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Abstract: Histopathology is the study of tissue structure under the microscope to determine if the
cells are normal or abnormal. Histopathology is a very important exam that is used to determine
the patients’ treatment plan. The classification of histopathology images is very difficult to even
an experienced pathologist, and a second opinion is often needed. Convolutional neural network
(CNN), a particular type of deep learning architecture, obtained outstanding results in computer
vision tasks like image classification. In this paper, we propose a novel CNN architecture to
classify histopathology images. The proposed model consists of 15 convolution layers and two fully
connected layers. A comparison between different activation functions was performed to detect the
most efficient one, taking into account two different optimizers. To train and evaluate the proposed
model, the publicly available PatchCamelyon dataset was used. The dataset consists of 220,000
annotated images for training and 57,000 unannotated images for testing. The proposed model
achieved higher performance compared to the state-of-the-art architectures with an AUC of 95.46%.
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1. Introduction

Cancer, also called malignancy and neoplasms, is an abnormal growth of cells in a multistage
process that generally progresses from a pre-cancerous lesion to a malignant tumor, which can then
invade adjoining parts of the body and spread to other organs. It is considered the second leading cause
of death globally, and it is responsible for an estimated 9.6 million deaths in 2018 [1,2]. There are more
than 100 types of cancer, including breast cancer, skin cancer, lung cancer, colon cancer, prostate cancer,
and lymphoma [1]. Through the blood and the lymph systems of the body, cancer can spread across
the entire body affecting different organs. It is perceived to be the result of the interaction between a
person’s genetic factors and exposure to certain environmental external agents, known as carcinogens.
Usually, the definitive cancer diagnosis is through histopathology, the study of the tissue structure.
Histopathology is done by studying the tissues under a microscope to detect any cell alterations. It is
one of the most important steps in the treatment plan because it can help in the early detection of
cancer [3]. Histopathology study is a very time-consuming process and requires a very experienced
pathologist. Due to its difficulty, a second opinion from another pathologist is often needed, especially
for certain kinds of tumors. Even very experienced pathologists can disagree with each other in the
classification of the histopathology images [4]. Moreover, the number of active pathologists decreased
dramatically in the last decade. For example, in the US, the number of pathologists decreased by 17.5%,
which led to an increase in the workload by more than 40% [5]. Currently, the used microscopes are
digital, meaning that they can produce a digital image that can be viewed and stored on the computers.
These digital images can be used to make an automatic classifier. The automatic classification of
histopathology will save a lot of time and can give a second opinion to the pathologists.
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Deep learning architectures have demonstrated their suitability to successfully address
optimization problems over different domains. A convolutional neural network (CNN) corresponds to
a particular type of deep learning model, and it was proposed by LeCun et al. [6] to address problems in
the computer vision domain. The real advancement happened in 2012 when Krizhevsky et al. [7] won
the ILSVRC challenge [8] with an accuracy of 84.6%. Since then, CNNs are considered state-of-the-art
models for image classification. CNNs have been successfully applied in different fields like traffic sign
classification [9,10], text classification [11,12], speech recognition [13,14], and machine translation [15,16].

In this work, we present a novel CNN architecture to classify lymph node stained histopathology
images. The publicly available PatchCamelyon dataset [17,18] was used to train and test the proposed
architecture. The main contributions of this paper are as follows:

• We propose a novel CNN architecture that can classify histopathology images with high accuracy.
• We investigate the impact of dropout layers and the impact of the location of the normalization layer.
• We test six activation functions to study their impact on the proposed architecture, rather than

choosing the de-facto ReLU activation function.
• We study the impact of two different optimizers on the CNN performance.
• We consider four popular state-of-the-art CNNs to compare the performance of our model. These

CNNs were trained on the PatchCamelyon dataset. These results can be used by researchers
instead of training these models again from scratch, which can take hours (if not days), especially
in the lack of computational power.

The rest of this paper is organized as follows: In Section 2, we review the previous studies
that introduced novel CNN architectures. The proposed methodology is stated in Section 3.
The obtained results are shown in Section 4. The discussion and conclusion are presented in Sections 5
and 6, respectively.

2. Literature Review

In recent years, many algorithms were introduced to help in classifying histopathology images.
Nowadays, CNNs are considered as the state-of-the-art algorithm for classifying images. In 1989,
Lecun et al. [19] presented the first CNN with 5 convolution layers. Before Lecun’s work, CNN was
not a popular choice for image classification because of the computational cost and the (small) size of
the available datasets. In 2012, Krizhevsky et al. [7] re-introduced CNNs by winning the ImageNet
challenge with their AlexNet CNN that obtained a 16% classification error rate compared to 25% of
the second-place model. Since then, CNN became the de-facto algorithm for image classification,
and many CNNs were subsequently defined.

To address an image classification task by using CNNs, it is possible to rely on two different
approaches: use a pre-existing architecture that was developed to classify natural images or, as done
in this paper, develop a novel architecture. This section focuses on novel architectures that were
introduced mainly to classify histopathology images. We summarize the recent contributions in the
area of histopathology images in Table 1, while Table 2 reports the important information associated
with the architectures presented in the papers of Table 1. For a complete description of the architectures
considered in Tables 1 and 2, the reader is referred to their respective paper.
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Table 1. Recent studies in the area of histopathological image classification.

Authors Main Contribution Number of
Classes Metric Test Set

Performance

Nguyen et al.
[20]

• A CNN is used to classify breast
cancer images belonging to 8 classes
(four benign subclasses and four
malignant subclasses).

• This was the first attempt to classify
breast cancer images in
eight subclasses.

8 Accuracy 73.68%

Bayramoglu et al.
[21]

• A single task CNN is used to predict
malignancy from breast
cancer images.

• A multi-task CNN is used to predict
both malignancy and image
magnification level simultaneously
(for a total of eight classes).

• Efficient method that allows to use
new data with the same or different
magnification levels than
previous data.

2 for the
malignant/ not
malignant task

8 for the
magnification

task

Accuracy

83.25%

80.10%

Arjmand et al.
[22]

• Fully automated diagnostic tool for
non-alcoholic fatty liver disease
classification, based on an optimized
CNN architecture.

2 Accuracy 95%

Sirinukunwattana
et al. [23]

• Deep learning model for nucleus
detection and classification from
histology images of
colorectal adenocarcinomas.

• Novel Neighbouring Ensemble
Predictor (NEP) coupled with CNN
to more accurately predict the class
label of detected cell nuclei.

4 F1 Score

0.692 (This
is the

combined
performance
on nucleus
detection

and
classification)

Lai et al. [24]

• Deep learning model that integrates
Coding Network with Multilayer
Perceptron (CNMP).

• Combination of high-level features
that are extracted from a deep
convolutional neural network with
traditional features of an image that
can be extracted using simple image
analysis concepts.

2 Accuracy

90.1% and
90.2% on

two
benchmark

medical
image

datasets

Basha et al. [25]

• Definition of a CNN architecture for
the classification of histological
routine colon cancer nuclei.

• Significant reduction of the number
of learnable parameters compared to
the popular CNN models such as
AlexNet, and GoogLeNet.

4 F1 Score 0.7887
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Table 2. Information related to the architectures defined in the papers identified in Table 1.

Conv
Layers

FC
layers

Dropout
Layers

Normalization
Layers

Activation
Function

Pooling
Layers

Nguyen et al. [20] 5 1 3 6 LeakyReLU 3

Bayramoglu et al. [21] 3 2 2 2 ReLU 3

Arjmand et al. [22] 3 1 2 3 ReLU 2

Sirinukunwattana et al. [23] 2 2 0 0 ReLU 2

Lai et al. [24] 6 0 0 0 ReLU 2

Basha et al. [25] 4 2 2 6 ReLU 2

To assess the performance of the model proposed in this paper, we perform a comparison against
the performance of three state-of-the-art models, namely, VGG, InceptionV3, and ResNet architectures.
The following paragraphs provide a short description of these models. For a complete description,
the reader is referred to the papers where these models were originally presented.

2.1. VGG Architectures

Simonyan et al. [26] proposed a novel CNN called VGG, which achieved an 8.1% error rate,
a great achievement compared to the AlexNet network. In particular, two main architectures were
introduced: VGG16 and VGG19. The main difference among them is in the number of convolution
layers. VGG16 consisted of 13 convolution layers and 3 fully connected layers, while VGG19 considered
16 convolution layers and 3 fully connected layers. All the convolution layers have a 3 × 3 kernel size,
with the number of kernels ranging from 64 till 512. VGG16 can be divided into 5 convolution blocks,
where each block contains three convolution layers, followed by a max-pooling layer. VGG16 with
fully connected layers has 138 million parameters, whereas VGG19 with fully connected layers has
144 million parameters.

2.2. InceptionV3 Architecture

InceptionV3 is a recent CNN architecture with 22 layers that was introduced by Szegedy et al. [27].
The main difference of this architecture to others is the fact that it connects the convolutions in parallel
instead of connecting them sequentially. The authors named this module the inception module.
The point of the inception module is to process the images at different scales. The InceptionV3
architecture consists of 9 inception modules and one fully connected layer. In total, InceptionV3 has
23.8 million parameters.

2.3. ResNet Architecture

He et al. [28] noticed that the CNN accuracy will get saturated as soon as the model gets 30
layers deep. The main reason for that saturation is the vanishing gradients problem, where the bottom
layers of the CNN will stop being updated. The authors introduced ResNet architecture that could
overcome the problem of vanishing gradients. The main difference between ResNet architecture and
other networks is the residual connection, where this connection will skip a few convolution layers
at a time. ResNet architecture won the ImageNet challenge in 2015 with an error rate of 3.57% that
surpassed the human error rate for the first time. In total, ResNet has 25 million parameters.

3. Methodology

This section describes the proposed CNN and the dataset used in this study.
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3.1. Proposed Architecture

The proposed CNN was chosen by analyzing the extant literature in the area, thus exploiting
the contributions of different works. The main inspiration of the proposed model is the VGG16
architecture [26], with the main differences being (1) the use of normalization layer in every convolution
block, (2) the use of three convolution layers in every block instead of four, and (3) the use of fully
connected layers with 512 neurons instead of 4096. The proposed architecture is shown in Figure 1.
In the proposed architecture, the input image size is 96 × 96 pixels. The architecture has 5 convolution
blocks that act as feature extractors and one fully-connected block that acts as a classifier. In the first
convolution block, three convolution layers followed by a batch normalization layer and a max-pooling
layer are used. The padding is kept the same for the three convolution layers to make use of every
pixel, especially in the first convolution block and, for the same reason, the stride is set to 1. For the
three convolution layers, 32 kernels were used with a size of 3 × 3. To reduce the dimensions by two
to keep the most relevant features obtained from the first convolution block, a max-pooling layer
is added. The second, third, and fourth convolution blocks use the same hyperparameters used in
the first convolution block, except for the number of kernels used, which was set to 64, 128, and 256,
respectively. In the fifth convolution block, the second and the third convolution layers have no
padding to decrease the spatial information with 512 kernels. The output of the convolution blocks is
flattened and, subsequently, it becomes the input of the classifier block. The classifier block has two
fully connected layers, each with 512 neurons. Overall, the inputs to the convolution blocks are 96
× 96 × 3, 48 × 48 × 32, 24 × 24 × 64, 12 × 12 × 128, and 6 × 6 × 256, respectively. The final layer is a
sigmoid function that is used to classify into two classes. In total, the proposed architecture consists of
15 convolution layers, 2 fully connected layers, 5 pooling layers, and 5 normalization layers.
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Figure 1. A schematic diagram of the proposed network architecture.

Activation functions have a huge impact on the speed and the accuracy of the networks,
and that is why, instead of using the ReLU activation function which is considered as the de-facto
activation function, five additional activation functions were tested to determine the best for the
proposed architecture.
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Four designs were tested to determine the optimal architecture. The first design is to test the
effect of dropout layers in the classifier block, where a dropout layer with a dropout ratio of 50%
will be inserted after each fully connected layer. The second design is to test the performance of the
architecture without the dropout layers. The third design is to test the performance of the CNN after
placing the normalization after the activation function. A dropout layer with a 50% dropout ratio
will be added after each fully-connected layer. The fourth design is the same as the third design but
without dropout layers. Different designs are shown in Figure 2.
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which is similar to the third design but without any dropout layers.

3.2. Dataset

As described in Bejnordi et al. [18], the Camelyon dataset was sampled from 399 patients from
two hospitals in the Netherlands. The dataset was annotated with the help of experienced pathologists
from the Netherlands. In particular, the dataset labels were manually annotated by two students and,
subsequently, were checked in deep detail by two experienced pathologists. To check the performance
of the pathologists on this dataset, two sets of experiments were performed.

The first experiment was performed without any time constrain, and 11 experienced pathologists
were asked to annotate a first subset of the images. In the second experiment, a two-hour time limit
was given to the experts for annotating a second subset of images. The challenge organizers chose the
AUC of the ROC curve as an evaluation criterion for this competition, thus every score is presented in
terms of AUC of the ROC curve. The AUC score achieved by the first experiment was 96.6%, and the
score of the second experiment was 81%.

The PatchCamelyon dataset [17,18] is an extension of the Camelyon dataset, which contains
277,000 histopathology images with an image size of 96 × 96 pixels at 10×magnification. A total of
220,000 images are annotated with 60% positive cases and 40% negative cases. A total of 57,000 images
are un-annotated images to test the classifier, and there are no duplicates in the PatchCamelyon dataset.
The resulting model is subsequently used to predict the labels of the test set and finally uploaded to
the Kaggle platform to obtain the model AUC. This process was necessary since the test labels are
available only to the owner of the data. To increase the size of the dataset and to make the model more
robust to overfitting, the following augmentation techniques were applied: horizontal flip, vertical flip,
rotation range, zoom range, width shift range, height shift range, shear range, and channel shift range.
Figure 3 shows two images of the considered dataset.
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4. Results

This section presents the hyperparameters used in the experiments, the results obtained using
different activation functions, the results of using different designs, and the results obtained using
different state-of-the-art CNN architectures.

4.1. Experimental Setup

Six activation functions were used to determine the optimum for the proposed architecture.
The tested activation functions are Tanh, Sigmoid, ReLU [29], LeakyReLU [30], ELU [31], and SELU [32].
Two optimizers were used as well, namely, Adam [33] and RMSProp [34]. The PatchCamelyon dataset
was divided into 80%/20% for training and validation. For all the experiments, the batch size used
was 64. Because of the size of the training dataset and the computational cost of CNN training, early
stopping of 10 epochs was used for all the experiments. According to Shorten and Khoshgoftaar [35],
image augmentation techniques can be used to increase the size of the dataset. This results in improved
model performance and in the reduction of the overfitting that may occur when using small datasets.
Thus, we applied image augmentation in all the experiments conducted in this paper, using the
transformation specified in Section 3.2. The positive to negative ratio was kept the same after the
application of the augmentation techniques.

All the experiments were implemented using Keras API [36] with TensorFlow API [37] in
the backend.

4.2. Results

This section presents the results obtained and is divided into four parts. In the first part,
we present the results obtained from training the proposed architecture using two optimizers and
six different activation functions. In the second part, we present the results of the four different
designs to enhance the performance of the network. In the third part, we present the results of the
comparison of our architecture against state-of-the-art models. In the fourth part, we present the
results of the comparison between our architecture and different architectures that were developed for
histopathology image classification.

4.2.1. The Results of Different Activation Functions

Six different activation functions (and two different optimizers) were used to test the model
performance. The sigmoid activation function achieved the lowest accuracy among all the activation
functions taken into account over both the optimizers and so it was removed from other tests. The ReLU
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activation function achieved a low accuracy compared to the other competitors, with comparable
results obtained with the Adam and RMSProp optimizers. The LeakyReLU activation function scored
the same as ReLU for the Adam optimizer but achieved a lower accuracy with the RMSprop optimizer.
This could indicate that this activation function makes the network slightly unstable. The ELU
activation function scored the best accuracy compared to all the functions, with comparable results
for Adam and RMSProp. The SELU activation function had a high accuracy with Adam optimizer,
while its performance degraded when using the RMSProp optimizer. The saturated function Tanh
scored very high in both the optimizers, where the result of the RMSProp optimizer was higher than
the Adam optimizer. Overall, the best achieving activation function was the ELU, followed by SELU
and Tanh activation functions. The results are shown in Table 3.

Table 3. The AUC results of both optimizers for the different activation functions.

ReLU LeakyReLU ELU SELU Sigmoid Tanh

Adam 87.68% 87.37% 93.66% 92.73% 84.03% 91.70%

RMSprop 85.01% 83.02% 92.99% 88.43% 84.49% 92.00%

4.2.2. The Results of Different Designs

Four different designs were tested to check the performance of the network. The first design
considers the network with two dropout layers in the classifier block, and the normalization layer
before the activation layer. The second design is similar to the first design but without any dropout
layers. The third design places the normalization layer after the activation layer and adds dropout
layers in the classifier block. The fourth design is similar to the third design but without adding
any dropout layers in the classifier block. Tables 4 and 5 show the results for both the Adam and
RMSProp optimizers.

Table 4. The AUC results of the Adam optimizer.

Tanh ReLU LeakyReLU ELU SELU

H1 91.70% 87.68% 87.37% 93.66% 92.73%

H2 92.96% 85.45% 87.17% 91.76% 92.82%

H3 94.39% 91.78% 89.96% 94.40% 90.16%

H4 95.46% 89.33% 89.11% 93.85% 92.71%

Table 5. The AUC results of the RMSProp optimizer.

Tanh ReLU LeakyReLU ELU SELU

H1 92.00% 85.01% 83.02% 92.99% 88.43%

H2 94.09% 89.77% 90.37% 87.62% 94.25%

H3 93.35% 88.40% 90.38% 92.26% 93.86%

H4 93.43% 87.70% 90.11% 94.86% 91.58%

The ReLU activation function has the lowest score compared to other activation functions across
the four designs. The best performance of ReLU (with Adam optimizer) was obtained in the third
design, followed by the fourth design. The worst score was by using the second design. The results
with the RMSprop optimizer were poorer than the Adam optimizer. The best result was achieved
with the second design, followed by the third design. The lowest result was obtained with the first
design. Overall, the best result achieved by ReLU was 91.78%. The LeakyReLU activation function
had slightly lower accuracy than the ReLU function. With Adam optimizer, the third design was the
best performer, followed by the fourth design. The worse result was obtained with the second design.
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With the RMSprop optimizer, the best performance was obtained in the third design, followed by the
second design. The worst performance was achieved by using the first design. The results of Adam
and RMSprop optimizers were significantly different, especially for the first design. Overall, the best
result achieved by LeakyReLU was 90.38%.

The ELU activation function had higher results compared to both ReLU and LeakyReLU. With
Adam optimizer, the best performance was achieved by using the third design, followed by the fourth
design. The lowest performance was achieved with the second design. With the RMSProp optimizer,
the best result was achieved by using the fourth design, followed by the first design. The worst
result was achieved with the second design. The results of both Adam and RMSprop optimizers were
comparable, except for the second design. Overall, the best result achieved by the ELU activation
function was 94.86%. The SELU activation function had slightly lower performance than the ELU
activation function. With Adam optimizer, the best performance was achieved by using the second
design, followed by the first design. The lowest performance was obtained with the third design.
With the RMSprop optimizer, the best performance was achieved by using the second design, followed
by the third design. The lowest performance was noticed with the first design. The results of Adam
and RMSprop optimizers were significantly different, especially for the first design. Overall, the best
result achieved by the SELU activation function was 94.25%.

The Tanh activation function achieved the highest results compared to all the other tested activation
functions. With Adam optimizer, the best performance was obtained with the fourth design, followed
by the third design. The lowest performance was achieved with the first design. With the RMSProp
optimizer, the best performance was achieved by using the second design, followed by the fourth
design. The lowest performance was obtained by using the first design. The results of both optimizers
(Adam and RMSProp) were comparable. Overall, the best result achieved by the Tanh optimizer
was 95.46%.

Using Adam optimizer, the first design was, overall, similar to the second design, meaning that the
presence of the dropout layer did not increase the performance of the model. However, the performance
of the third and fourth designs was higher, which indicates that the location of the normalization layer
has an impact on the performance of the architecture. There are no significant differences between the
third and the fourth designs, which indicates that the presence of the dropout layer does not increase
the network performance.

Using the RMSProp optimizer, the performance of the first design was the lowest compared to the
other designs. The second design achieved greater accuracy than the first design, which can indicate
that the dropout layer can limit overfitting. The second, third, and fourth designs achieved a different
performance, thus corroborating the hypothesis that the location of the normalization layer has a
significant impact on the performance of the model. The third and the fourth designs were similar as
well, indicating that the presence of the dropout layer has no effect on the model accuracy. All in all,
based on the aforementioned results, we recommend practitioners to rely on the fourth design.

4.2.3. The Results over Benchmark CNN Architectures

In this section, the results of four benchmark CNN architectures are presented. Two sets of
experiments were performed to compare our proposed architecture with four CNN popular benchmark
architectures, namely, VGG16, VGG19, InceptionV3, and ResNet. The first set of experiments aims at
comparing the architectures’ performance under the first design (dropout layer in the classifier block).
All the original classifier blocks of the CNN were removed and replaced by two fully connected layers
with a dropout layer after each fully connected layer, with a dropout probability of 0.5. The second
set of experiments compared the performance of the architectures under the fourth design (without
a dropout layer in the classifier block). Just like the first set of experiments, all the original fully
connected layers were removed and replaced with two fully connected layers without any dropout
layers. All the architectures were trained from scratch (i.e., no transfer learning was used).
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In the first sets of experiments, using the first design, two optimizers were used as well. By using
the RMSprop optimizer, the best performing architecture was our proposed architecture, followed by
the VGG19 network. The worse performance was achieved by the InceptionV3 architecture. By using
Adam optimizer, the highest performance was obtained by our proposed architecture, followed by
VGG19. The poorest performance resulted from the ResNet architecture. Overall, our proposed
architecture outperformed the other architectures taken into account. The results of the first set
of experiments are shown in Table 6. In the second set of experiments, using the fourth design,
two optimizers were used as well. By using RMSprop, the highest performance was obtained by
using our architecture, followed by VGG16. The lowest performance was achieved by using ResNet.
By using Adam optimizer, the highest performance was achieved with our architecture, followed by
VGG16. The lowest performance was obtained with the ResNet architecture. Overall, our proposed
architecture achieved higher performance than the other tested CNNs. The results of the second set of
experiments are shown in Table 7.

Table 6. The AUC results obtained with benchmark architectures under the first design.

RMSProp Adam

Our Model 92.99% 93.66%

VGG16 84.22% 89.53%

VGG19 89.08% 90.64%

InceptionV3 82.66% 82.47%

ResNet 85.24% 81.21%

Table 7. The AUC results obtained with benchmark architectures under the fourth design.

RMSProp Adam

Our Model 94.86% 95.46%

VGG16 89.33% 91.00%

VGG19 89.24% 89.20%

InceptionV3 87.15% 85.88%

ResNet 78.01% 83.52%

4.2.4. The Results of State-of-the-Art CNN Architectures

It is impossible to compare the results of our architecture against other architectures unless both
the architectures were trained and tested on the same dataset and using the same hyperparameters
like batch size, image augmentation, optimizer, and learning rate. That is why we trained different
state-of-the-art CNN architectures on the PatchCamelyon dataset to easily compare our proposed CNN
architecture with others. The image size was the only hyperparameter that was different between
different architectures: The images were rescaled to follow the requirements of each architecture.
Using the RMSProp optimizer, the best performance was achieved by using our proposed architecture
followed by the architecture of Lai et al. [24]. The lowest performance was obtained with the
Sirinukunwattana et al. [23] architecture. Using Adam optimizer, the best performance was achieved
by our architecture, followed by Lai et al. [24] architecture. Similar results were obtained when the
RMSProp optimizer was considered. Overall, our proposed architecture outperformed all the other
architectures tested, as summarized in Table 8.
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Table 8. The AUC results of the State-of-the-art architectures.

RMSProp Adam

Our Model 94.86% 95.46%

Bayramoglu et al. [21] 77.22% 86.68%

Arjmand et al. [22] 85.69% 88.23%

Lai et al. [24] 86.06% 92.11%

Sirinukunwattana et al. [23] 72.28% 68.85%

Basha et al. [25] 80.69% 75.04%

Nguyen et al. [20] 81.16% 86.68%

5. Discussion

In this work, a novel CNN architecture was proposed to classify histopathology images.
This section discusses the results obtained.

5.1. Histopathology Images Importance And Challenges

Histopathology images classification is considered a very difficult task and very subjective as well,
where two experienced pathologists can have very different opinions, and that is where an automatic
classifier can be very important by providing a second opinion.

5.2. The Presented Architecture Choice

The architecture presented in this work was chosen after an extensive design phase, where different
architectures were tested. As pointed out by Sirinukunwattana et al. [23], giving theoretical justification
for the network architecture is very challenging and is still matter of ongoing research. Based on our
results, three aspects affected the performance of the CNN: the position of the normalization layers in
regards to the activation function, the presence of the dropout layers in the classifier block, and the
activation function used.

5.3. The Effect of Different Activation Functions

Six activation functions were tested using our proposed architecture, two of them are saturated
and four are non-saturated. The sigmoid function did not achieve a satisfying result and so it was
removed from further testing. The Tanh function achieved outstanding results compared to other
state-of-the-art non-saturated activation functions, which was quite surprising.

5.4. The Effect of the Location of the Normalization Layer and the Dropout Layer

Four different designs were tested to detect the optimal location of the normalization layer and
the effect of the dropout layer on it. From the obtained results, we can conclude that the location
of the normalization layer is very important, for which we recommend placing the normalization
layer before the activation function. The presence of the dropout layer is not always guaranteed to
increase network performance. Moreover, the optimizers played a very important role in the network
performance, and from our results, Adam achieved better performance than RMSProp.

5.5. Comparison between Different Benchmark CNN

From our experiments, we noticed that adding a dropout layer after each fully connected layer
decreases the performance for the VGG16 network, especially for the RMSProp optimizer. For the
VGG19 network, the performance did not change significantly when considering the addition of
dropout layers. The performance of the InceptionV3 network was affected by the inclusion of the
dropout layer, for both the Adam and RMSprop optimizers. The ResNet network was the only network



Appl. Sci. 2020, 10, 2929 12 of 17

that benefited from adding the dropout layer, and the performance of RMSProp with dropout was
higher with respect to the Adam optimizer. The VGG architectures were the best performers among
the different competitors taken into account, and they were outperformed only by our proposed
architecture. InceptionV3 and ResNet were the poorest performers. For the InceptionV3 model, we can
speculate that the inception module did not increase the performance, while adding too many layers is
not beneficial for the ResNet model. All in all, our proposed architecture achieved higher results for
both Adam and RMSprop optimizers.

5.6. Comparison between Different State-of-the-Art CNN

Arjmand et al. [22] presented a network with three convolution layers, where the number of
kernels is 64, 32, and 16, respectively. The kernels size used was 5 × 5, 3 × 3, and 3 × 3, respectively.
Every convolution layer was followed by a batch normalization layer and max-pooling layer, except
for the third convolution layer, which was followed by a batch normalization layer only. There are two
dropout layers, one after the second convolution layer and the second before the fully connected layer.
Compared to our network, Arjmand architecture was the second-best architecture, among the set of
competitors, for both RMSprop and Adam optimizers. The authors placed the normalization layer
before the activation layer and the dropout layer in the middle of the convolution blocks. The main
difference between our proposed architecture and the architecture proposed by Arjmand et al. [22] relies
on the number of convolution layers used. From the results obtained, it seems that the choice of the
number of convolution layers plays a fundamental role in the performance of the model. In particular,
a network with just three convolution layers seems to be not sufficient for dealing with the complexity
of the application at hand. The architecture of Arjmand et al. [22] is shown in Figure 7.

Lai et al. [24] introduced a network with six convolution layers and no fully connected layers.
This network achieved the best results, among the competitors of our proposed architecture, for both
the optimizers. The kernel size used in both the convolution layers and the pooling layers is the
highest compared to all the tested CNNs. No dropout layers or batch normalization layers were
used. The results of Adam and RMSProp optimizers are comparable. The differences between this
network and our network are the size of the kernels used (which is higher than our proposed network),
the absence of any regularization layers, the absence of any fully connected layers, and the number of
convolutional layers, (which is higher in our model). The main difference in terms of design choices
between the architecture of Lai et al. [24] and our architecture is the absence of any regularization
layers from their architecture. According to the experiments we performed, this seems to be the main
cause for the lower performance of the network proposed by Lai and coauthors. Figure 4 shows the
architecture of Lai et al. [24].
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Nguyen et al. [20] presented a network with five convolution layers, one fully connected layer,
three dropout layers, and six normalization layers. The authors placed the normalization layer after
the activation layer, and the dropout layer in the middle of the convolution blocks. This is the only
network with an activation function other than the ReLU function. The results of Adam and RMSProp
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optimizers are different, with Adam being the best optimizer. Compared to our proposed network,
the main differences are the number of convolution layers, the presence of the normalization layer
after the activation function, and the usage of only one fully connected layer. The difference between
the performance of our proposed architecture and the architecture presented by Nguyen et al. [20]
can be explained by the number of convolution layers (that is lower with respect to our architecture)
and by the position of the normalization layer after the activation layer. In particular, placing the
normalization layer after the activation function was not suggested in the original paper that introduced
the normalization layer [38]. Figure 5 shows the architecture of Nguyen et al. [20].
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Basha et al. [25] designed an architecture with 4 convolution layers and two fully connected
layers. The authors also placed the normalization layer after the activation layer. Moreover, the authors
placed a normalization layer in the classifier block. The results of Adam and RMSProp optimizers
are significantly different, with RMSProp being the best optimizer. Compared to our architecture,
the main differences are the number of convolution layers used (we used 15 instead of 4), the presence
of the normalization layer after the activation function, and the usage of the normalization layer in
the classifier block. The difference between the performance of our proposed architecture and the
architecture proposed by Basha et al. [25] can be due to the number of the convolution layers, placing
the normalization layer after the activation layer, and the usage of dropout layers in the classifier block.
Figure 6 shows the architecture of Basha et al. [25].
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The architecture of Bayramoglu et al. [21] has three convolution layers and two fully connected
layers. The authors placed the normalization layer after the activation layer and after the pooling layer
as well. The results of Adam and RMSProp optimizers are significantly different, with Adam being
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the best optimizer. Compared to our design, this architecture has low capacity, since it has only three
convolution layers. The difference between the performance of our proposed architecture and the
architecture proposed by Bayramoglu et al. [21] can be explained (beyond the number of convolution
layers) considering the usage of a larger kernel size in the first convolution layer. This is something that
could be detrimental to the performance of the network. Using smaller kernel sizes allows the network
to learn complex, more non-linear features. The architecture of Bayramoglu’s [21] is shown in Figure 8.
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Sirinukunwattana et al. [23] proposed a network with only two convolution layers and two
fully connected layers. The network is the worst performer in our comparison, probably because it
has a very low capacity compared to the other networks taken into account. The results of Adam
and RMSProp optimizers are significantly different, with RMSProp being the best optimizer. In this
network, the ReLU activation function were used, and two pooling layers were placed after each
convolution layer. Figure 9 shows the architecture of Sirinukunwattana’s [23].
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6. Conclusions

In this paper, we introduced a novel CNN architecture that is designed to classify histopathology
images. The training and evaluation of the architecture were conducted on the publicly available
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PatchCamelyon dataset. The proposed architecture has fifteen convolution layers and two fully
connected layers. The highest AUC obtained using our architecture was 95.46%. In this work, we have
also studied the effect of different activation functions on the CNN performance and the effect of
the location of the activation function on the performance of the network. Based on the obtained
results, two main points must be highlighted: We recommend authors to try different activation
functions and to fully analyze their impact other than choosing the ReLU activation function as a
default. Based on our results, we recommend placing the normalization layer before the activation
function. We do encourage researchers to examine our proposed CNN on different datasets and report
the performance achieved.

We acknowledge several limitations in this work that can be addressed in future work. First,
the performance of the proposed model slightly increases with respect to the models that were
presented in the literature. Second, the proposed model was inspired by the VGG16 architecture,
and the differences are the positioning of the regularization layers, the activation functions used, and the
number of neurons in the fully connected layers. We believe that the two aforementioned limitations
could be overcome through the use of neuroevolution algorithms that can provide a different way
of exploring the search space of deep learning architectures. Finally, the human performance was
reported on the Camelyon dataset, which is a reduced dataset with respect to the PatchCamelyon
dataset used in this study. Thus, it would be interesting to assess the human-experts’ performance on
this bigger dataset.
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