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Abstract: Soil total arsenic (TAs) contamination caused by human activities—such as mining, smelting,
and agriculture—is a problem of global concern. Visible/near-infrared (VNIR), X-ray fluorescence
spectroscopy (XRF), and laser-induced breakdown spectroscopy (LIBS) do not need too much sample
preparation and utilization of chemicals to evaluate total arsenic (TAs) concentration in soil. VNIR with
hyperspectral imaging has the potential to predict TAs concentration in soil. In this study, 59 soil
samples were collected from the Daye City mining area of China, and hyperspectral imaging of the
soil samples was undertaken using a visible/near-infrared hyperspectral imaging system (wavelength
range 470–900 nm). Spectral preprocessing included standard normal variate (SNV) transformation,
multivariate scatter correction (MSC), first derivative (FD) preprocessing, and second derivative
(SD) preprocessing. Characteristic bands were then identified based on Spearman’s rank correlation
coefficients. Four regression models were used for the modeling prediction: partial least squares
regression (PLSR) (R2 = 0.71, RMSE = 0.48), support vector machine regression (SVMR) (R2 = 0.78,
RMSE = 0.42), random forest (RF) (R2 = 0.78, RMSE = 0.42), and extremely randomized trees regression
(ETR) (R2 = 0.81, RMSE = 0.38). The prediction results were compared with the results of atomic
fluorescence spectrometry methods. In the prediction results of the models, the accuracy of ETR using
FD preprocessing was the highest. The results confirmed that hyperspectral imaging combined with
Spearman’s rank correlation with machine learning models can be used to estimate soil TAs content.

Keywords: hyperspectral imaging; soil arsenic; extremely randomized trees regression

1. Introduction

Arsenic (As) is a ubiquitous element in nature, and can be found in rocks, soils, sediments,
fossil fuels, plants, and almost all living organisms, including the biota of aquatic ecosystems [1].
Worldwide total arsenic (TAs) levels in soils have been reported to range between 2 and 5 mg/kg [2,3].
However, TAs can be very harmful due to excessive accumulation in agricultural soils [4,5]. Firstly,
the transfer of TAs from soil to human beings through the food chain poses a potential disease risk [6,7].
Secondly, excess TAs entering the pedosphere can affect the quality of cultivated land and reduce
productivity [7,8]. Research has suggested that the TAs can be accumulated due to human activities
such as mining and smelting, industrial processes, and agricultural fertilizers. Most countries have been
confronted with the soil contamination caused by heavy metals has become a worldwide issue [9–13].
Traditional chemical-based methods are destructive, time-consuming, and expensive. Therefore,
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nondestructive, cheap, and rapid methods for detecting soil TAs content, such as hyperspectral
imaging, are needed to avoid human health risks and achieve soil protection [14].

Visible/near infrared (VNIR), X-ray fluorescence spectroscopy (XRF), and laser-induced breakdown
spectroscopy (LIBS) do not need too much sample preparation and utilization of chemicals to evaluate
TAs concentration in soil [15,16]. Hyperspectral imaging utilizes the VNIR spectrum and is used under
laboratory conditions to acquire high spectral resolution images of soil, through its advantages of being
fast, effective, non-destructive, and low cost [17,18]. Prediction of TAs content is made possible by
correlating the spectral data extracted from the hyperspectral images to their corresponding chemical
concentrations [19]. Previous studies showed that the partial least squares (PLS) model can be used to
determine the TAs concentration in soil samples (R2

p = 0.75, RMSEp = 153.77) [20].
In recent years, the development of machine learning algorithms also allowed their application for

the prediction of element concentration in soil by the use of hyperspectral imaging (400–2500 nm) [21–23].
Compared with support vector machine regression (SVMR), the random forest (RF) model is a more
effective machine learning method for developing diagnosis models [23]. Feature selection and
machine learning methods are now important methods of predicting total nitrogen, total zinc, and total
magnesium [24,25]. Selecting the sensitive bands based on Spearman’s rank correlation coefficients is
a common approach when estimating soil concentration content [24,25], but there is only a limited
number of studies regarding the estimation of TAs content in soil using hyperspectral imaging
technology. In addition, distribution maps obtained using hyperspectral imaging techniques are now
widely used in agricultural studies, forestry, meat quality testing, etc. [26–29]. Meanwhile, the use
of hyperspectral imaging techniques for generating soil TAs concentration distribution maps using
machine learning models remains to be studied [30].

The objectives of this study were to investigate the use of VNIR hyperspectral imaging technology
in the prediction of TAs concentration in soil. Preprocessing methods were used for selecting the
characteristic bands in hyperspectral imaging technology, based on Spearman’s rank correlation
coefficients. We also compared the machine learning techniques of PLSR, SVMR, RF, and extremely
randomized trees regression (ETR) in the prediction of TAs concentration in soil. The estimation of soil
TAs content was then achieved based on the best-performing regression model for the prediction of
soil TAs concentration distribution map.

2. Materials and Methods

2.1. Sample Preparation and Soil Chemical Analysis

Soil samples used in this experiment were collected from the area of Daye mine, a typical area of
Jianghan Plain in Hubei province, China (114◦31′~115◦20′E, 29◦40′~30◦40′N). The climate of this area
is subtropical with an annual average temperature of 16.9 ◦C.According to the classification and codes
for Chinese soil (National Standard of China, GB/T 17296-2009), the soils in this area are mainly red soil
and yellow-brown soil. The Daye area is a production base of crops and rich in mineral resources [31].
The mining has greatly damaged the ecological environment, and the farmland soil near the mining
area has been seriously polluted.

A total of 59 soil samples were collected from different types of cultivated soils near mining areas
in Daye. They were taken from the upper soil layer (0–20 cm) in 2018. After removal of the stones
and plant roots, then they were sifted through a 200-mesh sieve and then ground into fine particles,
approximate particle size after grinding ≤74 µm [32]. Each soil sample was then divided into two
parts. One part was sent to the laboratory digested with nitric acid/hydrochloric acid/perchloric acid.
After that, measured by atomic fluorescence spectrometry (AFS) (AFS-9730, Haiguang, China) (National
Standard of China: analysis of total arsenic contents in soils, GB/T 21191-2007, GB/T 22105.2-2008).
Instrument limits of detection (LODs, mg/kg) were 0.001 for TAs. The other part was sent to the dark
chamber for hyperspectral imaging (HSI) measurement. The highest observed soil TAs content was
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16.41 µg/g and lowest was 7.04 µg/g. The averaged TAs content of soils average was 9.65 µg/g. The soil
sample concentrations are listed in Table 1.

Table 1. Statistical descriptions for the arsenic content (µg/g) and the soil sample percentages.

TAs No. Maximum Minimum Mean Std. Skewness Kurtosis Per%

Total data set 59 16.41 7.04 9.6527 1.4699 1.74 5.71 100

2.2. Hyperspectral Imaging System and Image Acquisition

A VNIR hyperspectral imaging system was used to capture images of the soil samples [33–36]
(Figure 1a). The system consisted of the following components: a SNAPSCAN hyperspectral imaging
camera (Imec, Belgium), operating in the spectral range of 470–900 nm, with a spectral resolution of
3 nm, producing a total 147 spectral bands; two current-controlled wide spectrum quartz halogen
lights; a sample station for scanning; a dark chamber; and data acquisition software (Imec snapscan
acquisition, Imec Corp, Leuven, Belgium). Soil samples were positioned on a moving stage and moved
into the camera’s field of view. Samples were shaken after capturing each image for homogenization,
and the imaging was repeated until reproducible spectral signatures were obtained for consecutive
images. The acquired imagery (R: 640 nm, G: 548 nm, B: 470 nm) is illustrated in Figure 1b.
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Figure 1. (a) Hyperspectral imaging setup. (b) Acquired imagery (R: 640 nm, G: 548 nm, B: 470 nm).

2.3. Spectral Profile Extraction and Data Calibration

To eliminate the impacts of uneven illumination and dark current noise, the raw hyperspectral
imagery was calibrated by standard white and dark reference images according to the formula [37]

Rc =
R0 − B
W − B

(1)

where R0 indicates the raw hyperspectral image, Rc represents the calibrated hyperspectral image,
W represents the standard white reference image obtained using a rectangular Teflon plate, and B
denotes the standard black reference image obtained by covering the lens completely with an opaque
black cover [38].

For each hyperspectral image, a region of interest (ROI) was used to measure the mean VNIR
spectral reflectance. The ROI (a circle with a diameter of about 150 pixels) was positioned in the middle
of the sample image, and close to Petri dish (90 × 17 mm) edge [20,39] (Figure 2). The spectral bands
for this study are 519, 560, 564, 576, 697, 700, 703, 706, and 749 nm. The standard deviation of the
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averaged spectral band of each sample is between 30~50. The standard deviation of the 697 nm band
is even lower than 20.
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Figure 2. Average spectra each of the samples (59 samples).

2.4. Feature Band Selection

The reflectance spectral data also contained other irrelevant information and noise. Therefore,
before the establishment of the regression model, it was necessary to complete a basic preprocessing
to remove the irrelevant information and noise. The common preprocessing methods are first
derivative (FD) preprocessing, second derivative (SD) preprocessing, standard normal variate (SNV)
transformation, and multivariate scatter correction (MSC) [18,40,41]. We then selected the bands with
higher correlation according to the Spearman’s rank correlation coefficients [42].

2.5. Model Development and Evaluation

In this study, we refer to the detailed of the model information of previous studies, partial least
squares regression (PLSR), support vector machine regression (SVMR), random forest (RF),
and extremely randomized trees regression (ETR) models were used to analyze the soil sample
data. Good results have been obtained in the past based on the PSLR model [20]. SVMR has been
proven to be effective in predicting the TAs concentration in soil in many studies [43]. There are
many methods for tuning the hyper-parameters of SVMR, grid search being the most frequently used.
In this study, use as grid search computes performance at all pairs of e and C to get the performance
surface [44]. RF has been reported as performing better than PLSR and SVMR [23,45].

In addition, we also considered the ETR model developed in recent years on the basis of the
RF model. The ETR model has been reported as having a higher prediction accuracy than the RF
model for soil elements, and has been used in soil spectral prediction models in recent years [46].
ETR was developed as an extension of another tree-based ensemble method (random forest) to be a
more computationally efficient algorithm. It consists of three factors: K is the number of randomly
selected variables for splitting a node, nmin represents the minimum number of samples required for
splitting an internal node, and M, the number of trees formed in the ensemble model [47].

According to the results of laboratory measurement samples, the 59 soil samples were divided
using the 10-fold cross validation method into calibration set and validation set [48].

The main steps of the work were shown in Figure 3. After hyper spectral image acquisition,
correction and reflectance preprocessing, and the ROI spectrum was extractwed. Through the
pretreatment methods of FD, SNV and MSC, combined with the Spearman’s rank correlation coefficients,
the characteristic bands were selected, and the PLSR, SVMR, RF, and ETR models were compared.
The best model was used to estimate the soil TAs content and generate the soil TAs distribution map.
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Figure 3. Main steps of this work.

The parameters of the determination coefficients (R2), root-mean-square error (RMSE), and relative
error (RE%) were used to measure the accuracy of the models [39,49]. The closer R2 is to 1, the better
the stability of the model and the higher the degree of fit. RMSE and RE were used to test the predictive
ability of the models. The smaller the RMSE and RE, the better the predictive ability.

R2 = 1−

n∑
n−1

(yi − ŷi)
2

n∑
n−1

(yi − yi)
2

(2)

RMSE =

√√√√ n∑
n−1

(yi − ŷi)
2

n
(3)

RE = 100×
RMSE

y
(4)

where n is the number of samples, yi is the measured value, ŷi is the predicted value, and y is the
average of the measured values.

3. Results and Discussion

3.1. Preprocessing Comparative Analysis

Feature selection can improve the prediction performance, and gain a better understanding of
the data in machine learning. Feature selection by correlation is a commonly used feature selection
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method [24,25]. In this study, a Spearman’s rank correlation analysis between the TAs concentration in
the soil and the preprocessed spectra was carried out.

The preprocessing of the soil spectral can effectively highlight the absorption and reflection
bands [18,40,41]. We calculated the Spearman’s rank correlation coefficients for the spectral bands after
FD, SD, SNV, and MSC preprocessing (Figure 4). In Figure 4, the black line is the original spectrum
Spearman’s rank correlation coefficients, where it can be seen that the correlation is low, around −0.4
to 0.5. After SNV, MSC, and SD preprocessing, some bands have been improved (red line), but the
correlation is still low (0.4 to 0.5). After FD preprocessing, we find bands with correlation of higher than
0.8 appears near the 700 nm region TAs previous studies indicated [20,23,33], the VIS-NIR (650–700 nm)
included important wavelengths for estimating TAs contents in soil. Therefore, we selected the three
bands (Blue triangle in Figure 4) with the highest correlation coefficient, around 700 nm, and input this
into the different machine learning models for calculation. Meanwhile, the three bands (blue triangle
in Figure 4) with the highest correlation coefficients in other preprocessing methods are selected for
comparison [42].

Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 13 

where n is the number of samples, yi is the measured value, ŷ i is the predicted value, and y is the 
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Figure 4. Variation of the correlation coefficients after the different preprocessing. (a) SNV; (b) MSC;
(c) SD; (d) FD.

We then used the model to predict the final result so that we could evaluate the model effect.
The results are shown in Table 2. After using SNV, MSC, and SD preprocessing, three bands selected
according to the correlation were input into the prediction models, and each model prediction set result
was poor. However, the prediction effect of the model with high correlation (0.7 or higher) after using
the FD preprocessing is ideal. This shows that as the correlation coefficient increases, the effect of the
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model increases. Using a higher correlation band can greatly improve the stability and predictability
of the model [50]. Finally, FD was selected as the preprocessing method, and the three characteristic
bands with the highest correlation (700, 703, and 706 nm) were selected for the modeling.

Table 2. Results of model regression based on the different preprocessing methods.

Preprocessing and Modeling Characteristic Bands Wavelength (nm)
and Correlation Coefficients

Validation

R2
CV RMSECV REcv(%)

SNV+PLSR

560.7 (−0.55), 564.0 (−0.54), 749.5 (0.52)

0.49 0.63 6.63
SNV+SVMR 0.56 0.58 6.14

SNV+RF 0.53 0.60 6.31
SNV+ETR 0.59 0.56 5.86

MSC+PLSR

519 (0.50), 560.7 (−0.53), 564.0 (−0.52)

0.07 0.76 7.88
MSC +SVMR 0.23 0.69 7.22

MSC +RF 0.25 0.68 7.15
MSC +ETR 0.26 0.67 6.98

SD+PLSR

560.7 (0.53), 576.7 (0.52), 697.0 (0.58)

0.23 0.64 6.64
SD +SVMR 0.36 0.58 6.09

SD +RF 0.51 0.51 5.47
SD +ETR 0.51 0.51 5.43

FD+PLSR

700 (0.86), 703 (0.72), 706 (0.78)

0.71 0.48 5.03
FD +SVMR 0.78 0.42 4.50

FD +RF 0.78 0.42 4.45
FD +ETR 0.81 0.38 4.08

3.2. Regression Model

PLSR, SVMR, RF, and ETR were used to model the regression. The calibration set was used to
train the prediction of the TAs concentration in the soil model. Comparing the model predictions
with the validation sets, it can be seen from Figure 5 that the four models all obtain a good accuracy.
Model predictive power is estimated by the R2. The closer the value of R2 to 1, and closer the scatter plot
of the measured value and predicted accuracy value for the 1:1 line. Among them, the ETR regression
model shows the smallest deviation from the 1:1 line, and the degree of fitting is the highest. Model
predictive accuracy estimated by the RMSE and RE (%). Most of the predictions are closely distributed
around the 1:1 line, few predictions far away from the 1:1 line generated errors, indicating that the
models are accurate. From the results of the model accuracy evaluation, the RMSE of the ETR (RMSE
= 0.38) model is the lowest, RE (%) of the ETR (RE = 4.08%) model is also lower, indicating that the
ETR prediction accuracy is optimal.

From Table 3, it can be seen that the PLSR prediction is lowest, and the R2, RMSE, and RE (%) of
the validation set are 0.71, 0.48, and 5.03, respectively. Meanwhile, the R2, RMSE, and RE (%) of the
ETR validation set are 0.81, 0.38, and 4.08, respectively, which represent the best prediction results for
prediction models. In summary, ETR has advantages in four models of model prediction power and
prediction accuracy.

Table 3. Accuracy validation of the different models.

Modeling Method R2
cv RMSEcv REcv (%)

PLSR 0.71 0.48 5.03
SVMR 0.78 0.42 4.50

RF 0.78 0.42 4.45
ETR 0.81 0.38 4.08
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Figure 5. Comparison between the measured values and predicted values of the different regression
models. (a) ETR; (b) RF; (c) SVMR; (d) PLSR.

3.3. Concentration Distribution Map

The superiority of hyperspectral images to simultaneously obtain both spectral and spatial
information makes it possible to display the results of soil TAs concentration distribution map.
This study picks eight soil sample hyperspectral images to generate a TAs concentration distribution
map, the maximum TAs concentration soil sample (Figure 6h), minimum TAs concentration soil sample
(Figure 6a), and 6 other TAs soil samples. The best model—ETR based on FD preprocessed—was
selected to visualize the soil TAs concentration distribution map. The spectral information on each pixel
in hyperspectral images was input into ETR model to predict the results. Combined with the prediction
results of spatial location information of hyperspectral images, the TAs concentration distribution map
could be eventually formed [37,51]. Then, according to the prediction values, divide the values in the
graph into five intervals to statistical analysis, cyan (0–8 µg/g), green (8–10 µg/g), yellow (10–12 µg/g),
orange (12–14 µg/g), and red (14+ µg/g) (Figure 6).

In Figure 6, with more cyan and green sample distribution maps, the sample prediction value
is low. Sample distribution maps with more red, orange, and yellow have higher predicted values.
According to the results in the Figure 6, mean and standard deviation were statistically analyzed,
as shown in Table 4.
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Figure 6. Soil TAs concentration distribution maps (Label value is soil sample of arsenic concentration
measured with atomic fluorescence spectrometry). (a) Sample a 7.04 (µg/g); (b) sample b 8.26 (µg/g);
(c) sample c 8.69 (µg/g); (d) sample d 9.36 (µg/g); (e) sample e 10.58 (µg/g); (f) sample f 11.05 (µg/g);
(g) sample g 11.25 (µg/g); (h) sample h 16.41 (µg/g).

Table 4. Statistical summary of the TAs distribution maps.

No. Measured
Value (µg/g) Std. Mean 0–8 (µg/g) 8–10 (µg/g) 10–12 (µg/g) 12–14 (µg/g) 14+ (µg/g)

a 7.04 4.10 8.01 37% 42% 4% 13% 4%
b 8.26 4.12 8.58 32% 47% 5% 11% 5%
c 8.69 4.13 8.59 25% 56% 7% 8% 4%
d 9.36 4.20 8.63 23% 54% 5% 11% 7%
e 10.58 4.23 8.68 24% 50% 10% 9% 6%
f 11.05 4.36 8.92 23% 51% 9% 11% 6%
g 11.25 4.37 8.96 25% 48% 12% 10% 5%
h 16.41 4.39 9.05 22% 48% 9% 13% 8%

Shown in Table 4, all soil sample maps with low values (0–10) µg/g (cyan and green) totaled
around 75%. The higher area (more than 10 µg/g) (yellow, orange, red) is about 25%. Meanwhile,
according to Table 4, HSI predicted TAs and measured TAs used the standard deviation plotted as
error bars for each sample is drawn (Figure 7).

As shown in Figure 7, the mean HSI predicted value increases as the measured value increases,
confirming a positive correlation between the two datasets. Furthermore, on the whole, the HSI
and measured values are in agreement when considering the standard deviation associated with the
HSI prediction.

Overall, the results of TAs content in soil samples for measured value were compared with the
results shown in the distribution map. The results show that the concentration gradually increases
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from soil sample a to soil sample h. This confirms that the model is highly correlated with the real
results. It shows that the soil TAs content distribution map generated by the model is valid.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 13 

Shown in Table 4, all soil sample maps with low values (0–10) µg/g (cyan and green) totaled 

around 75%. The higher area (more than 10 µg/g) (yellow, orange, red) is about 25%. Meanwhile, 

according to Table 4, HSI predicted TAs and measured TAs used the standard deviation plotted as 

error bars for each sample is drawn (Figure 7).  

 

Figure 7. HSI predicted TAs and measured TAs with the standard deviation as error bars. 

As shown in Figure 7, the mean HSI predicted value increases as the measured value increases, 

confirming a positive correlation between the two datasets. Furthermore, on the whole, the HSI and 

measured values are in agreement when considering the standard deviation associated with the HSI 

prediction. 

Overall, the results of TAs content in soil samples for measured value were compared with the 

results shown in the distribution map. The results show that the concentration gradually increases 

from soil sample a to soil sample h. This confirms that the model is highly correlated with the real 

results. It shows that the soil TAs content distribution map generated by the model is valid. 

4. Conclusions 

In this study, we collected 59 soil samples from the Daye City mining area of China. 

Hyperspectral imaging of the soil samples was undertaken using a hyperspectral imaging system 

(470–900 nm). Through the pretreatment methods of FD, SNV, and MSC, combined with the 

Spearman’s rank correlation coefficients, the characteristic bands were selected, and the PLSR, SVMR, 

RF, and ETR models were compared. The ETR model was used to estimate the soil TAs content and 

generate the soil TAs distribution map. The main conclusions are as follows: 

(1) Using the images acquired in the hyperspectral imaging system, bands selected according 

to different correlation coefficients are put into different models for prediction, it was found that the 

Spearman’s rank correlation coefficients were an effective way to select the characteristic bands of 

TAs content. ETR (R2 = 0.81, RMSE = 0.38), RF (R2 = 0.78, RMSE = 0.42), SVMR (R2 = 0.78, RMSE = 0.42) 

models are capable of predicting total As content. 

(2) Soil TAs concentration distribution map shows, the Spearman’s rank correlation 

coefficients selected bands for ETR model, to predict the soil TAs distribution map generated by the 

pixel spectral of the hyperspectral image can be used as for estimation of TAs concentration in soil. 

The restriction on estimating total As could be considered a limitation of this present study. This 

is because not all forms of As are soluble and thus toxic. Therefore, in the context of toxicity, future 

research should focus instead on predicting the concentration of bioavailable As. 

Author Contributions: L.W. and Y.Z. were responsible for the overall design of the study and contributed to the 

proofreading of the manuscript. Z.Y. performed the experiments. Y.Z. analyzed and interpreted the data and 

wrote the manuscript. L.C. and Y.F. helped with the proofreading of the manuscript. Z.W. contributed to 

a b c d e f g h

4

6

8

10

12

14

16

T
A

s(
μ

g
/g

)

Sample No. 

 Measured value

 Mean

Figure 7. HSI predicted TAs and measured TAs with the standard deviation as error bars.

4. Conclusions

In this study, we collected 59 soil samples from the Daye City mining area of China. Hyperspectral
imaging of the soil samples was undertaken using a hyperspectral imaging system (470–900 nm).
Through the pretreatment methods of FD, SNV, and MSC, combined with the Spearman’s rank
correlation coefficients, the characteristic bands were selected, and the PLSR, SVMR, RF, and ETR
models were compared. The ETR model was used to estimate the soil TAs content and generate the
soil TAs distribution map. The main conclusions are as follows:

(1) Using the images acquired in the hyperspectral imaging system, bands selected according to
different correlation coefficients are put into different models for prediction, it was found that the
Spearman’s rank correlation coefficients were an effective way to select the characteristic bands
of TAs content. ETR (R2 = 0.81, RMSE = 0.38), RF (R2 = 0.78, RMSE = 0.42), SVMR (R2 = 0.78,
RMSE = 0.42) models are capable of predicting total As content.

(2) Soil TAs concentration distribution map shows, the Spearman’s rank correlation coefficients
selected bands for ETR model, to predict the soil TAs distribution map generated by the pixel
spectral of the hyperspectral image can be used as for estimation of TAs concentration in soil.

The restriction on estimating total As could be considered a limitation of this present study.
This is because not all forms of As are soluble and thus toxic. Therefore, in the context of toxicity,
future research should focus instead on predicting the concentration of bioavailable As.
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