertical to zero as intended. Our approach is pretty general and can be
applied to any hovering vehicle.
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Abbreviations

The following abbreviations are used in this manuscript:

AUV Autonomous Underwater Vehicle
ASV Autonomous Surface Vehicle
MARES Modular Autonomous Robot for Environment Sampling
MVO Monocular Visual Odometry
MViDO Monocular Vision-based Docking Operation aid
DOF degrees of freedom
EKF extended Kalman filter
GPS global positioning system
IMU inertial measurement unit
FOV lens field of view
HFOV horizontal field of view
AOV angle of view
Npixels number of pixels
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