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Abstract: The sparsity of images in a certain transform domain or dictionary has been exploited in
many image processing applications. Both classic transforms and sparsifying transforms reconstruct
images by a linear combination of a small basis of the transform. Both kinds of transform are
non-redundant. However, natural images admit complicated textures and structures, which can
hardly be sparsely represented by square transforms. To solve this issue, we propose a data-driven
redundant transform based on Parseval frames (DRTPF) by applying the frame and its dual frame
as the backward and forward transform operators, respectively. Benefitting from this pairwise use
of frames, the proposed model combines a synthesis sparse system and an analysis sparse system.
By enforcing the frame pair to be Parseval frames, the singular values and condition number of
the learnt redundant frames, which are efficient values for measuring the quality of the learnt
sparsifying transforms, are forced to achieve an optimal state. We formulate a transform pair
(i.e., frame pair) learning model and a two-phase iterative algorithm, analyze the robustness of
the proposed DRTPF and the convergence of the corresponding algorithm, and demonstrate the
effectiveness of our proposed DRTPF by analyzing its robustness against noise and sparsification
errors. Extensive experimental results on image denoising show that our proposed model achieves
superior denoising performance, in terms of subjective and objective quality, compared to traditional
sparse models.
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1. Introduction

A transform is a classical technique in signal processing, such as compression, classification,
and recognition [1–5]. Traditional transforms, based on analytic orthogonal bases such as DCT,
DFT, and Wavelets [1,6], suffer from two shortcomings: they do not depend on the data, and they
reconstruct each image by approximation in the same subspace spanned by a non-redundant basis of
the transforms, which limits the compact representation of natural signals.

Various models for sparse approximation have appeared in recent decades and play a fundamental
role in modeling natural signals, with applications of denoising [7–10], super-resolution [11–13],
and compression [1]. Such techniques exploit the sparsity of natural signals in analytic transform
domains such as DCT, DFT, and various learning-based dictionaries [14–16].

There are two typical models for sparse representation: synthesis [10,14,15] and analysis [16–19]
models. So far, most sparse models rely on the concept of synthesis, which represents the underlying
signal as a sparse combination of atoms from a given dictionary. Specifically, x = Dα, where x ∈ RN is
the original signal, D ∈ RN×M is the given dictionary whose columns are the atoms, and α ∈ RM is the
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sparse coefficient, which is usually measured by the `0-norm ‖ · ‖0. A learning analysis sparse model
was proposed by Elad [14,19], formulated as ‖Ωx‖0 = r with notation similar to that of the synthesis
one. Instead of reconstructing the signal using a few atoms in dictionary (like in the synthesis model),
an analysis model decomposes a signal in a sparse fashion, based on an assumption that the signal lies
in a sparse subset of the dictionary.

An analysis model can be straightforwardly regarded as a forward transform if its corresponding
backward transform Ω∗ is available. Recent research on transforms [2,4,5,20,21] has demonstrated
the advantages of applying sparse constraints in transform learning. Motivated by this idea,
many studies have been devoted to image denoising [5,20], classification [3,4], and other signal
processing methods [21]. Learning-based transforms with sparse constraints measure the transform
error, called sparsificaiton error, in the analysis or frequency domain, rather than in the temporal
domain. Given training data X ∈ RN×L with signal vectors xi ∈ RN , i = 1, . . . , L as its columns,
the problem of training a square sparsifying transform W ∈ RN×N [21] is formulated as

min
W,Y
‖WX− Y‖2

F + µ‖W‖2
F − λ log det(W) (1)

s.t. ‖yi‖0 ≤ s,

where yi, i = 1, 2, . . . , L are the columns of Y satisfying a sparse constraint and µ‖W‖2
F − λ log det(W)

is a regularizer, which keeps W non-singular.
As we can see, learning-based models effectively reveal the relationship between the transform

and the data. The square transform, which consists of a non-redundant basis, cannot express
complicated images. In 2014, an overcomplete transform learning model called OCTOBOS [20]
was proposed, which consists of a series of square transforms to represent different features of natural
images. However, the number of transforms must be pre-defined, which admits limited flexibility
in applications.

In recent years, frames, as an overcomplete system, have been applied in image processing such
as denoising [22,23], image compressive [24] and high resolution image reconstruction [25]. A frame
can be regarded as an extension of an orthogonal basis, as a frame Φ ∈ RN×M(N < M) also spans
an N-dimensional space. Compared to a general frame, a tight frame (e.g., wavelet tight frames [26],
ridgelets [27], curvelets [28], shearlets [29], and others) can achieve wider use, as the lower and upper
frame bounds are equal. A tight frame inherits the good characteristics of an orthogonal basis in signal
processing, as its rows are orthogonal [30]. In a sparse representation, a redundant frame serves as an
overcomplete dictionary to represent the signal [23]. With the development of data-driven approaches,
learning-based tight frames have recently been researched [31–33]. In [31], redundant tight frames
were used in compressed sensing. In [32], tight frames were applied to few-view image reconstruction.
In [33], a data-driven method was presented, in which the dictionary atoms associated with a tight
frame are generated by filters. In general, these studies model the frame learning problem in the
dictionary learning form with tight frame constraints. These methods focus on tight frames, as the
singular values of a tight frame are equal, which leads to simple optimization. A tight frame is a
Parseval frame if the frame bounds are equal to 1. In fact, a Parseval frame is a redundant extension of
the concept of a standard orthogonal basis. Due to its super-performance in linear signal representation,
it can be well-used in sparse signal representation and optimization.

In this paper, we propose a data-driven redundant transform model based on Parseval frames
(DRTPF for short), and present a model for learning DRTPF as well as a corresponding algorithm for
solving the model. The algorithm consists of a sparse coding phase and a transform learning phase.
The sparse coding phase updates the sparse coefficients and a threshold value using a conventional
Batch Orthogonal Matching Pursuit (BtOMP) and pointwise thresholding. The transform learning
phase performs the update of the frame using Gradient Descent and a relaxation or contraction singular
values mapping, as well as updating the dual frame, in an atom-wise manner, using Least Squares.
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The advantages of the proposed DRTPF model (as well as the algorithm) are demonstrated with
natural image denoising. To summarize, this paper makes the following contributions:

1. We propose the DRTPF method by integrating redundant Parseval frames with sparse constraints.
The DRTPF method consists of a forward transform and a backward transform, which correspond
to a frame and its dual frame, respectively. In other words, DRTPF bridges synthesis and analysis
models by assuming that two models share almost the same sparse coefficients.

2. DRTPF outperforms traditional transforms and frames by learning from data which
exploits the features of natural images, whereas traditional transforms and frames admit
a uniform representation of various images, which tend to fail to characterize the intrinsic
individual-specific features.

3. Traditional transforms are usually orthogonal transforms and the signals remain isometric,
yet they suffer from weak robustness due to their strict properties. In contrast, DRTPF preserves
the signals in a bounded fashion, which admits higher robustness and flexibility.

4. We propose a model for learning DRTPF and compare DRTPF with traditional transforms
and sparse models in robustness analysis and image denoising experiments. Both qualitative
and quantitative results demonstrate that DRTPF outperforms traditional transforms and
sparse models.

The rest of this paper is organized as follows. Section 2 reviews the related work on frames.
Section 3 proposes the framework of DRTPF, including the form of DRTPF (Section 3.1) and the
learning model and corresponding algorithm for DRTPF (Section 3.2). In Section 4, we demonstrate
the effectiveness of our DRTPF model by analyzing the convergence of the corresponding algorithm
and give experimental results on robustness analysis and image denoising, as well as evaluating the
effectiveness of DRTPF compared with traditional transforms and sparse models.

2. Related Work

Let H be an N-dimensional discrete Hilbert space. A sequence {φi}M
i=1 ∈ H is a frame if and only

if there exist two positive numbers A and B such that [30]

A‖x‖2
2 ≤

M

∑
i=1
| < x, φi > |

2 ≤ B‖x‖2
2 ∀x ∈ HN . (2)

A and B are called the bound of the frame and we call formula 2 the frame condition, as it is a
termination of frame. Furthermore, {φi}M

i=1 is tight if A = B is possible [30]. In particular, {φi}M
i=1 is a

Parseval frame if A = B = 1 is satisfied. There are two associated operators can be defined between
the Hilbert space HN and a Square integrable Space lM

2 (·) once a frame is defined: One is the analysis
operator, T, defined by

(Tx)i =< x, φi >, ∀x ∈ HN , (3)

and the other is its adjoint operator, T∗, which is called the synthesis operator:

T∗c =
M

∑
i=1

cφi ∀c = (ci)i∈J ∈ lM
2 (T). (4)

Then, the frame operator can be defined by the following canonical expansion

Fx = T∗Tx =
M

∑
i=1

< x, φi > φi. (5)
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Let x ∈ RN be an arbitrary vector in H. A reconstruction function is an expression with the
following form

x =
M

∑
i=1

< x, ψi > φi, ∀x ∈ H, (6)

where the sequence {ψi}M
i=1 ∈ H is called the dual frame of {φi}M

i=1. Obviously, {ψi}M
i=1 is not unique,

unless {φi}M
i=1 is an orthogonal basis. In fact, for an arbitrary given frame {φi}M

i=1, there is a series of
dual frames corresponding to it. The non-uniqueness of the dual frame allows us to achieve a better
expression of the signal by optimizing the dual frame.

The frame Φ and its dual frame Ψ can be stacked as the matrices Φ = [φ1, φ2, . . . , φM] and
Ψ = [ψ1, ψ2, . . . , ψN ], respectively. The matrices can be regard as sparse representation dictionaries,
transform operators and so on. A frame Φ with the bounds A and B means that the maximum and
minimum singular values of it are equal to A and B respectively. What’ more, the singular values of
tight frame are all equal, particularly, the singular values of Parseval frame are all equal to 1. Thus,
when the frame Φ is applied as sparse representation dictionary or transform operator, its condition
number are determined by B

A . In this way, the model will never provide degenerate dictionary or
transform. In fact, frames are matrices with special structure.

3. Data-Driven Redundant Transform Model Based on Tight Frame

In this section, we present our data-driven redundant transform based on Parseval frames
(DRTPF, Section 3.1) model along with an efficient redundant transform learning algorithm (Section 3.2)
which contains the sparse coding algorithm (Section 3.2.1) and the transform pair update algorithm
(Section 3.2.2).

3.1. Data-Driven Redundant Transform

In this subsection, we first propose a threshold-based reconstruction function, with the assumption
that the signal is sparse in the dual frame domain. Then, we present the data-driven redundant
transform based on Parseval frames model.

Let {φi}M
i=1 be a frame and {ψi}M

i=1 be its dual frame. For convenience, we stack them as the
matrices Φ = [φ1, φ2, . . . , φM] and Ψ = [ψ1, ψ2, . . . , ψN ], respectively. Let x = x̂ + e be a signal
vector, where x̂ is the original noiseless signal and e is a zero-mean white Gaussian noise. The frame
reconstruction function (6) can be formulated as x = ΦΨTx = ΦΨT(x̂ + e). By assuming the sparse
prior of signals over the Ψ domain, we apply a columnwise hard thresholding operator Sλ(·) (which
shall be defined in the next subsection) on ΨT(x̂ + e), such that

x̂ = ΦSλ(Ψ
Tx), (7)

where λ is a vector with elements λi corresponding to ψi, i = 1, 2, . . . , M. Apparently, Sλ(Ψ
Tx) is the

sparse coefficients of x under Ψ in the sense of an analysis model, while it also serves as the sparse
coefficients under Φ in the sense of a synthesis model. In other words, Equation (7) admits that the
synthesis and analysis models share almost the same sparse coefficients.

As we all know, the standard orthogonal basis, which is a significant tool in signal representation
and transformation, is a special kind of frame with frame bounds A = B = 1. In fact,
the standard orthogonal basis is a special case of a Parseval frame. In order to exceed the so-called
perfect reconstruction property of the standard orthogonal basis in signal representation and transform,
we refer to the Parseval frame. Therefore, we propose the data-driven redundant transform based on
Parseval frame (DRTPF), as follows
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y← Sλ(Ψ
Tx), (8)

x̂← Φy, (9)

s.t. ΨΦ = I, (10)

|y‖0 ≤ s,
M

∑
i=1
| < x, φi > |

2 = ‖x‖2
2, (11)

where (8) is the forward transform and (9) is the backward transform. The relationship between
Φ and Ψ is formulated as (10), which implies the relationship between the frame and its dual
frame. The forward transform operator Ψ is also a Parseval frame, as it is a dual frame of Φ. Thus,
the projection of the signal x over the Ψ domain can be formulated as

M

∑
i=1
| < x, ψi > |

2 = ‖x‖2
2. (12)

Equation (12) indicates that the transform coefficients of the proposed DRTBF are bounded by the
original signal x. This constraint leads to a more robust result than traditional sparse models.

To convert DRTPF into an optimization problem, (11) can be written as the more compact
expression ΦΦT = I, which characterizes Φ in a way that is unrelated to the data.
This property indicates that the rows of the frame Φ are orthogonal, thus satisfying the so-called
perfect reconstruction property which ensures that a given signal can be perfectly represented by its
canonical expansion (in a manner similar to orthogonal bases).

Assuming X ∈ RN×L is the training data with signal vectors xi ∈ RN , i = 1, 2, . . . , L as its columns,
an optimization model for training DRTPF can be written as

min
Φ,Ψ,λ,Y

‖X−ΦY‖2
F + η1‖Y− Sλ(Ψ

Tx)‖2
F + η2‖Y‖0 + η3‖ΦΨT − I‖2

F

s.t. ΦΦT = I. (13)

The dual frame condition ΦΨT = I and the Parseval frame condition ΦΦT = I imply that the
difference of Φ and Ψ is in the null space of Φ. Denote [aT

1 , aT
2 , · · · , aT

N ]
T = Φ − Ψ. The vectors

ai, i = 1, 2, · · · , N are orthogonal to Φ. Thus, it is clear that the dual frame Ψ contains two subspaces:
one spanned by Φ and the one spanned by the ai, i = 1, 2, · · · , N.

3.2. Transform Learning for the Drtbf Model

As there are no existing algorithm for solving problem (13), we apply the alternative direction
method (ADM) and divide (13) into two sub-problems: A sparse coding phase, which updates the
sparse coefficients Y and the threshold value λ, (Section 3.2.1); and the transform operator pair update
phase, which computes Φ and Ψ, (Section 3.2.2).

3.2.1. Sparse Coding Phase

This subsection presents the sparse coding method for the proposed DRTBF model, in which the
sparse coefficients of Y are obtained by OMP, and the threshold values λ are obtained by a designed
elementwise method.
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The Y Subproblem

The pursuit of Y is equivalent to solving the following problem with fixed Φ, Ψ, and λ:

Ŷ = arg min
Y

‖X−ΦY‖2
F + η1‖Y− Sλ(Ψ

Tx)‖2
F + η2‖Y‖0, (14)

which can be easily solved by OMP [14,34], as (14) can be easily converted to the classical synthesis
sparse expression min ‖Z−DY‖2

F such that ‖Y‖0, where Z = [X
√

η1Sλ(Ψ
Tx)] and D = [Φ

√
η1I].

The λ Subproblem

With fixed Φ, Ψ, and Y, finding λ is equivalent to solving the following problem

λ̂ = arg min
λ

‖Y− Sλ(Ψ
Tx)‖2

F, (15)

which can be decomposed into M individual optimization problems arg minλi
‖yi − Sλi (ψ

T
i X)‖2

2,
i = 1, . . . , M. By denoting Ji := supp(Sλi (ψ

T
i X)) to be the set of indices of non-zero elements of

Sλi (ψ
T
i X), we have

Sλi (Ψ
Txj) = ΨTxj, ∀j ∈ Ji

Sλi (Ψ
Txj) = 0, ∀j ∈ {1, . . . , L} \ Ji.

As the cardinality of Ji depends on λi, we transform (15) to another optimization problem:

λ̂i = arg min
λi

∑
j∈{1,...,L}\Ji

y2
ij︸ ︷︷ ︸

f (λi)

+ ∑
j∈Ji

(yij −ψT
i xj)

2

︸ ︷︷ ︸
g(λi)

, (16)

where yij denotes the (i, j)th entry of Y and xi denotes the ith column of X. Denote l(λi) as

l(λi) = ∑
j∈1,2,··· ,L\J

(yij −ψT
i xj)

2 (17)

We observe that the function f (λi) is a monotonically increasing function and that g(λi) is
monotonically decreasing. We take ψT

i xi, i = 1, 2, . . . , L as candidates and compute all the values of
f (λi) + g(λi). Then, the optimal λi should lie in an interval determined by ψT

i xk and ψT
i xl , which

correspond to the smallest and the second smallest values of f (λi) + g(λi), respectively. Then,
any suitable value for λi can be selected. The algorithm for the threshold is summarized as Algorithm 1.

3.2.2. Transform Pair Update Phase

The Ψ Subproblem

With fixed Y and λ, the optimization problem to obtain Ψ is given by

Ψ̂ = arg min
Ψ

‖Y− Sλ(Ψ
TX)‖2

F +
η3

η1
‖ΦΨT − I‖2

F. (18)
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Algorithm 1: Sparse coding algorithm.

Input and Initialization:

Training data X ∈ RN×L, iteration number r, initial value λ = 0.
Output:

Sparse coefficients Y, and threshold values λ

Process:
1: Compute the sparse coefficients Y via (14), according to the OMP algorithm [14,34].
2: Sort the columns of X and y in increasing order of |ψi

TX|.
3: For i=1:r

For j=1:L

Compute all the possible values for f (λi) + g(λi) by f (ψT
i xj) = f (ψT

i xj−1) + (yij)
2 ; l(ψT

i xj)

= l(ψT
i xj−1) + (yij −ψT

i xj)
2; g(ψT

i xj) = ‖ψT
i x‖2

2 − l(ψT
i xj).; Denote them as a vector ν.

End for
4: Sort the elements of |ψi

TX| and the columns of X in descending order of ν. Denote the first

and second samples as xi1 and xi2 . Set λi =
|ψi

Txi1
|+|ψi

Txi2 |
2 .

End for

Such a problem is a highly nonlinear optimization problem, due to the definition of Sλ.
We (columnwise) solve Ψ by updating each column of Ψ while fixing others. The product ΦΨT

can be written as

ΦΨT =
N

∑
p=1

ψpφT
p = ψiφ

T
i − (I−

N

∑
p 6=i

ψpφT
p ). (19)

For each ψi, we solve the following subproblem:

min
ψi
‖yi − Sλi (ψ

T
i X)‖2

2 +
η3

η1
‖ψiφi − z‖2

2, (20)

where z = I−∑N
p 6=i ψpφT

p . We denote Ji to be the indices (as before), and then separate the problem
into the two following sub-problems:

ψ̂1
i = arg min

ψi

∑
j∈Ji

(yij − ψT
i xj)

2 +
η1

η3
‖ψiφ

T
i − z‖2

2, (21)

ψ̂2
i = arg min

‖ψi‖2=1
∑

j∈{1,...,L}\Ji

(ψT
i xj)

2, (22)

where yij denotes the (i, j)th entry of Y and xi denotes the ith column of X. Equation (21) is a quadratic
optimization, while Equation (22) has a closed form solution given by the normalized singular vector
corresponding to the smallest singular value of XĴ . Based on the solutions of the two sub-problems,
we give the solution of (20) as the average of the two solutions; that is, ψ̂i =

1
2 (ψ̂

1
i + ‖ψ̂1

i ‖2ψ̂2
i ). Please

note that the second solution is added with the magnitude of the norm of the first solution, as (21)
serves as a dominant term for the Ψ subproblem, while the solution of (22) maintains no energy
but direction.
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The Φ Subproblem

With fixed Y, λ, and Ψ, the model to obtain Φ is given by

min
Φ
‖X−ΦY‖2

F + η3‖ΦΨT − I‖2
F

s.t. ΦΦT = I. (23)

We convert (24) to an optimization problem which is formulated as

min
Φ
‖X−ΦY‖2

F + η3‖Φ(Φ−Ψ)T‖2
F. (24)

We denote the target function (24) by h(Φ) and apply the gradient descent method to the
unconstrained version of (24) and project the solution to the feasible space. The gradient is given by

∇h(Φ) = (ΦY− X)YT + η3[Φ(Φ−Ψ)T(Φ−Ψ) + Φ(Φ−Ψ)TΦ]

= (ΦY− X)YT + η3Φ(Φ−Ψ)T(2Φ−Ψ). (25)

We summarize our overall algorithm in Algorithm 2.

Algorithm 2: Transform pair learning algorithm.

Input and Initialization:

Training data X, frame bound (A, B), iteration num.

Build frames Φ ∈ RM×N and Ψ ∈ RM×N , either by using random entries or using N

randomly chosen data.
Output:

Frames Φ, Ψ, Sparse coefficients Y, and thresholding values λ

Process: For l=1:num

Sparse Coding Step:
1: Compute the sparse coefficients Y and the thresholding values λ via Algorithm(1).

Frame Update Step:
2: Update Ψ columnwise. Compute W = Sλ(Ψ

TX).

For i = 1 : M

Denote Ĵi as the indices of zeros in the ith column of W. Set ψT
i XĴi = 0. Compute ψi via

(21) and (22).

End For
3: Update Φ via Gradient Descent, which is given as (25) and the step length is usually set to 0.01.

End for

4. Image Denoising

We introduce a novel problem formulation for signal denoising by applying the data-driven
redundant transform DRTPF. Image denoising aims to reconstruct a high-quality image I from its
noise corrupted version L, which is formulated as L = I + n where n is a noisy signal. For a signal
satisfying the DRTPF, the denoising model based on DRTPF is formulated as
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{Î , Ŷ, λ̂} = min
I ,{yi}N

i=1,λ̂
‖L − I‖2

F + γ ∑i ‖RiI −Φyi‖2
F + γ1 ∑i ‖yi − Sλ(Ψ

TRiI)‖2
F + γ2 ∑i ‖yi‖0, (26)

where Ri is an operator that extracts the ith patch of the image I , yi is the ith column of Y,
and λ denotes a vector [λ1, λ2, · · · , λM] with λj operating on the jth element of ΨTRiI . On the right
side of Equation (26), the first term is the global force, which demands proximity between the degraded
image L and its high-quality version I . The other terms are the local constraints, which ensure that
every patch at location i satisfies the DRTPF. This formulation assumes that the noise image L can be
approximated by a noiseless image Î whose patch extracted by Ri can be sparsely represented by the
given transforms Φ and Ψ.

To solve Problem (26), we apply Algorithm 1 to obtain the sparse coefficients Y and the threshold
values λ. We mainly state the iterative method to obtain I .

Denote dk = ΨTRiIk−1. We set Ok as an index set that satisfies |dk
l | ≤ λl , l ∈ Ok. Set uk ∈ RM

as a vector with elements uk
l =

{
1 l ∈ Ok,

0 otherwise.
Then, the non-convex and non-smooth thresholds

can be removed, with the substitution yi − Sλ(Ψ
TRiIk) ≈ yi − ΨTRiIk � uk Thus, in the kth step,

the problem that needs to be solved can be expressed as

{Îk} = min
Ik−1
‖L − Ik−1‖2

F + γ ∑
i
‖RiIk−1 −Φyi‖2

F + γ1 ∑
i
‖yi −ΨTRiIk−1 � uk‖2

F, (27)

where � is pointwise multiplication. This convex problem can be easily solved by the gradient
descent algorithm.

We summarize the restoration algorithm in Algorithm 3.

Algorithm 3: Denoising algorithm.

Input

Training dictionaries Φ, Ψ, iteration number r, a degraded image L, set I0 = L.
Output:

The high-quality image Î
1: Compute Y and λ via the method in Algorithm 1.

For k=1:r
2: Compute dk = ΨTRiIk−1. Set Ok as an index set that satisfies |dk

l | ≤ λl , l ∈ Ok. Set

uk
l =

1 l ∈ Ok,

0 otherwise.
.

3: Solve Problem (27) via the gradient descent algorithm.

End for

5. Experimental Results

We demonstrate the effectiveness of our proposed data-driven redundant transform based on
Parseval frames (DRTPF) by first analyzing the robustness of the model against Gaussian White Noise.
Then we discuss the convergence of the proposed transform learning algorithm and the ability of the
proposed DRTPF to provide low sparsification errors. Finally, we evaluate the effectiveness of the
proposed DRTPF by applying it to nature image denoising. We use a fixed step size in the transform
update and denoising steps of our algorithms.



Appl. Sci. 2020, 10, 2891 10 of 17

5.1. Robustness Analysis

In this subsection, we illustrate the robustness of DRTPF by training DRTPF using the image
’Barbara’ and testing DRTPF for denoising the same image with Gaussian white noise added. The noise
level (standard deviation) δ ranged from 20 to 60 with a step size of 2. In the experiment, the frames Φ

and Ψ of size 100× 200 were initialized as 1D overcomplete DCT (ODCT) and 10× 10 overlapping
mean-subtracted patches were used. The patch size was set as 8× 8 with stripe 1. We set the parameters
η1 = 1.1 and η3 = 1e + 7, and η2 was replaced by the `0 thresholding 0.6σ (i.e., ‖Y‖0 ≤ 0.6σ).
For comparison, our proposed algorithm was compared with K-SVD [14]. The size of dictionary learnt
from K-SVD is 8× 256 at its optimal state, according to the previous work.

We show the denoising result in Figure 1, from which it is apparent that with higher noise,
our DRTPF method outperformed K-SVD more and more. In other words, our proposed model has
good robustness. In fact, in our model, the sparse coefficients are calculated accurately by the inner
product of the signals and the frame Ψ, and are limited to a certain range. Theoretically, it should be
more robust. The learnt transforms Φ and Ψ are illustrated in Figure 2. These figures show that our
frame learning method can capture the features in both analysis and synthesis ways. Figure 3 shows
two exemplified visual results on the images ’Babara’ at noise level σ = 30 and σ = 50. From Figure 3
we know that our proposed DRTPF can obtain more clearer features than K-SVD [14].

Figure 1. Robustness Analysis. DRTPF is trained and tested using the image ’Barbara’. The X-label
is the noise level δ and the Y-label is the PSNR. It can be seen that DRTPF performs more robustly
than K-SVD.

Figure 2. The learnt operators Φ (left) and Ψ (right) for barbara.
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Figure 3. Reconstruction of barbara using DRTPF (left) and K-SVD [14] (right). Top: σ = 30;
bottom: σ = 50.

5.2. Sparsification of Nature Images

A classic sparsifying transform learning model [21] is formulated as

min
W,Y
‖WX− Y‖2

F − λ log det W + µ‖W‖2
F

s.t. ‖Yi‖0 ≤ s ∀ i, (28)

where X is the training data, Y are the sparse coefficients, and W is the learnt transform. The quality
of the learnt transforms in the experiment [21] was judged based on their condition number and
sparsification error. Similar to the experimental setting in [21], we also evaluated the effectiveness of
the transforms learnt from our DRTPF by their condition number and sparsification error. The l2-norm
condition number of the transform operator Φ is denoted as the ratio of the maximum singular value
to the minimum singular value of Φ; that is,

KΦ =
δmax(Φ)

δmin(Φ)
. (29)

In our case, the condition numberKΦ = 1, as the maximum and minimum singular values (which
are determined by the optimal frame bounds) must be equal to 1. Similarly, we can obtain that KΨ = 1.
It is the best case when the transform operators have condition number equal to 1. The sparsification
error of the model (28) is defined as

SE = ‖WX− Y‖2
F. (30)

Similarly, we define the ‘sparsification error’ of the proposed DRTPF, to measure the energy loss
due to sparse representation, which is formulated as

S̃E = ‖Y− Sλ(Ψ
TX)‖2

F. (31)
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The ‘sparsification error’ indicates the compact ability of the transform Ψ with reasonable
ignorance of the thresholding operator Sλ(·).

Figure 4. The test images ‘Barbara’, ‘Lena’, ‘Hill’, ‘Couple’, ‘Boat’, and ‘Man’.

To demonstrate that our model and algorithms are insensitive to the initialized transforms, we
applied the proposed sparse coding and transform operator pair learning algorithms to train a pair
of transforms. The training data are patches of size 10× 10 extracted from the image ‘Babara’ which
is shown in Figure 4. The trained transform pair are of size 100× 200. We extracted the patches
with non-overlap and removed the DC values of every sample. We set the parameters η1 = 1.1
and η3 = 1e + 7, and η2 was replaced by the `0 thresholding 0.6σ, as before. The matrices used for
initialization were the 1D DCT matrix, the matrix with random columns sampled from the training
data, and the redundant identity matrix. As the transform for DRTPF is redundant, the redundandt
identity matrix here is formed as [I I] where I is the identity matrix of size 100× 100.

The convergence curve of the objective function and the ‘sparsification error’ are shown in Figure 5.
From the left sub-figure of Figure 5 we know that our proposed algorithm for DRTPF is converged,
and all the initializations converge to the same result after about 20 iterations which demonstrate
that our proposed DRTPF and the corresponding algorithm are insensitive to different initializations.
The right sub-figure of Figure 5 shows the ‘sparsification error’ of the three initialized methods, the 2D
DCT transform of and the KLT transform. The 2D DCT is formed by the Kronecker product of two 1D
DCT transform, i.e., D = D0 ⊗D0, where D0 is the 1D DCT transform of size 8× 8 and ⊗ denotes
the Kronecker product. The KLT transform K of size 64× 64 is obtained by principle component
analysis (PCA) method. The ‘sparsification error’ of 2D DCT and KLT are calculated via the model
in [21] at iteration zero. This figure shows that the ‘sparsification error’ of the proposed DRTPF
model is also converged and insensitive to the initialization matrices. In fact, the loss function of the
proposed DRTPF mainly contains two partions: ‖X−ΦY‖2

F and ‖Y− Sλ(Ψ
TX)‖2

F. The first partion is
the recovery loss (i.e., the loss in temporal domain) and the second partion is the ‘sparsification error’
(i.e., the loss in frequency domain). Our proposed model aims to achieve low error both in temporal
domain and frequency domain.

To illustrate the behavior of the proposed DRTPF in image representation, we choose six images
shown in Figure 4 to train transforms and recover images. The Figure 6 shows the average sparsity
curve and the recovery PSNR values with the increase of the sparsity. From the left sub-figure we
know that the images are well sparsified along the iterative process. This figure is generated by
setting ‖yi‖0 < 5 and the recovery PSNR is 32.27 dB. For each sample xi vectorized by a 10× 10 patch,
its correspondinge sparse coefficients yi is of length 200. It is easy to know that the sparsity rate is lower
than 2.5%. Furthermore, less than 5% of the data need to be stored to recover an image with PSNR
larger than 32.27 dB. The right sub-figure of Figure 6 shows the average recovery PSNR values with the
increase of the sparsity which is a main measurement for the quality of the learnt transform. From the
figure we know that in most of the case, our proposed DRTPF can obtain a better image quality in
terms of PSNR with lower sparsity than the compared LST [21] method and the classic DCT transform.
The ransform for LST [21] method and the classic DCT transform are of size 64× 64. The transform of
LST [21]is trained by 4096 8× 8 samples extracted from every image shown in Figure 6 with the main
of the patches removed. The experiment is set as them illustrated in the paper [21]. When the total
sparsity of a 512× 512 image is more than 47,000, the recovery results of the proposed DRTPF and the
LST [21] are nearly the same. The recovery PSNR at sparsity 47,000 is 37.3 dB.
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Figure 5. Convergence Curve and Sparsification Error. Left: The X-label is the iteration number. Right:
The Y-label is the objective function and the sparsification error, respectively. It can be seen that our
DRTPF learning algorithm is convergent and insensitive to initialization.

Figure 6. The average Sparsity and Recovery PSNR. Left: The X-label is the iteration number and the
Y-label is the average sparsity. Right: The X-label is the average sparsity and the Y-label is the average
Recovery PSNR.

5.3. Image Denoising

In this subsection, we evaluate the performance of our DRTPF model using six natural images of
size 512× 512, which are shown in Figure 4. We added Gaussian white noise to these images at different
noise levels (σ = 20, 30, 40, 50, 60). We set the parameters η1 = 1.1 and η3 = 1e+ 7, and η2 was replaced
by the `0 thresholding 0.6σ, as before. We compared DRTPF with the three most related methods of
sparse representation: K-SVD [14], the overcomplete transform (T.KSVD) [3], the learning-based frame
(DTF [33]), the BM3D [35] and WNNM [36]. The BM3D and WNNM are nonlocal-based methods
with the parameters setting as in corresponding paper. We note that DTF works on filters, instead of
image patches. In the experiment, our DRTPF method and K-SVD were the same as in Section 5.1.
All methods were trained iteratively (25 times). The DTF method was initialized by 64 3-level Harr
wavelet filters of size 16× 16. The operator size of the T.KSVD method was 128× 64 and the patch
size it worked on was 8× 8 overlapping mean-subtracted patches. The hard thresholding was s = 30.

Table 1 shows the comparison results, in terms of average PSNR. As shown in Table 1, our DRTPF
method and the DTF method outperformed K-SVD and T.KSVD on most images, i.e., our proposed
DRTPF outperforms K-SVD for 0.47 dB and outperforms T.KSVD for 0.76 dB at noise level σ = 60.
This result implies that methods using frames are more robust against noise. Furthermore, the higher
the noise level, the better the results of DRTPF method and the DTF method than K-SVD and T.KSVD.
We can also see that our DRTPF method outperformed DTF on most of the images, especially when
the noise level was very high. In fact, in our model, the sparse coefficients are calculated accurately
by the inner product of the signals and the frame Ψ, and are limited to a certain range. Theoretically,
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it should perform better than the compared method. Figure 7 shows two exemplified visual results
on the images ‘Boat’ and ‘Man’ at noise level σ = 40. The PSNR of the K-SVD, T.KSVD, DTF, and the
proposed DRTPF are 27.17 dB, 26.14 dB, 26.99 dB, 27.34 dB for ‘Man’ and 27.23 dB, 26.45 dB, 27.20 dB
and 27.39 dB for ‘Boat’. Our proposed DRTPF and the DTF method provide more features and higher
PSNR values of the two images than K-SVD and T.KSVD. Though the DTF provides higher PSNR
values than K-SVD and T.KSVD, and better visual performance, the results of this method suffer from
deformation and margin smoothing as it based on filter. The proposed DRTPF shows much clearer
and better visual results than the other competing methods without any deformation.

Table 1. Average PSNR results of different noise levels on six images.

σ Image Barbara Boat Couple Hill Lena Man Average

20

K-SVD [14] 31.01 30.50 30.15 30.27 32.51 30.26 30.78

T.KSVD [3] 30.02 29.30 29.25 29.21 31.45 29.01 29.71

DTF [33] 31.07 30.35 30.20 30.31 32.56 30.07 30.76

SSM-NTF 31.01 30.47 30.24 30.34 32.50 30.23 30.80

BM3D [35] 32.01 31.02 30.88 30.85 33.19 30.83 31.47

WNNM [36] 32.31 31.09 30.92 30.94 33.18 30.84 31.55

30

K-SVD [14] 28.75 28.60 28.07 28.51 30.59 28.43 28.83

T.KSVD [3] 27.78 27.86 27.46 27.23 29.25 27.13 27.79

DTF [33] 29.07 28.48 28.22 28.64 30.60 28.26 28.88

SSM-NTF 29.00 28.63 28.24 28.66 30.73 28.49 28.96

BM3D [35] 30.12 29.22 28.95 29.23 31.40 29.04 29.66

WNNM [36] 30.32 29.30 29.02 29.33 31.50 29.10 29.76

40

K-SVD [14] 27.03 27.23 26.54 27.23 29.13 27.17 27.39

T.KSVD [3] 26.35 26.45 25.98 26.45 28.20 26.14 26.60

DTF [33] 27.58 27.20 26.87 27.49 29.25 26.99 27.56

SSM-NTF 27.50 27.39 27.00 27.56 29.35 27.34 27.69

BM3D [35] 28.68 27.92 27.58 28.08 30.11 27.83 28.37

WNNM [36] 28.85 27.99 27.64 28.18 30.25 27.90 28.47

50

K-SVD [14] 25.71 26.05 25.42 26.29 27.92 26.18 26.26

T.KSVD [3] 25.10 25.56 25.03 25.89 27.01 25.40 25.67

DTF [33] 26.45 26.15 25.84 26.63 28.15 26.09 26.55

SSM-NTF 26.43 26.32 25.99 26.79 28.40 26.40 26.72

BM3D [35] 27.48 26.89 26.49 27.20 29.06 26.94 27.34

WNNM [36] 27.70 26.97 26.60 27.35 29.23 27.01 27.48

60

K-SVD [14] 24.45 25.18 24.57 25.69 27.01 25.40 25.38

T.KSVD [3] 24.50 24.88 24.36 25.40 26.60 24.78 25.09

DTF [33] 25.64 25.33 25.04 25.91 27.22 25.38 25.75

SSM-NTF 25.50 25.45 25.14 26.03 27.33 25.67 25.85

BM3D [35] 26.36 26.02 25.61 26.44 28.14 26.18 26.46

WNNM [36] 26.59 26.12 25.74 26.60 28.33 26.26 26.61

All the six methods can be classified to two categories (1) without any extra constraint,
e.g., nonlocal similarity, and (2) with additional prior like nonlocal similarity. Our proposed DRTPF
belongs to category (1). We would like to point out that our goal was to establish a redundant transform
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learning method but not focus on image denoising. Our model is plain without applying any extra
prior, besides the basic sparsity characteristics of the signals. The experimental results demonstrate
that our proposed models can achieve better performance than traditional sparse models in image
denoising. However, the methods BM3D and WNNM are based on image nonlocal self-similarity
(NSS). The NSS prior refers to the fact that for a given local patch in a natural image, one can find
many similar patches to it across the image. Intuitively, by stacking nonlocal similar patch vectors into
a matrix, this matrix should be a low-rank matrix and have sparse singular values. The exploitation of
NSS has been used to significantly boost image denoising performance. We have not involved this
prior into our model.

Figure 7. Visual comparison of reconstruction results by different methods on ‘Man’ and ‘Boat’.
From left to right: original, T.KSVD [3], K-SVD [14], DFT [33], and DRTPF.

6. Conclusions

In this paper, we propose a Parseval frame-based data-driven overcomplete transform (DRTPF)
to capture features of images. We also propose the corresponding formulations, as well as algorithms
for calculating the sparse coefficients and DRTPF model learning. We have proposed a general frame
learning method without imposing any structure on the frame. By applying frames to redundant
transforms, we combine the ideas of analysis and synthesis sparse models and let them share almost
identical sparse coefficients. We conducted robustness analysis , sparsification of nature image and
image denoising experiments, which demonstrated that DRTPF can outperform state-of-the-art models,
as it exploits the underlying sparsity of natural signals by the integration of frames and sparse models.

In future work, we shall consider more efficient optimization algorithms for DRTPF,
which facilitate the representation ability and application of the proposed method.
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