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Abstract: As a classical method widely used in 3D reconstruction tasks, the multi-source Photometric
Stereo can obtain more accurate 3D reconstruction results compared with the basic Photometric
Stereo, but its complex calibration and solution process reduces the efficiency of this algorithm.
In this paper, we propose a multi-source Photometric Stereo 3D reconstruction method based on the
fully convolutional network (FCN). We first represent the 3D shape of the object as a depth value
corresponding to each pixel as the optimized object. After training in an end-to-end manner, our
network can efficiently obtain 3D information on the object surface. In addition, we added two
regularization constraints to the general loss function, which can effectively help the network to
optimize. Under the same light source configuration, our method can obtain a higher accuracy than
the classic multi-source Photometric Stereo. At the same time, our new loss function can help the
deep learning method to get a more realistic 3D reconstruction result. We have also used our own
real dataset to experimentally verify our method. The experimental results show that our method has
a good effect on solving the main problems faced by the classical method.

Keywords: Photometric Stereo (PS); 3D reconstruction; fully convolutional network (FCN)

1. Introduction

Vision-based 3D reconstruction technology can obtain 3D information on the target object from a 2D
image in a non-contact manner, which has the advantages of being less affected by the shape of the actual
object and giving a more real and robust reconstruction effect. Vision-based reconstruction methods
can be roughly divided into active vision methods and passive vision methods. The reconstruction
accuracy of active 3D reconstruction methods is relatively high, such as laser scanning and structured
light methods, but their cost and complexity are also higher and their reconstruction speed is slow.
The passive vision method can make up for the above shortcomings of the active vision method, but
still faces challenges in terms of reconstruction accuracy.

As a 3D reconstruction method based on passive vision, the shape from shading (SFS) [1] can
analyze the lightness and darkness information in the image and use the reflected illumination model
to recover the normal information of the object from a single image. However, a single image contains
less information, so the actual reconstruction effect of this method is average. Therefore, in order to
improve the shortcomings of the SFS, RJ Woodhan [2] first proposed the Photometric Stereo, using data
redundancy to solve the problem of single image reconstruction in SFS due to factors such as shadows
and specular reflections, improving the effect and robustness of the reconstruction. On this basis, some
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researchers have found that increasing the number of light sources can provide more equations to the
solution of unknown parameter parameters [3], thereby compensating for the surface microscopic
information missed by the three-dimensional measurement method with three light sources and
improving the accuracy of the dimensional measurement, i.e., multi-source Photometric Stereo.

Currently, the research and improvement of Photometric Stereo 3D reconstruction mainly focuses
on light source calibration, non-Lambertian reconstruction [4], gradient reconstruction depth [5] and so
on. The classic Photometric Stereo method usually assumes that the light intensity on the observation
images taken under different illuminations is the same, and the sensor exposure is constant, but these
assumptions are difficult to achieve in practical applications. In response to this, Cho et al. [6] developed
a method for accurately determining the surface normal direction that is not affected by these factors
for situations where the light direction is known but the light intensity is unknown, which improves
the accuracy of the Photometric Stereo method in practical applications. Hertzmann et al. [7] proposed
a method for calculating the geometry of objects with general reflection characteristics from the image
to solve the complex calibration problem of photometric three-dimensional reconstruction, which can
be applied to any remote and unknown lighting with almost no calibration operation surroundings.

With the extensive study of deep learning in various fields, neural network frameworks have
also been gradually applied to the field of 3D graphics [8,9]. As we all know, the convolutional
neural network (CNN) performs well in tasks such as classification and regression. At present, some
studies have used CNN to complete three-dimensional tasks. Tang J et al. [10] use the CNN to mix
three different three-dimensional shape expressions together, which can bring a better performance
to many three-dimensional tasks compared with a single expression. The 3D ShapeNet established
by Wu et al. [11] is an earlier proposed 3D reconstruction model of a single image based on voxel
representation, using a convolutional depth confidence network to represent geometric 3D graphics
as a probability distribution of binary variables on the 3D voxel grid. Its 3D reconstruction was
realized by continuously predicting shape types and filling unknown voxels. In a related work,
Badrinarayanan et al. [12] established a deep full convolution neural network (FCN) to solve the task of
semantics segmentation, which was used to realize the road scene understanding. On the basis of the
FCN structure, another network architecture called U-net [13] was established to achieve biomedical
image segmentation.

In recent years, the rise of deep learning brings new development direction to the field of
machine vision. As a main problem in machine vision, 3D reconstruction has also been widely
studied. Eigen et al. [14] adopted a multi-scale deep network with two components, consisting of
a coarse-scale network and a fine-grained network, to capture depth information directly. On this
basis, a similar neural network architecture was used to process three tasks including depth prediction
simultaneously [15], but each task was independently trained by changing its output layer and training
objectives. Liu et al. [16] combined the Markov Random Field (MRF) of multi-scale local features
and global image features to model the depth of different points and the relationship between them.
Other related studies are different from the multi-scale deep network architecture. These include
transforming the problem into a classification problem which predicted the likelihood that a pixel
would be at any fixed standard depth [17]. Laina et al. [18] used a fully convolutional architecture,
encompassing residual learning, to model the ambiguous mapping between monocular images and
their corresponding scene depth maps. Xu et al. [19] added a fusion module to the CNN architecture,
and the continuous conditional random field (CRF) was used to integrate complementary information
on the front-end CNN’s multiple side outputs. Li et al. [20] proposed a fast-to-train two-streamed CNN,
and the depth and depth gradients were combined either via further convolution layers or directly with
an optimization enforcing consistency between the depth and depth gradients. Dechaintre et al. [21]
made the result of 3D construction more realistic with a rendering-aware deep network improved
by U-net, based on the bidirectional reflectance distribution function (BRDF) [22]. Other related
studies include methods based on Bayesian updates and dense [23], the generative adversarial network
(GAN) [24], dictionary learning [25], self-augmented convolutional neural networks [26], etc.
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For the multi-source Photometric Stereo 3D reconstruction method based on the physical model,
using the neural network to simulate the mapping relationship between the real reflection of the object
surface and its 3D information is very meaningful research. On the one hand, neural networks can
improve the efficiency and accuracy of the multi-source Photometric Stereo, and on the other hand,
a lot of existing research on reflection characteristics can also provide a priori knowledge for the neural
network algorithms. Although there have been some related studies on learning Photometric Stereo
from different perspectives [27–29], the research results in this area are still very limited.

Earlier, Santo H. et al. [29] proposed the use of an FCN in learning Photometric Stereo, and restoring
the surface normal of the object from multiple views. After that, Chen G. et al. [28] took the direction of
the light source as an input and improved the performance of the algorithm by adding more constraints
to the model. Some of the other related studies learnt Photometric Stereo by obtaining the surface
normal of the object indirectly. Chen G. et al. [30] proposed a two-stage deep learning structure to solve
the uncalibrated Photometric Stereo problem, that is, using a lighting calibration network (LCNet)
to recover the light direction and intensity corresponding to the image from any number of images,
and then using a normal estimation network (NENet) to predict the normal mapping of the object
surface. Compared with the single-stage model, this intermediate supervision effectively reduced the
learning difficulty of the network. Moreover, Ikehata S. et al. [31] combined the two-dimensional input
image information into an intermediate representation called an observation map to learn Photometric
Stereo and used the rotation pseudo-invariance to constrain the network. This method also took the
surface normal as the optimization goal. Our method solves the Photometric Stereo 3D reconstruction
task from a different perspective. After solving the reflection illumination model, an integration step
will be used to restore the three-dimensional topography of the surface, which is also a complicated
process. The computational and time cost of this step is also very large, and it may cause cumulative
errors and finally cause different degrees of distortion in the reconstructed results. We hope to use
depth as the direct optimization goal and obtain the three-dimensional shape of the object surface
from end-to-end.

In this paper, we built a U-shaped network structure based on FCN that can obtain the 3D
topography of the object surface. By training a parameterized model, we can directly simulate the
relationship between physical information such as shadows and reflections on the surface of the object
and its depth information. The end-to-end learning can make our method more directly obtain the
three-dimensional shape of the object. In addition, we added a regularization constraint on the basis of
the general L2 loss function, and the experiments prove that, compared with optimizing the depth value
of each pixel directly with the simple L2 loss function [27], this constraint can effectively improve the
accuracy of prediction. We also adopted a photometric acquisition setup with a specific configuration to
collect a real Photometric Stereo dataset, obtained a high-precision ground truth (GT) using structured
light scanning and accurately registered it to the 2D image we collected. The experimental results show
that the effectiveness of our method has been verified in a real multi-source Photometric Stereo setup.

The remainder of this study is organized as follows. We first introduce the principle of multi-source
Photometric Stereo and the details of our method, including the network structure, our new loss
function including two regularization constraints, and the real Photometric Stereo dataset in Section 2.
Then the details of our experiments and the experimental results are shown in Section 3. We end with
a discussion of our experimental results in Section 4.

2. Materials and Methods

2.1. The Multi-Source Photometric Stereo

The goal of multi-source Photometric Stereo is to recover the original 3D information of the object
surface from a set of images with different light source directions. Assume a fixed orthographic camera
and directional lighting with multiple equal angle intervals from a fixed latitude line in the upper

hemisphere. We assume that a light source from the direction of
⇀
l ∈ R3 illuminates a point on



Appl. Sci. 2020, 10, 2914 4 of 12

the object surface, and that the surface normal of the point is represented by
⇀
n ε R3. Then, its pixel

intensity can be determined as I =
⇀
ρE·

⇀
n ·
⇀
l , where

⇀
ρ is the sensitivity coefficient and E is the light

source pre-calibrated brightness, which needs to be obtained through a specific light source calibration

method. For the k different light directions L = [
⇀
l 1,

⇀
l 2, . . . ,

⇀
l k]

T
∈ Rk×3, the light intensity can be

expressed as I = [
⇀
I 1,

⇀
I 2, . . . ,

⇀
I k]

T
∈ Rk, and so the image formation model can be expressed as


I1

I2
...
Ik

 =
⇀
ρE·



⇀
l 1
⇀
l 2
...
⇀
l k


·
⇀
n . (1)

By solving the above equations, the surface normal direction
⇀
n =

(
nx, ny, nz

)
corresponding to each

pixel position will be obtained.
After that, we suppose (p, q,−1) =

(
nx/nz, ny/nz,−1

)
. Here, p and q are the gradients of a point

on the three-dimensional surface in the X and Y directions respectively, and will be formed into the

matrices
⇀
P and

⇀
Q in the two-dimensional space. Then, the depth of the 3D surface is defined as Z(x, y),

and the two gradient values in the directions X and Y are 4Zx and 4Zy. Lastly, we use the method of
Wu Lun et al. [32] for reference to approximate the actual values 4Zx and 4Zy of the gradient with

the
⇀
P and

⇀
Q obtained above. Through the classic two-dimensional integration path algorithm (path

integration algorithm, PI), we can obtain a three-dimensional surface with the depth Z(x, y).

2.2. Network Architecture

We converted the solution of the mapping relationship from image to depth in the multi-source
Photometric Stereo method into an end-to-end optimization process with a large number of parameters.
The FCN with encoder-decoder architecture has an outstanding performance in the problem of the
pixel-level classification of images; its skip structure combined with the results of different depth layers
ensures the long-distance dependence between pixels and the robustness and accuracy of the network
and improves the accuracy of the feature extraction. Meanwhile, the network structure of the FCN
determines that it can perfectly adapt to any size of input, which is exactly what we needed. Therefore,
on the basis of the FCN network structure, we adopted U-net as the basis of our network design.

The architecture of the proposed network is shown in Figure 1. The U-shaped network structure
could fully combine the simple features of shallow layer in the decoder stage, so it could also adapt
to our small dataset. Our network contained twenty-nine layers, including twenty-one convolution
layers, four pooling layers and four up-sampling layers. The activation function of all the convolution
operations in the network was ReLU, and we took multiple RGB images from different light source
directions containing different degrees of shadow and brightness information as the input of the network.
In addition, the network outputted the original RGB images synthesized by the proposed network
while outputting the predicted depth—that is, the output of the network was a multi-channel output.
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Figure 1. Overview of the proposed network architecture. The network outputted a depth map when
given a set of images from the light source direction with different angles as inputs. The kernel sizes for
all the convolutional layers were 3 × 3 and for all up-sampling layers 2 × 2. Values above the layers
indicate the number of feature channels.

2.3. Loss Function

With the U-shaped network based on the code-decode structure, it was easy to lose some
details in the training process, and the result of the final output 3D reconstruction was not accurate
enough. We propose a loss function which is suitable for the task optimization based on our network
structure—that is, we add two regularization constraints on the basis of the L2 loss function, and the
training loss for each sample is set to

Ldepth = ‖Z− Z̃‖
2
+ λ‖I − Ĩ‖

2
, (2)

where Z and Z̃ denote the predicted depth and the ground truth, and respectively, I and Ĩ are the
predicted RGB images and the original RGB images. λ is a custom parameter. Here, we have set it to
1 × 104. As described in Section 2.2, our network structure reconstructed the original image of the
corresponding light source while predicting the depth value. In the previous experiments, we found
that training the network with L2 loss alone can make the network converge, but its reconstruction
effect was not good enough. The defect area of the samples had different reflective characteristics under
different angles of light, which was an unavoidable phenomenon in the use of the Photometric Stereo
method to solve the three-dimensional reconstruction problem. Therefore, the reconstruction results
obtained by simply optimizing the depth of each pixel were largely affected by the highlights in the
RGB images, and it was not easy to obtain reasonable reconstruction results. Using two regularization
constraints, that is, based on the original depth value as the goal of optimization, the original image
is also the optimization goal of the network, which could play the role of additional constraints in
the network training so as to weaken the influence of the highlight in the input images and make the
reconstruction results closer to the real situation. By minimizing the sum of the deviations between the
two prediction targets and the GT, our new loss function could improve the effectiveness of feature
extraction. Compared with simply predicting the depth value of each pixel position and calculating
their loss, this operation, similar to the image restoration, could help correct the prediction results of
the network. In Section 4.2, we further evaluate the effectiveness of our new loss function.

2.4. Dataset

2.4.1. The Real-World Dataset

In order to verify the effectiveness of our method, we hoped to use a real-world sample database
to train and test our model. At the beginning, we hoped to match our needs to the currently available
datasets. However, due to the practical difficulties in 3D data collection, many datasets are based on
synthesis or rendering [27,28] and some of them even have no corresponding GT, and so could not
be used to train the neural network [33,34]. We think that there are still great differences between
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real scene data and rendered simulation data. Therefore, we made a batch of samples by hand and
established a real Photometric Stereo experiment platform to collect the dataset we needed.

Our sample database consisted of 100 equal-sized corrugated boards with different degrees of
surface damage on them, as shown in Figure 2. The damage on each cardboard was caused by human
random. Because the middle part of the corrugated board was partly hollow, the image of the damaged
part was very complex under different angles of illumination. The surface features of our samples did
not conform to the standard Lambert model, and there were fractures on the surface of the defects
which were not a uniform transition. This was not friendly to the classic multi-source Photometric
Stereo, as shown in the experimental results.Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 11 
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Figure 2. Examples of our real-world dataset.

2.4.2. The Photometric Acquisition Setup

We set up a real photometric stereo experiment platform to collect the images needed for training,
as shown in Figure 3a. The camera and the circular light frame were fixed by a frame including clamping
devices to ensure that the light conditions of each acquisition were determined and consistent, and the
light frame was fixed with the camera (Automation Technology GmbH, Bad Oldesloe, Germany) at
its center. The arrangement of the circular light frame is shown in Figure 3b. We designed our light
sources as 20 white LED bulbs of the same size (60 degrees) as the scattering angle and fixed them on a
circular ring. The angle interval between each adjacent white LED bulb was 18 degrees.
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2.4.3. Data Capture

Through the program control, we lit up the LED bulbs in each direction in order and collected 2000
images corresponding to 100 samples in turn, all of which were captured in the dark room. We used 95
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samples as the training set and the remaining 5 as the test set. The collected samples were cropped
and then resized to the pixel size of 256∗256, which was convenient for network training and better
fitting function. We also obtained the GT of each object by line structured light scanning and accurately
registered them on the two-dimensional images we collected, as shown in Figure 4.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 11 
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3. Results

3.1. Implementation Details

We used a Tensorflow (tensorflow_gpu-1.8.0-cp35-cp35m-win_amd64.whl) with a Nvidia GTX2080
graphics card to implement and train the proposed network. The training process used a batch size of
16 for 100 epochs. The loss function was optimized using the Adagrad Optimizer and the learning
rate was 1 × 104. We initialized the weights with a zero-mean Gaussian distribution and a standard
deviation of

√
2/ f in, where the fin was the number of input units in the weight tensor.

For each sample object, we selected two-dimensional images from the light source direction
at 5 equal angle intervals to train our network. That is to say there were 4 kinds of light source
combinations for the 20 images collected from each actual sample that could be used as an input for our
network. In this way, the size of the training set was 380 (95*4). We used it as a type of data augmentation
to train our network. The results predicted by the general loss function optimization network were
also evaluated by the same setup. In addition, all 20 images collected for each sample were also used
to test the classic multi light source photometric stereo method as a comparative experiment.

3.2. Error Metrics

As shown in Table 1, we used five indices to quantitatively evaluate several methods involved in
this experiment which are widely used in the error analysis and accuracy analysis of deep estimation
based on deep learning [14,18,27]:
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1. root mean squared error(rms)

√
1
N

∑N

i=1

∣∣∣di − d∗i
∣∣∣2 , (3)

2. average relative error(rel)

1
N

∑N

i=1

∣∣∣di − d∗i
∣∣∣

d∗i
, (4)

3. threshold accuracy(δ)

δ =
1
N

∑
i
ηi,

ηi =

{
1 i f T < t
0 i f T ≥ t

,

T = max
(

di
d∗i

,
d∗i
di

)
, t ∈ [1.25, 1.56, 1.95] ,

(5)

where d∗i and di are the GT and predicted depths respectively of each pixel, and according to the
different values of t, the results of δ(t) are divided into three grades.

Table 1. Quantitative evaluation of our method in comparison to the reference method using the L2
norm. Lower is better for rms and rel and higher is better for δ(t).

Methods rms rel δ(1.25) δ(1.56) δ(1.95)

L2 Norm 0.3770 0.3552 0.6492 0.9859 0.9906
Ours 0.2797 0.2473 0.2359 0.9727 0.9937

4. Discussion

4.1. Compared with the Classic Multi-Source PS

In some classic multi-source Photometric Stereo 3D reconstruction methods, the effect of highlights
on the results is removed by a selecting method—that is, some images that contain severe highlight
reflections will not participate in the calculation. However, this loses a lot of meaningful information
contained in the highlight position, even reducing the rationality of the prediction. The characteristics
of the neural network determined that it could be biased towards learning information from the input
that was more relavent to the correct results. Therefore, using the neural network to learn will not lose
the useful information of the highlight position itself, but can also help to reduce inaccurate predictions
caused by specular reflections and noise. Furthermore, we represented the optimized target as the
depth value of each pixel. Compared with other representations such as point clouds or voxel grids,
such 2D representations make the computational cost of our network less.

In order to verify the practical significance of the neural network used to learn Photometric Stereo
for 3D reconstruction, we compared the results of the classic multi-source Photometric Stereo method
(BASELINE) and ours with GT to conduct a qualitative analysis. We reconstructed the target surface
with the BASELINE method using 5, 10 and 20 two-dimensional images taken under the illumination
of light sources with equal angle intervals, as shown in Figure 5c–e. The BASELINE method had an
obvious effect on the reconstruction of the corrugates which excessive smoothly, but the cast shadow
and attached shadow caused by the fracture led to an anomaly in the 3D information extraction at
the deeper fractures (Sample 3). However, there was a smooth transition in ours at the fracture site,
which made our prediction more reasonable. For the defect surface with more small cracks, ours
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could not reproduce all the details perfectly. In comparison, the BASELINE results lost more surface
information, and the smooth inclined position with little feature information could not present a
reasonable three-dimensional shape. In addition, because the surface features of the target samples
did not conform to the standard Lambert model, the reflection around the defect resulted in different
degrees of bulge in the transition from the plane to the defect in the reconstruction surface of the
BASELINE method (Sample 2). Our method took GT as the direct optimization goal, which could
minimize the influence of the highlights in the input on the correct prediction results.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 11 
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Figure 5. Examples of the results of our method and others. The samples in the example are all from
the test set: (a) the first column shows the basic 2D information of this sample; (b) the corresponding
ground truth data (calculated using linear structured light scan) are shown in the second column;
(c–e) the third to fifth columns demonstrate the classic multi-source Photometric Stereo approach using
5,10, and 20 input images; (f) the sixth column shows the results using a general L2 loss function;
(g) the result estimated by our network is shown in final column.

4.2. Effectiveness of the New Regularization Constraints

Most of the recent studies use the normal vector solved by the reflected illumination model as the
optimization target, but the solution from the normal vector to the depth is also a complex problem.
To verify the effectiveness of our new regularization constraints, we used the proposed network and
the same configuration, but used a common loss function with a general L2 norm to train the dataset,
which was used in the recent related work [27]. By comparing group (f) and group (g) of these three
samples in Figure 5, we can find that ours(g) contained more details than the method with the general
L2 norm did (f). Since our optimized target also included the original image of the object, generating the
input images could help our network to correct the prediction of the depth, so that the reconstruction
result was closer to the real. Thus, ours was clearer for the reconstruction of the simple sample surface
(corrugates), and the transition of the cracks on the defects was also smoother (Sample 3). As shown
in Figure 5 (Sample 2, Sample 3), there was an abnormal bulge around the defects as we can see in
group (f), but from the original image and GT corresponding to the sample, this did not conform to the
real situation. However, ours had a good effect on the optimization of this special position—that is,
the transition from plane to defect was more reasonable. In addition, Table 1 shows the quantitative
analysis results of our method and the general L2 norm. It can be seen from the table that our method
significantly improved on the parameters rms and rel. However, the threshold accuracy of ours was
slightly lower than that of the L2 norm. The main reason for this, we think, was that the restoration of
the images made our reconstruction results closer to reality rather than only taking the depth GT as the
optimization standard. Therefore, the accuracy of the depth prediction was lower than that of GT, but
it could also get the same level of L2 loss within a certain accuracy range.
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5. Conclusions

In this paper, we proposed an effective improvement method aimed at problems such as the
complex calibration process and low reconstructing speed faced by the traditional multi-source
Photometric Stereo method in 3D reconstruction tasks to improve its accuracy and efficiency. Hereto,
we trained the neural network model with a large number of parameters in an end-to-end way to
simulate the relationship between physical information, such as shadow and reflection on the surface
of the object, and depth information in the multi-source Photometric Stereo. In contrast, our method
was superior to the classic algorithm in terms of efficiency and accuracy. In addition, we proposed a
new regularization constraint, which improved the effectiveness of feature extraction by minimizing
the sum of the loss of the two prediction targets, making the prediction closer to reality.

Author Contributions: Conceptualization, D.H. and K.X.; methodology, R.X. and D.H.; software, X.W. and
D.H.; validation, L.W. and K.X.; formal analysis, R.W.; investigation, R.W.; resources, R.W., X.W.; data curation,
R.W., X.W.; writing—original draft preparation, R.W.; writing—review and editing, K.X.; visualization, L.W.;
supervision, K.X.; project administration, L.W.; funding acquisition, K.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key R&D Program of China (no.2018YFB0704304), and the
National Natural Science Foundation of China (grant number 51674031 and 51874022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Horn, B.K.P. Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque Object from One
View. Ph.D. Thesis, Department of Electrical Engineering, MIT, Cambridge, UK, 1970.

2. Woodham, R.J. Photometric method for determining surface orientation from multiple images. Opt. Eng.
1980, 19, 139–144. [CrossRef]

3. Xu, K.; Wang, L.; Xiang, J.; Zhou, P. Three-dimensional defect detection method of metal surface based on
multi-point light source. China Sci. 2017, 12, 420–424. (In Chinese)

4. Sun, J.; Smith, M.; Smith, L.; Midha, S.; Bamber, J. Object surface recovery using a multi-light photometric
stereo technique for non-Lambertian surfaces subject to shadows and specularities. Image Vis. Comput. 2007,
25, 1050–1057. [CrossRef]

5. Wang, L.; Xu, K.; Zhou, P.; Yang, C. Photometric stereo fast 3D surface reconstruction algorithm using
multi-scale wavelet transform. J. Comput. -Aided Des. Comput. Graph. 2017, 29, 124–129. (In Chinese)

6. Cho, D.; Matsushita, Y.; Tai, Y.W.; Kweon, I. Photometric Stereo Under Non-uniform Light Intensities and
Exposures. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016.

7. Hertzmann, A.; Seitz, S.M. Example-based photometric stereo: Shape reconstruction with general, varying
BRDFs. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1254–1264. [CrossRef] [PubMed]

8. Li, X.; Dong, Y.; Peers, P.; Tong, X. Synthesizing 3D Shapes from Silhouette Image Collections using
Multi-projection Generative Adversarial Networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 5535–5544.

9. Sun, C.Y.; Zou, Q.F.; Tong, X.; Liu, Y. Learning Adaptive Hierarchical Cuboid Abstractions of 3D Shape
Collections. ACM Trans. Graph. 2019, 38, 1–13. [CrossRef]

10. Tang, J.; Han, X.; Pan, J.; Jia, K.; Tong, X. A Skeleton-bridged Deep Learning Approach for Generating Meshes
of Complex Topologies from Single RGB Images. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 4541–4550.

11. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A Deep Representation for
Volumetric Shape Modeling. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015.

12. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture
for Scene Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

http://dx.doi.org/10.1117/12.7972479
http://dx.doi.org/10.1016/j.imavis.2006.04.025
http://dx.doi.org/10.1109/TPAMI.2005.158
http://www.ncbi.nlm.nih.gov/pubmed/16119264
http://dx.doi.org/10.1145/3355089.3356529
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704


Appl. Sci. 2020, 10, 2914 11 of 12

13. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015.

14. Eigen, D.; Puhrsch, C.; Fergus, R. Depth Map Prediction from a Single Image using a Multi-Scale Deep
Network. In Advances in Neural Information Processing Systems, Proceedings of the 27th International Conference
on Neural Information Processing Systems, Montreal, QC, Canada 8–13 December 2014; Curran Associates, Inc.:
New York, NY, USA, 2014.

15. Eigen, D.; Fergus, R. Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale
Convolutional Architecture. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015.

16. Liu, F.; Chung, S.; Ng, A.Y. Learning depth from single monocular images. IEEE Trans. Pattern Anal.
Mach. Intell. 2005, 18, 1–8.

17. Ladicky, L.; Shi, J.; Pollefeys, M. Pulling Things out of Perspective. In Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

18. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N. Deeper Depth Prediction with Fully
Convolutional Residual Networks. In Proceedings of the 2016 Fourth International Conference on 3D Vision
(3DV), Stanford, CA, USA, 25–28 October 2016.

19. Xu, D.; Ricci, E.; Ouyang, W.; Wang, X.; Sebe, N. Multi-Scale Continuous CRFs as Sequential Deep Networks
for Monocular Depth Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017.

20. Li, J.; Klein, R.; Yao, A. A Two-Streamed Network for Estimating Fine-Scaled Depth Maps from Single
RGB Images. In Proceedings of the IEEE International Conference on Computer Vision 2017, Venice, Italy,
22–29 October 2017.

21. Deschaintre, V.; Aittala, M.; Durand, F.; Drettakis, G. Single-Image SVBRDF Capture with a Rendering-Aware
Deep Network. ACM Trans. Graph. 2018, 37, 1–5. [CrossRef]

22. Nicodemus, F.E. Geometrical Considerations and Nomenclature for Reflectance. NBS Monogr. 1977, 160, 4.
23. Hermans, A.; Floros, G.; Leibe, B. Dense 3D semantic mapping of indoor scenes from RGB-D images.

In Proceedings of the IEEE International Conference on Robotics & Automation 2014, Hong Kong, China,
31 May–7 June 2014.

24. Yoon, Y.; Choe, G.; Kim, N.; Lee, J.Y.; Kweon, I. Fine-scale Surface Normal Estimation using a Single NIR
Image. In Proceedings of the European Conference on Computer Vision 2016, Amsterdam, The Netherlands,
11–14 October 2016.

25. Xiong, S.; Zhang, J.; Zheng, J.; Cai, J.; Liu, L. Robust surface reconstruction via dictionary learning. ACM Trans.
Graph. 2014, 33, 1–12. [CrossRef]

26. Li, X.; Dong, Y.; Peers, P.; Tong, X. Modeling surface appearance from a single photograph using
self-augmented convolutional neural networks. ACM Trans. Graph. 2017, 36, 45. [CrossRef]

27. Liang, L.; Lin, Q.; Yisong, L.; Hengchao, J.; Junyu, D. Three-Dimensional Reconstruction from Single Image
Base on Combination of CNN and Multi-Spectral Photometric Stereo. Sensors 2018, 18, 764.

28. Chen, G. PS-FCN: A Flexible Learning Framework for Photometric Stereo. In Proceedings of the European
Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018.

29. Santo, H.; Samejima, M.; Sugano, Y.; Shi, B.; Matsushita, Y. Deep Photometric Stereo Network. In Proceedings
of the 2017 IEEE International Conference on Computer Vision Workshop (ICCVW), Venice, Italy,
22–29 October 2017.

30. Chen, G.; Han, K.; Shi, B.; Matsushita, Y.; Wong, K.K. Self-calibrating Deep Photometric Stereo Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, CA,
USA, 16–20 June 2019.

31. Ikehata, S. CNN-PS: CNN-based Photometric Stereo for General Non-Convex Surfaces. In Proceedings of
the European Conference on Computer Vision (ECCV) 2018, Munich, Germany, 8–14 September 2018.

32. Wu, L.; Wang, Y.; Liu, Y. A robust approach based on photometric stereo for surface reconstruction. Acta Autom.
Sin. 2013, 39, 1339–1348. (In Chinese) [CrossRef]

http://dx.doi.org/10.1145/3197517.3201378
http://dx.doi.org/10.1145/2661229.2661263
http://dx.doi.org/10.1145/3072959.3073641
http://dx.doi.org/10.3724/SP.J.1004.2013.01339


Appl. Sci. 2020, 10, 2914 12 of 12

33. Alldrin, N.; Zickler, T.; Kriegman, D. Photometric stereo with non-parametric and spatially-varying reflectance.
In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK,
USA, 23–28 June 2008.

34. Einarsson, P.; Chabert, C.F.; Jones, A.; Ma, W.C.; Lamond, B.; Hawkins, T.; Bolas, M.; Sylwan, S.; Debevec, P.
Relighting Human Locomotion with Flowed Reflectance Fields. In Eurographics Workshop on Rendering,
Proceedings of the 17th Eurographics Conference on Rendering Techniques Nicosia, Cyprus, 26–28 June 2006;
Eurographics Association: Goslar, Germany, 2006.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	The Multi-Source Photometric Stereo 
	Network Architecture 
	Loss Function 
	Dataset 
	The Real-World Dataset 
	The Photometric Acquisition Setup 
	Data Capture 


	Results 
	Implementation Details 
	Error Metrics 

	Discussion 
	Compared with the Classic Multi-Source PS 
	Effectiveness of the New Regularization Constraints 

	Conclusions 
	References

