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Abstract: The canonical harmony search (HS) algorithm generates a new solution by using random
adjustment. However, the beneficial effects of harmony memory are not well considered. In order to
make full use of harmony memory to generate new solutions, this paper proposes a new adaptive
harmony search algorithm (aHSDE) with a differential mutation, periodic learning and linear
population size reduction strategy for global optimization. Differential mutation is used for pitch
adjustment, which provides a promising direction guidance to adjust the bandwidth. To balance
the diversity and convergence of harmony memory, a linear reducing strategy of harmony memory
is proposed with iterations. Meanwhile, periodic learning is used to adaptively modify the pitch
adjusting rate and the scaling factor to improve the adaptability of the algorithm. The effects and the
cooperation of the proposed strategies and the key parameters are analyzed in detail. Experimental
comparison among well-known HS variants and several state-of-the-art evolutionary algorithms on
CEC 2014 benchmark indicates that the aHSDE has a very competitive performance.

Keywords: harmony search; differential mutation; population size reduction; periodic learning

1. Introduction

The Harmony Search (HS) algorithm is one of the Evolutionary Algorithms (EA), taking inspiration
from the music improvisation process, which was proposed by Geem et al. [1] in 2001. It is an emerging
population-based metaheuristic optimization algorithm which simulates the improvisation behavior
of musicians by repeatedly adjusting the instruments, eventually generating a harmony state. In HS,
the harmony of musical instrument tones is regarded as a solution vector of the optimization problem.
The evaluation of musical harmonies corresponds to the objective function value.

There are four main control parameters in a canonical HS algorithm [1], including the harmony
memory size (HMS), harmony memory considering rate (HMCR), pitch adjusting rate (PAR) and the
bandwidth (bw). However, it is well known that the optimal setting of these parameters [2] depends
on the problem. Therefore, when HS is applied to real-world problem:s, it is necessary to adjust the
control parameters to obtain the desired results. Overall, it has attracted more and more attention and
a variety of HS variants have been proposed.

In order to improve its efficiency or to overcome some shortcomings, the original HS operators
have been adapted and/or new operators have been introduced. Mahdavi et al. [3] proposed an
improved harmony search algorithm (IHS) in which PAR is designed to increase linearly, while bw
decreases exponentially with the increase of the number of iterations. Pan et al. [4] proposed a
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self-adaptive global-best harmony search (SGHS). It employs a new improvisation scheme and uses
a parameter adjustment strategy to generate a new solution with a learning period. Combining the
harmony search algorithm with particle swarm optimization (PSO) [5], Valian et al. [6] presented
an intelligent global harmony search algorithm (IGHS) which has excellent performance compared
with its competitors. To enhance the search efficiency and effectiveness, a self-adaptive global-best
harmony search algorithm [7] is developed. The proposed algorithm takes full advantage of the
valuable information hidden in the harmony memory to devise a high-performance search strategy.
It also integrates a self-adaptive mechanism to develop a parameter-setting-free technique [8]. Ouyang
et al. [9] proposed an improved harmony search algorithm with three key features: adaptive global
pitch adjustment, opposition-based learning and competition selection mechanism. Inspired from the
simulated annealing of accepted inferior solutions, a hybrid harmony search algorithm (HSA) [10] is
proposed. It accepts the inferior harmonies with a probability determined by a temperature parameter.
Zhu etal. [11] proposed an improved differential-based harmony search algorithm with a linear dynamic
domain which utilized two main innovative strategies. Focusing on the historical development of
algorithm structures, Zhang and Geem [12] reviewed various modified and hybrid HS methods,
which included the adaption of the original operators, parameter adaption, hybrid methods, handling
multi-objective optimization and constraint handling.

One question is naturally proposed—why does HS work on various problems from science
and engineering [13]? The unique stochastic derivative [14] gives information on the probabilistic
inclination to select certain discrete points based on multiple vectors stored in HM for a discrete problem.
Although HS is easy to implement and has a simple structure [13], it has shown its superiority with more
complex optimization algorithms, and has been applied to many practical problems [12,15-17]. HS has
been successfully used in a wide range of applications [18-25], which has attracted a lot of research
attention undertaken to further improve its performance. Combining HS and local search, a novel
sensor localization approach is proposed by Manjarres et al. [26]. Minimizing energy consumption and
maximizing the network lifetime of a wireless sensor network (WSN) problem using the HS algorithm
was closely studied [27-30]. Degertekin [31] optimized the frame size of truss structures by harmony
search algorithm. Compared with the genetic algorithm for max-cut problem [32], the harmony search
algorithm has advantages of generating new vectors after considering all of the existing vectors and
parameters. Boryczka and Szwarc [33] proposed a harmony search algorithm with the additional
improvement of harmony memory for asymmetric traveling salesman problems, which eliminates
the imperfectness revealed in the previous research. Seyedhosseini et al. [34] researched the portfolio
optimization problem using a mean-semi variance approach based on harmony search and an artificial
bee colony. HSA [35] was used in reservoir engineering-assisted history, matching questions of different
complex degrees, which are two material balance history matches of different scales and one reservoir
history matching.

However, HS and its variants usually have the following drawbacks, which are also our
research motivation.

(1) For the pitch adjustment operator of HS, a larger bandwidth is easier to jump out of the local
optimum, while a smaller bandwidth biases to find a promising solution for the fining search.
Therefore, a fixed step size is not an ideal choice.

(2) Itis difficult to find the optimal solution with a constant execution probability and an adaptive
adjusting method is required.

(3) Parameter HMS has an important influence on the performance of algorithms. An adaptive sizing
HMS is possible to enhance the performance of the algorithm.

Therefore, an adaptive harmony search algorithm is proposed with differential evolution mutation,
periodic learning and linear population size reduction (aHSDE). The main contributions of this paper
are as follows.
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(1) The pitch adjustment strategy is implemented with differential mutation. Adjust the pitch
adjusting rate PAR and the scaling factor F with periodic learning strategy. Linear population size
reduction strategy is adopted for HMS changing scheme.

(2) The cooperation and effects of several strategies are analyzed step by step.

The organization of this paper is as follows. Section 2 reviews the canonical HS and several
improved variants. In Section 3, the composite strategies and algorithm aHSDE are proposed.
In Section 4, the effects and the cooperation of the proposed strategies and parameters analysis
are presented. The comprehensive performance comparison with other HS variants and other
state-of-the-art EAs are presented in Section 5. Finally, Section 6 concludes the paper.

2. Harmony Search and Several Variants

2.1. Harmony Search Algorithm

The harmony search algorithm is a new population-based metaheuristic optimization algorithm [1],
which is inspired by the improvisation process of music. The improvisation process is modeled as an
iterative optimization method and the musicians” musical instruments improvise to produce a better
harmony [36]. The basic steps are described in detail in Algorithm 1.

Algorithm 1:  General Framework of the Harmony Search (HS).
//Initialize the problem and algorithm parameters//
f(x): objective function
HMS: harmony memory size
HMCR: harmony memory considering rate

PAR: pitch adjusting rate

L bw: bandwidth
DIM: dimension of decision variable
MAX_NFE: maximum number of function evaluations
L;, U;: the lower and upper bounds of the i-th component for the
decision vector
). //Tnitialize the harmony memory (x*,x?2, -+, x"M%)//
' x} = L; +rand(0,1) - (U; — Ly)
/lImprovise a new harmony x™" = (x{®V, x3V, -, xpiy )/
foreachi € [1,DIM] do
if (rand(0,1) < HMCR) then
x® = xf,wherea € {1,2,..., HMS}
if rand(0,1) < PAR) then
3 xV = x" + rand(—1,1) X bw
endif
else
X =1 +rand-(U,~L,)
endif
endfor
/IUpdate the harmony memory//
4 if f(xX")< f(x")= max f(x)), then x""*" =x"".

j=1,2,...HMS
//Check the stopping criterion//

5: If the termination condition is met, stop and output the best individual.
Otherwise, the process will repeat from Step 3.
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2.2. The Improved Harmony Search Algorithm (IHS)

In the canonical harmony search algorithm, the probability of PAR and bw are constant. Mahdavi
et al. [3] proposed an improved harmony search algorithm, called IHS, which mainly introduced the
dynamic change of PAR and bw using the following equations.

PARmax - PARmin

PAR(NFE) = PARyjy + =7 X

x NFE (1)

bwyyin
bwiax

bZU(NFE) = bwmaxexp ]\MTNFE

x NFE ()

where PAR;x is the maximum adjusting rate; PAR,,;, is the minimum adjusting rate; bw;,,y is the
maximum bandwidth; bw,,,;,, is the minimum bandwidth. MAXyrE is the maximum number of function
evaluation and NFE is the current number of function evaluation.

2.3. A Self-Adaptive Global-Best Harmony Search (SGHS)

The SGHS [4] employs a new improvisation scheme and an adaptive parameter tuning method.
To modify pitch adjustment rule, x/* is assigned with the corresponding decision variable x?““ from
the best harmony vector. In addition, the concept of a learning period is introduced. Parameters
HMCR and PAR are dynamically adapted to a suitable range by recording their historical values
corresponding to the generated successful harmonies entering the nest harmony memory. Furthermore,

bw is dynamically updated using the following equation.

hwmﬂx_bwmin . MAX
bw(NFE) = bwax — “MAXurE X 2NFE, if NFE < %
7 MAXNFE
bwmin , lf NFE > —

®)

where bwmax and bwy,, are the maximum and minimum values of the bandwidth (bw), respectively.

2.4. An Intelligent Global Harmony Search Algorithm (IGHS)

Valian et al. [6] modified the improvisation step by imitating one dimension of the best harmony
in the harmony memory to generate the new harmony and proposed algorithm IGHS. The main steps
are shown in Algorithm 2.

Algorithm 2: Main framework of the intelligent global harmony search algorithm (IGHS).
foreachi € [1,DIM] do
if (rand(0,1) < HMCR) then
if (rand(0,1) < PAR) then

xlew = yxpest, where k € {1,2, ..., DIM}
else

xiR =2% xibest _ x;n/orst

if xf<l;

xR =1

elseif xF > U;
xf =U;

endif

x.new — xjworst + rand . (xR _ xwz)rst)

1

endif
else
X =L+rand-(U —L)
endif

endfor




Appl. Sci. 2020, 10,2916 50f17

3. Adaptive Harmony Search with Differential Evolution

When musicians compose music, they take full advantage of their own knowledge and experience
in the improvement direction. With the continuous optimization of music composition, musicians will
also reduce the available experience and accelerate the composition. Inspired by the conception, it
is desired to make full use of the information in the harmony memory and dynamically adjust the
harmony memory size. Thus, the differential evolution mutation is adopted into the modified algorithm
to provide an effective guidance for the generation of the new solution. The linear harmony memory
size reduction strategy is also introduced into the algorithm to accelerate the convergence. Meanwhile,
in order to strengthen the general suitability for various problems and reduce the dependence on
the parameters, the parameter’s self-adaption with the concept of a learning period is applied to the
modified algorithm.

This paper presents an adaptive harmony search algorithm (aHSDE) with differential evolution
mutation, periodic learning and linear population size reduction strategy. Therefore, it is desirable to
balance the ability of global exploration and local exploitation for the harmony search algorithm.

3.1. Differential Evolution

As a stochastic population optimization algorithm, differential evolution (DE) is similar to other
evolutionary algorithms [37]. The basic idea of DE is summarized as follows: a set of initial individuals
are generated randomly in the search space, and each individual represents a solution. After this,
a new individual is generated by the following three operations in sequence: mutation, crossover and
selection. The core idea of DE is that it adds the differential vectors among several individual pairs to a
base vector. It controls the magnitude and direction of exploration for the promising neighborhood [38].

This paper uses DE/best/2 of DE mutation as follows:

x?ew — x?est + F[(xlﬁ _ x?) + (xlf3 _ x:4)] (4)
where 1,719,753 and ry are mutually different individual indexes which are chosen randomly.
The parameter F is a scale factor controlling the mutation step size. Scaled differential vectors
with respect to the possible individual pairs adapt the property of the current neighborhood landscape.
It thus can provide promising mutation directions with adjustable step size and a balance between
local and global search [39].

3.2. Linear Population Size Reduction

In the former search stage of HS, the algorithm tends to explore the search space with the assistance
of well-population diversity. Subsequently, it can construct some fine-tuning directions in the iterative
process. In the latter stage of the algorithm, the population usually focuses on the neighbor search.
Therefore, exploitation better attracts most of the computing resource. Inspired by the improved
Success-History based parameter Adaptation for Differential Evolution (SHADE) [40], a monotonically
reducing population size strategy is utilized with respect to the function evaluation number. It is

shown as follows
HMSmax — HMSmin

where HMSmax and HMS i, are the maximum and minimum values of the harmony memory size

(HMS), respectively. MAXnrg is the maximum number of function evaluation and NFE is the current
number of function evaluation.

HMS = round(HMSmaX - X NFE) (5)

3.3. Differential Mutation in the Pitch Adjustment Operator

The canonical harmony search algorithm operates the pitch adjustment with the constant distance
bandwidth, which cannot adapt to the searching landscapes at different searching stages for different
problems. It is certain that a proper bandwidth is important for the harmony search algorithm. In this
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paper, we present a general framework for defining the pitch adjustment operator with the differential
mutation (DE/best/2) [41], which can provide a more effective direction than the constant bandwidth to
the searching landscape. It is indicated as Equation (6).
_ o best r r r v
=+ F(x —x?) + (27 —x*)] 4 rand(=1,1) X bw (6)
where i is the component index from {1,2,3,...,DIM}; r1,13,73,74 are selected randomly from
{1,2,3,...,DIM} and mutually exclusive; rand(-1,1) is a uniformly distributed random number

between —1 and 1. DIM is the dimension of decision variables. x"¢%

best

is the newly generated harmony
vector and x"*" is the current best harmony vector in the harmony memory.
If the new solution is out of the bounds [L;, U;], it will be modified as follows,

v — Li/ Zf x;?ew < Li (7)
: N u;, Zf x;(zew > U;

where U; and L; denote the upper and lower bounds of the i-th component for the decision vector.

3.4. Self-Adaptive PAR and F

Inspired by the concept of the learning period of SGHS [21] to adaptively tune parameters HMCR
and PAR, this paper employs a new modified scheme for PAR and F.

In addition, the parameters HMCR and PAR are dynamically adapted to a suitable range by
recording their historic values corresponding to the generated harmonies entering the harmony
memory. During the evolution, the values of HMCR and PAR for the generated successful harmony
are recorded to replace the worst members in the harmony memory.

First, both the means of PAR (PARm) and F (Fm) are initialized as 0.5. Second, parameters PAR
and F are generated with a normal distribution. During the generations, the values of PAR and F are
recorded when the generated harmony successfully replaces the worst member in the harmony memory.
After Learning Period (LP), parameters PARm and Fm are recalculated with the weighted Lehmer
mean formulas [42]. The weighted Lehmer mean mean,,;(S) uses the following deterministic Equations
(8)-(10) to compute. The amount of fitness difference A f; is used to influence the parameter adaptation.

lel wk-gk2
mean,,;(S) = lel — (8)
A
f= \5| Afl ©)
Afk _ |f(xl’l€w) _ f(xworst) (10)

where S includes either Spag or Sp and meany,;(S) is the new value of PARm or Fm. x"%

generated solution in the current generation. x®°'st
denotes the fitness function.

Parameters PARm or Fm use the framework in Algorithm 3 to update their values, where generation
counter Ip = 1. The difference between the weighted Lehmer mean and the arithmetic mean is described
as follows. Arithmetic mean means all the recorded successful parameters of PARm or Fm have the
same weights. On the other hand, the weighted Lehmer mean shown in Equations (8)—(10) means that
all the recorded successful parameters of PARm or Fm have the self-adaptive weights based on their
fitness improvements. It is very possible that the weighted Lehmer mean outperforms the arithmetic
mean statistically. However, we will not analyze their difference in this paper due to paper length
restrictions, and instead cite the reference [42] directly. The detailed information of weighted Lehmer
mean can be found in reference [42].

is the newly
is the worst solution in harmony memory. f(*)
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Algorithm 3: Parameters updating of the means of PAR (PARm) and F (Fm).

if Ip > LearnPeriod
PARm = meany,;(Spag)
Fm = mean,,(Sr)

else
Ip=Ip+1
endif

In general, the values of PAR and F are regenerated as the following equations.

{ PAR = normrnd(PARm,0.1) an

F = normrnd(Fm,0.1)

If PAR is larger than 1, it is truncated to be 1; if PAR is less than or equal to 0, it will be assigned
0.001. The same action is executed on F.
3.5. aHSDE Algorithm Framework

The aim of this paper is to provide some beneficial strategies to improve the performance of the
aHSDE from the improvisational perspective. Algorithm 4 shows the procedure of the aHSDE.

Algorithm 4: Framework of the new adaptive harmony search algorithm (aHSDE).
/lInitialize the problem and parameters//
f (x): objective function
HMSmax: the maximum value of the harmony memory size

HMSmin: the minimum value of the harmony memory size
HMCR: harmony memory considering rate
1: PARm: the mean of pitch adjusting rate
Fm: the mean of the scaled factor
bw: bandwidth
LP: learning period
MAX_NFE: maximum number of function evaluation
L, U: the lower and upper bounds of the decision vector
//nitialize the harmony memory (x*,x2, -+, x"MS)//
x! = Ly +rand(0,1) - (U; = L),j = 1,2, ..., HMS;i = 1,2, ..., DIM

[[Tmprovise a new harmony  x™Y = (x1¢%, x5, -, xpiv)//

(1) Update HMS with Equation (5). If HMS decreases, the solutions are sorted in
HM according to their fitness values and the worst one is deleted.
(2) To generate a new solution, the process is as follows:
for eachi € [1,DIM] do
if (rand < HMCR) then
best
3 X =
if (rand(0,1) < PAR) then
X = x4 FI(x = X2) + (X —x* )] £ rand x bw

i

endif
else

x =L +rand-(U,-L,)

endif
endfor
/IUpdate the harmony memory//
. new worst\ __ j worst __ _.new
4: YrE)<fe) = max f(x7), then x™=x""

Record the generation of PAR, F and the fitness difference Af¥.
//Check the stopping criterion//

5: If the termination condition is met, stop and output the best individual.
Otherwise, the process will repeat from Step 3.
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4. Experimental Comparison and Analysis

The proposed strategies and the parameter adaption schemes are explained and analyzed firstly
by empirical research in this section. Subsequently, the proposed aHSDE is compared with the classical
HS and several state-of-the-art HS variants, which include IHS [3], SGHS [4] and IGHS [6]. It is also
compared with other state-of-the-art evolutionary algorithms (non harmony ones), which are Adaptive
Particle Swarm Optimization (APSO) [43] and Evolution Strategy with Covariance Matrix Adaptation
(CMA-ES) [44].

4.1. Parameters and Benchmark Functions

This section evaluates the performance of the aHSDE on the CEC2014 benchmark suite [45]
compared with the original HS, IHS, SGHS and IGHS. The CEC2014 benchmark suite consists of 30
test functions, which include three unimodal functions, 13 multimodal functions, six hybrid functions
and eight composite functions. In particular, these hybrid functions (f17—f22) are very similar to
real world problems, such as transportation networks [46], circuit theory [47], image processing [48],
capacitated arc routing problems [49] and flexible job-shop scheduling problems [50]. The search range
for each function is [-100, 100]°™, where DIM is the dimension of the problem. The experiments
are conducted in 10, 50 and 100 dimensions and the maximum function evaluation number is DIM
x 10000. The number of multiple runs per function is 30, and the average results of these runs are
recorded. When the value difference between the found best solution and the optimal solution is lower
than 1 x 1078, the error is considered as 0.

For the comparing HS variants, the parameter settings are the same as the respective literatures,
which are also shown in Algorithm 5.

Algorithm 5: Parameters.
HS [1] HMS = 5, HMCR = 0.9,PAR = 0.3,bw = 0.01
HIS 3] HMS = 5, HMCR = 0.9, PAR,,;;,, = 0.01, PAR 5 = 0.99,
bW i = 0.0001, bWypiay = 5"
HMS = 5, HMCR,, = 0.98, PAR,, = 0.9, Lp = 100,
SGHS [4
[41 bW i = 0.0005, bway = 52
IGHS [6] HMS = 5, HMCR = 0.995, PAR = 0.4
aHSDE HMS, i, = 5, HMS, ;0 = 18 X DIM, HMCR = 0.99, LP = 100, BW = 0.01

4.2. How HMS Changes

In order to analyze the impact of the harmony memory size HMS on the aHSDE, four functions,
f1, £10, £21, £28, are chosen from four categories, respectively. In the following experiments of
Sections 4.2-4.5, the dimension size of four functions is 30 and the statistical results are obtained
from 30 independent runs. The minimum value of HMS is five and the maximum value HMS,, is a
maximal integer which is no larger than rate X DIM, which is associated with the problem dimension
size. Furthermore, rate is considered changing from 0.5 to 25 with an interval 0.5. Then the best results
in each case are recorded and shown in Figure 1.

As can be seen from Figure 1, the fitness of the four functions decreases exponentially when the
initial value of HMS gradually changes from 0.5 x DIM to 25 x DIM. This indicates that the initial
value of HMS has a great impact on the performance of the aHSDE. When the initial value is small,
the fitness of function decreases rapidly. The decreasing trend is no longer clear for the fitness as the
initial value increases to 15 x DIM. Therefore, the initial value of HMS is set to 18 X DIM in this paper
without special explanation in the following sections.
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Figure 1. Impact of Harmony Memory Size (HMS) with 30 runs on the aHSDE (f1, f10, 21, £28).
4.3. Effect of Differential Evolution Based Mutation

In this paper, mutation strategy DE/best/2 is used to adjust bandwidth to explore the landscape of
the corresponding sub-stages. Therefore, ((x;1 —x2) + (a7 -2t )), regarded as an Experience Operator
(EO), is used to indicate the possible maximum searching neighborhood with the increase of generations.
It can be adjusted adaptively with the change from population diverse to converging. The same
analyzing functions, f1, f10, f21, £28, as detailed above, are chosen to illustrate the performance of the

aHSDE algorithm with the increase of generations. Their changing trends of Eos are shown in Figure 2.

o

Average Experience Operator

[ 05 1 15 2 25 3 0 05 1 15 2 25 3
Function Evaluations x10° Function Evaluations x10°

- TER
T
L
=
Average Experience Operator

Average Experience Operator

3,

0 05 25 3 0 05 25 3
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Function Evaluations x10° Function Evaluations x10°

Figure 2. Change of Experience Operator on aHSDE (f1, f10, {21, £28).
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It can be seen from Figure 2 that EO is gradually convergent with the increase of generations. In the
early stage of iteration, the search region of the algorithm is relatively large and EO is relatively large
accordingly, which strengthens the global exploration ability. However, with the gradual convergence
of HMS, the fining search of the algorithm is gradually conducted to improve the local exploitation
at the latter generations. It is possible to provide a promising escape mechanism from the landscape
valley with the differential mutation strategy to adjust the pitch in the aHSDE. Therefore, the aHSDE
precedes over the original HS and several HS variants, which exploits the valley using a small step size.

4.4. How PAR and F Change

In this paper, the concept of a learning period for PAR and F adjustment is adopted, which is
computed with the weighted Lehmer mean. It aims to reduce the dependence on the parameters and
enlarge the application scope of the algorithm. The results of PAR and F are recorded in 30 independent
runs with the same four functions as the previous sections. Figures 3 and 4 illustrate the changing
trends of the adaptive adjustment strategy for PAR and F.

Observed in Figure 3, PAR probably changes between 0.7 and 0.95, which is rather large in the early
generations. However, it ranges around 0.1 in the latter generations. It is necessary that the aHSDE,
as one of the population-based optimization algorithms, needs a wide neighborhood-based global
exploration in a high probability in the early stage. After this, a probability of pitch adjustment becomes
smaller and smaller in order to improve the fine-tuning search and convergence of the algorithm in the
latter generations. Thus, this adaptive modification strategy for PAR is inherently consistent with the
internal variation principle of the exploring step size for population based optimization algorithms.
It is possible to keep a good balance between local exploitation and global exploration.

08
08
0.7
07
0.6
0.6| % o
E 05| o
o 04
0.4]
0.3
03
02 0.2
01 o1
o 05 T 5 2 25 3 g 05 1 15 2 25 3
Function Evaluations x10° Function Evaluations x10°
! 1
0.9] 0.9
0.8] 08
0.7] 07
0.6 06
< 05 < os
a Q
04 04
03 03
02 02
0.1 0.1
o 05 1 15 2 25 3 o 0.5 1 15 2 25 3
Function Evaluations x10° Function Evaluations x10°

Figure 3. How pitch adjusting rate (PAR) changes f1, 10, {21, {28.
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Figure 4. How the scaling factor F changes f1, f10, f21, f28.

It is observed that the overall changing trend of the scaling factor F for four functions is opposite
to the parameter PAR. F is small at the beginning stage of iteration, at about 0.3. However, it becomes
large at the latter iteration, probably around 0.9. It is worthy of note that the initial value of F is 0.5.
Therefore, it can be roughly inferred that algorithm is not sensitive to the initial value of F. The possible
reason for the four functions with similar trends is that the difference vector of the improving direction
guided by DE operation is relatively large at the early generations. Therefore, a relatively small scaling
factor F is suitable to the search demand for the algorithm. On the contrary, most of the solutions
approximate to the optimal solution and the difference vector of improving direction is relatively small
at the latter generations. Therefore, a large scaling factor F is required. In addition, although the
overall changing trend of each function is similar, the adaptive adjustment behavior of F still depends
on the solving problems. The curves, showing how F changes for four functions, exhibit different
varying principles.

In this paper, the weighted Lehmer mean is used to adaptively tune PAR and scale the parameter
F.Itis a versatile and efficient automatic parameter tuner and is highly successful in tuning search and
optimization algorithms [42].

4.5. Combined Adaptability Consideration for PAR and F

In order to consider the effects of parameters PAR and F, the same four functions are used to
analyze the performance difference on the aHSDE with different parameter settings. The statistical
results in 30 runs are shown in Table 1 and Tables S1-S3. The data in the Tables S1-S3 represent the
statistical results of multiple runs from different PAR and F combinations.

Table 1 shows that function f1 gets the best result when the parameter pair (PAR, F) is (0.9, 0.4).
Table S1 shows that function f10 gets the best result when the parameter pair (PAR, F) is (0.1, 0.6).
Table S2 shows that function 21 gets the best result when the parameter pair (PAR, F) is (0.9, 0.3).
Table S3 shows that function {28 gets the best result when the parameter pair (PAR, F) is (0.7, 0.6).
At the same time, it is easy to see that the performance of algorithm varies greatly with different
parameter pairs. For example, the result of algorithm varies from 1.35 x 107 with (PAR, F) being
(0.8, 0.9) to 3.53 x 103 with (PAR, F) being (0.9, 0.4) for Function 1. The result of the algorithm varies
from 8.66 x 10° with (PAR, F) being (0.1, 0.3) to 8.89 x 10 with (PAR, F) being (0.9, 0.3) for Function 2.
This tells us that different functions have different sensitivities to the parameter PAR or F.
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Table 1. Fitness of {1 for different parameters (PAR, F).

PAR/F 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 128 x 107 1.35x 107 117 x 107 7.01 x10° 8.09 x 10° 2.08 x 10° 1.10 x 10°  1.02x 10°  1.17 x 10°
0.2 720x10°  711x10° 556x10° 127x10° 857x10° 7.69x10° 7.01x10° 6.36x10° 7.72x10°
0.3 854x10° 617x10° 211x10° 526x10° 486x10° 583x10° 694x10° 8.08x10° 1.05x 10°
0.4 522x10° 4.00x10° 7.65x10° 3.86x10° 381x10° 6.83x10° 1.06x10° 148x10° 1.63 x 10°
0.5 569x10° 216x10° 399x10° 253x10° 4.68x10° 1.02x10° 1.65x10° 220x10° 2.74 x 10°
0.6 337x10° 732x10° 180x10° 331x10° 7.86x10° 143x10° 247x10° 455x10° 4.94 x 10°
0.7 2.87x10° 447x10° 1.14x10° 351x10° 1.03x10° 252x10° 563x10° 959x10° 1.52x 107
0.8 292x10° 297x10° 514x10* 1.19x10° 589x10° 220x10° 6.67x10° 2.61x107 3.10 x 107
0.9 275%x10° 210x10° 1.12x10* 3.53x10° 500x10* 517x10° 229x10° 1.03x107 214 x 107

Observed from the comparison analysis of different parameter pairs on (PAR, F), the performance
of the algorithm is sensitive to the parameter pair (PAR, F) to different problems. Simultaneously; it
demonstrates that a certain parameter adaption scheme is necessary for problem solving. The algorithm
aHSDE can obtain the best parameter pair of (PAR, F) and converge the best solution with the adaptive
strategy. This scheme can reduce the dependence on the parameter for the algorithm.

Thus, it can be said that Table 1 and Tables S1-S3 fully demonstrate the effects of the adaptive
strategy. In conclusion, the aHSDE is highly successful with the tuned parameter settings of PAR and F
through the learning period and the weighted Lehmer mean method.

5. Experimental Comparison with HS Variants and Well-Known EAs

5.1. aHSDE vs. HS Variants

The experimental results of five algorithms (HS, IHS, SGHS, IGHS and the aHSDE) are reported
and compared in Tables S4—56 with different dimension sizes 10, 50 and 100, respectively. The items
“Best”, “Mean” and “SD” represent the best and average results and the standard deviation of multiple
final results, which are collected in 30 independent runs for each algorithm on each function. Meanwhile,
the fitness error is assigned to zero if it was less than 1x 1078.

It can be seen from Tables S4—S6 which can be found in the Supplementary data due to space
and readability reasons) that the aHSDE has significantly competitive performance when compared
with the canonical HS algorithm and several state-of-the-art HS variants. These data are the statistical
results of 30 independent runs with the CEC 2014 benchmark for the 10-, 50- and 100-dimension
sizes. In Tables 54—56, the aHSDE always performs best among its competitors on f1-f3 unimodal
functions. Secondly, the performance advantage of the aHSDE to its competitors increases as the
dimension increases on f4-f16 multimodal functions. Let us take the concrete example as an illustration
of algorithmic performance difference. For example, the mean results of Function 8 of HS, IHS, SGHS
and the aHSDE. The IGHS indicates that three of four variants obtain the true optimal solution with
the dimension as 10. The mean item of the aHSDE is 7.41 x 1078, however, the best mean item of the
other three algorithms is 2.52 x 1072 for Function 8 with the dimension as 50. The mean item of the
aHSDE is 2.90 x 10~%, however, the best mean item of other three algorithms is 1.74 x 1070 for Function
8 with the dimension as 100. This concrete example indicates that the performance advantage of the
aHSDE to its competitors becomes more and more obvious with the increase of dimension size.

Moreover, the performance of the aHSDE is also all better than those of the other four HS variants
on f17-f22 hybrid functions, except for Function 19, which has slightly worse performance with a
dimension size of 100. Subsequently, Tables S4—-56 indicate that the performance advantage of the
aHSDE is not as obvious as the previous benchmark. It performs slightly better than other competitors
on the composition functions £23—£30. However, the overall statistical Table 2 tells us that the aHSDE still
has the best cases for all the composition functions f23—£30 for all the dimensional sizes. These statistical
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experimental comparisons and results analyses indicate that the improvement strategies of the aHSDE
have significant impact on performance and its ability on global exploration and local exploitation.

5.2. Overall Statistical Comparison among HS Variants

Table 2 presents the overall statistical comparison results for the aHSDE and its competitors based
on the Wilcoxon rank—sum test with the significance level « of 0.05 for each dimension case on all the
benchmark functions. The symbols “+”, “—* and “~” mean that the aHSDE performs significantly
better, significantly worse, or not significantly different compared with its competitors. Overall,
it demonstrated that the performance of the aHSDE is quite competitive compared with four HS

variants on the CEC2014 benchmark.

Table 2. Overall statistical comparison among aHSDE and HS, improved harmony search (IHS),
self-adaptive global-best harmony search (SGHS) and IGHS on CEC2014.

. AHSDE HS(DIM =) IHS(DIM =) SGHS(DIM =) IGHS(DIM =)
roups
P vs 10 50 100 10 50 100 10 50 100 10 50 100
. 3 3 3 3 2 3 3 2 3 3 3 3
3FU“”2°dal 0 0 0 0 0 0 0 0 0 0 0 0
unctions ~ 0 0 0 0 1 0 0 1 0 0 0 0
13 Simple + 6 11 12 5 11 13 8 11 10 9 13 13
Multimodal - 4 1 1 6 1 0 1 0 0 0 0 0
Functions ~ 3 1 0 2 1 0 4 2 3 4 0 0
_ 4 6 6 4 6 5 5 6 5 6 6 6
15 Hygr‘d 0 0 0 1 0 0 0 0 0 0 0 0
unctions ~ 2 0 0 1 0 1 1 0 1 0 0 0
8C " 4 6 6 4 5 6 6 4 6 4 6 7
Fompt(i351 ton 2 1 2 1 2 2 1 3 2 3 0 0
unctions ~ 2 1 0 3 1 0 1 1 0 1 2 1
30 All 17 26 27 16 24 27 2 23 24 2 28 29
Fondi 6 2 3 8 3 2 2 3 2 3 0 0
unctions ~ 7 2 0 6 3 1 6 4 4 5 2 1

The following facts can be observed from Table 2. For three unimodal functions, the aHSDE
outperforms all its competitors for 10, 50 and 100 dimensions. For thirteen multimodal functions,
the aHSDE performs a little better than HS on 10 dimensions and performs much better than HS
with the increase of dimension size for all competitions and all functions. For six hybrid functions,
the aHSDE clearly outperforms HS, IHS, SGHS and IGHS for all the cases. These results illustrate
that the aHSDE has a superior advantage to the state-of-the-art HS variants when solving various
optimization problems, whose varieties may have no features. For the eight composition functions, the
aHSDE significantly outperforms HS, IHS, SGHS and IGHS for 10, 50, 100 dimensions, except that the
aHSDE performs comparably to SGHS for the 50-dimensional case and IGHS for the 10-dimensional
case, respectively. The advantages are more obvious on higher dimensional functions. As a whole,
the aHSDE performs much better than the canonical HS algorithm and HS variants in total on 10, 50,
100 dimensions on 30 benchmark functions for all dimensional cases.

5.3. Comparison with Other Well-Known EAs

In this subsection, the proposed aHSDE algorithm is compared with other state-of-the-art
evolutionary algorithms (non harmony ones), including Adaptive Particle Swarm Optimization
(APSO) [43] and Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) [44].
The experimental results (mean best and standard deviation of multiple runs) of different algorithms
are all collected with the maximum function evaluation number DIM * 10000 respectively, all of which
are summarized in Table 3. The best “mean” result for the same function is highlighted in bold.
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Table 3. Comparison on mean best and standard deviation of multiple runs of Adaptive Particle
Swarm Optimization (APSO), Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) and
the aHSDE based on IEEE CEC 2014 benchmarks.

Function APSO CMA-ES aHSDE Function APSO CMA-ES aHSDE
f 269%x10%+  9.42x10* + 2.06 x 10° + f16 1.42 %10 + 1.38 x 10 + 1.78 x 10 +
3.28 x 108 7.88 x 10* 9.12 x 10* 237 x 1071 531 x 1071 1.00 x 10°

o 1.02x101 +  255x10+ 5.77 X 10° + £17 286x108+  549x10°+  2.66 X 10° +
2.29 x 10° 3.85 x 10° 6.41 x 103 1.28 x 108 3.62 x 10 1.83 x 103

s 1.19x 100+  1.45x10* + 1.25 x 100 + f18 875x10° +  1.52x10% + 8.88 X 10 +
1.25 x 10° 5.66 x 10° 1.61 x 10° 3.11 x 10° 3.93 x 108 3.11 x 10

” 2.49 x 10* + 2.00 x 10 + 443 x 10 + 19 845%x 102+  298x10% + 1.16 x 10 +
1.54 x 103 2.63 x 1075 3.69 x 10 1.15 x 102 4.25x 10 1.42 x 100

5 213%x10 + 2.08x10 + 2.01x10 + 20 159 x 107 +  461x103+  4.07x10+
5.61 x 1072 6.69 x 1072 4,08 x 1072 1.37 x 107 3.88 x 10° 9.82 x 100

” 480%x10+  4.09x10% + 2.02 % 10 + o1 133x108+ 686x10°+ 835x 102+
1.79 x 10° 2.13 x 10° 3.77 x 100 7.50 x 107 2.76 x 10° 2.36 x 102

& 1.06x10°+ 231x10%2+ 214x107% + 2 131x10*+ 1.61x10°+  830x10%+
3.85x 10 2.83 %10 428x1073 9.38 x 10° 292 x 102 2.96 x 102

(s 503x102+ 283x102+ 7.41x1078+ 03 200%x102+ 579x102+  344x10%+
3.02 x 10 2.21 x 10 1.94 x 1078 0.00 x 10° 494 %10 0.00 x 10°

f 478x 102+  328x 102+ 7.89 X 10 + o4 200x10%+  212x102+  2.69x10%+
6.30 x 10° 7.65 % 10 1.80 x 10 0.00 x 10° 7.49 x 10° 6.50 x 10°

10 930x 103+  261x102+ 1.94x1071+ 25 200x10%+  212x102+  2.07x10%+
5.68 x 102 1.06 x 102 450 x 1072 0.00 x 10° 2.97 x 10° 2.04 x 10°

1 924x 103+ 1.69x10>+ 471 x10% + 26 1.86x 102+ 125x1072+  1.00 x 10% +
4.86 x 102 1.98 x 102 5.61 x 102 2.68 x 10 551 x 1071 6.01 x 1072

12 591x10°+ 3.03x1071+ 9.57x1072+ 07 200x10%+ 1.07x10%+ 876 x10%+
1.32x 100 2.18 x 10° 416 x 1072 0.00 x 10° 2.30 x 102 1.26 x 102

13 1.03 x 10 + 551x100+ 3.31x1071 =+ 08 200%x102+ 279x10°+  1.28x10% +
7.53 x 1071 3.07 x 1071 6.32 x 1072 0.00 x 10° 5.92 x 102 8.88 x 10

f14 3.95x 102 + 753x10+  330x1071+ 29 200%x10%2+ 352x10%+  235x107 +
2.22x 10 8.08 x 10° 1.12x 107! 0.00 x 10° 5.34 x 10 1.69 x 107

15 1.05x10°+  1.02x10*+  8.09x10° + £30 200x10%+  648x10°+  893x10% +
0.00 x 10° 3.24 x 10* 232 x 100 0.00 x 10° 1.31 x 10° 6.76 x 102

Observed in Table 3, it can be seen that APSO, CMA-ES and the aHSDE perform best on 7, 4 and
19 benchmarks respectively from the 30 benchmark functions. It should be further noted that APSO
outperforms the aHSDE on eight problems and CMA-ES outperforms the aHSDE on six functions
among this IEEE CEC 2014 benchmark suite. Therefore, generally speaking, the aHSDE significantly
outperforms APSO and CMA-ES on most of the benchmark functions. However, it should be especially
noted that APSO outperforms CMA-ES and the aHSDE on the composition functions, which indicates
that APSO is promising for the composition, or the highly complex problems. Comparatively speaking,
the aHSDE has better overall performance on multiple types of problems.

6. Conclusions

Based on the analysis of HSA and the knowledge and experience of the musician, a new adaptive
harmony search algorithm is proposed (aHSDE) for global optimization in this paper. It enhances
the performance of HS with a differential mutation for the pitch adjustment of HS, the mechanism of
decreasing HMS linearly, and the parameter adaptation of PAR and F. Firstly, the mutual influence
and cooperation of three strategies and key parameters on the aHSDE are analyzed and verified in
detail. After this, the performance of the aHSDE is comprehensively evaluated on IEEE CEC 2014
Benchmarks with 10-, 50- and 100-dimension sizes. The experimental results indicate that the aHSDE
outperforms the canonical HS algorithm and three advanced HS variants, including IHS, SGHS and
IGHS. Furthermore, other state-of-the-art metaheuristic algorithms, namely APSO and CMA-ES, are
also used as competitors to evaluate the aHSDE.
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Table S1: Fitness of f10 for different parameters (PAR, F). Table S2: Fitness of 21 for different parameters (PAR,
F). Table S3 : Fitness of {28 for different parameters (PAR, F). Table S4: Performance comparison among five
harmony search algorithms for f1-f30 (DIM = 10). Table S5: Performance comparison among five harmony search
algorithms for f1-f30 (DIM = 50). Table S6: Performance comparison among five harmony search algorithms for
f1-£30 (DIM = 100).
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