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Abstract: Drowsy driving is one of the main causes of traffic accidents. To reduce such accidents,
early detection of drowsy driving is needed. In previous studies, it was shown that driver drowsiness
affected driving performance, behavioral indices, and physiological indices. The purpose of this
study is to investigate the feasibility of classification of the alert states of drivers, particularly the
slightly drowsy state, based on hybrid sensing of vehicle-based, behavioral, and physiological
indicators with consideration for the implementation of these identifications into a detection
system. First, we measured the drowsiness level, driving performance, physiological signals
(from electroencephalogram and electrocardiogram results), and behavioral indices of a driver using a
driving simulator and driver monitoring system. Next, driver alert and drowsy states were identified
by machine learning algorithms, and a dataset was constructed from the extracted indices over a
period of 10 s. Finally, ensemble algorithms were used for classification. The results showed that the
ensemble algorithm can obtain 82.4% classification accuracy using hybrid methods to identify the alert
and slightly drowsy states, and 95.4% accuracy classifying the alert and moderately drowsy states.
Additionally, the results show that the random forest algorithm can obtain 78.7% accuracy when
classifying the alert vs. slightly drowsy states if physiological indicators are excluded and can obtain
89.8% accuracy when classifying the alert vs. moderately drowsy states. These results represent the
feasibility of highly accurate early detection of driver drowsiness and the feasibility of implementing
a driver drowsiness detection system based on hybrid sensing using non-contact sensors.

Keywords: driver drowsiness; hybrid sensing; machine learning; physiological signal

1. Introduction

Drowsy driving is one of the main causes of traffic accidents [1]. Since drivers cannot react to
dangerous situations when drowsy, major accidents can occur. To prevent accidents due to drowsy
driving, it is necessary to detect driver drowsiness early and accurately. Previous studies showed
that the drowsiness level of a driver is related to their facial expression, driving behaviors, and
physiological responses [2–12]. There is a strong correlation between real drowsiness and subjective
evaluation based on facial expressions [2,3]. Therefore, monitoring a driver’s facial expressions is
a widely accepted method for detecting driver drowsiness. Monitoring head position, eye blinks,
and body movement has also been used to detect driver drowsiness [4–6]. In addition, physiological
measurements are widely utilized to detect driver drowsiness because it directly reflects the internal
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physiological states of drivers. An electroencephalogram (EEG) is utilized to investigate the brain
activity related to arousal level [7,8]; therefore, EEG-based methods to detect driver drowsiness
have been proposed [9,10]. Since an electrocardiogram (ECG) is easier to measure than EEG and
measures autonomic nervous system activity, ECG-based methods have been proposed [11], along
with hybrid methods of both EEG and ECG measures [12]. In addition, previous studies showed that
drowsiness level affects driving performance [13–15]. The movement of the steering wheel is mainly
utilized to evaluate driving performance and detect driver drowsiness [13]. As the drowsiness level
of the driver increases, performance related to lane keeping decreases. As an example, the standard
deviation of lateral position (SDLP), which is widely utilized as the evaluation index of steering
control, increases [14]. Performance related to preceding-car following such as Time Headway (THW),
which is defined as the time between successive vehicles that pass a certain point in the path of traffic
flow, decreases [15]. To determine the drowsiness level of a driver based on these known indices,
machine learning algorithms have been widely used. In previous studies, machine learning algorithms
were tested to classify the drowsy and alert states of drivers based on datasets containing behavioral
measures [16], physiological measures [17,18], and more [19].

As mentioned above, the drowsiness level of a driver has a relationship with the driver’s behavioral
features, physiological responses, and driving performance. Many methods for driver drowsiness
detection utilizing these features have been proposed. However, the proposals of previous studies
were limited in their ability to perform early detection of driver drowsiness, because the slightly
drowsy state was not focused on and methods for optimal accuracy, such as data measured over
a short period of time and hybrid measures (vehicle-based measures, behavioral measures, and
physiological measures), were not utilized. In our research, we hypothesized that the early stages
of driver drowsiness are accompanied by changes in driving performance, behavioral features, and
physiological indices. This hypothesis was tested in our previous study [20]; we investigated the
relationship between the drowsiness levels of driver, driving performance indices, behavioral indices,
and physiological indices using a driving simulator (DS), driver monitoring system, and physiological
measurement system. Additionally, to future validate the feasibility of the early detection of driver
drowsiness, we attempted to distinguish between the alert state and slightly drowsy state of a driver
with machine learning algorithms based on hybrid measures consisting of vehicle-based, behavioral,
and physiological measures. General machine learning algorithms, namely logistic regression (LR),
support vector machines (SVM), the k-nearest neighbor classifier (kNN), and random forest (RF), were
used for classification in the previous study [20]. The LR is a widely used algorithm for classification.
It is useful for solving linear classification problems and binary classification problems [21]. The SVM is
also widely used for classification as a supervised learning method. It aims to maximize a value known
as the margin, which is defined as the distance between the decision boundary and the closest training
sample to the decision boundary. The SVM can efficiently perform not only linear classification, but
also non-linear classification by utilizing a kernel trick [22]. The kNN is also commonly utilized method.
It classifies the data samples based on a majority vote of their k-nearest neighbors [23]. In addition,
decision tree (DT) classification is also widely used in data mining [24]. This makes a model that
consists of a number of classification trees, which predict the value of a target variable based on several
input variables. RF is an ensemble of the decision tree models. It has generalization properties and runs
efficiently on large databases. Furthermore, it calculates the importance of features [25]. The results
of the previous study showed that the RF algorithm can obtain approximately 80% accuracy when
classifying the alert and slightly drowsy states. This demonstrated the feasibility of early detection of
driver drowsiness; however, it was considered that improving the accuracy of drowsiness detection is
necessary for its actual implementation into vehicles. In particular, the optimization of the machine
learning algorithm and investigation of other algorithms was insufficient. Moreover, consideration
for the difficulty of sensing each measure was also needed to facilitate the implementation of the
algorithm. Therefore, in this paper we investigated the accuracy of drowsiness detection, along
with the optimization of algorithms and utilization of ensemble machine learning. To discuss the
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implementation of the classification system, we also evaluated the performance of classification not
only using full hybrid measures (vehicle-based, behavioral, and physiological measures) but also using
hybrid measures without physiological measures, as these are considered more difficult to implement
than other measures.

2. Materials and Methods

2.1. Participants and Driving Task

A total of sixteen males (ages of 24.2 ± 1.8 years, heights of 171.8 ± 8.3 cm, weights of 61.5 ± 8.4 kg,
and right-handed) participated in our experiments. A driving simulator (DS) was used for the driving
tasks. The DS consists of a steering wheel, pedals, and a display that presents the driving environment.
A driving course was constructed using a virtual reality software package (UC-win/Road 6, Forum 8).
To get the data of drowsy driving in the experiment, the driving course was configured to simulate
driving on a monotonous highway for a long time. In addition, to evaluate the driving performance
related to steering and acceleration, we set a task in which the participant follows a preceding car
moving at approximately 100 km/h along the middle lane of a three-lane highway with a road width
of 3.5 m containing straight and curved (R = 600 m with clothoid curve) sections. A section of the
driving course is shown in Figure 1, and this section was infinitely repeated over the whole course.
Participants were asked to drive the course for 30 min. Additionally, poles were installed every 50 m
along the left side of the driving course and participants were also asked to maintain a distance of
approximately 100 m from the preceding car by referencing the poles.
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Figure 1. A section of the driving course [20].

2.2. Measurements and Data Processing

2.2.1. Facial Expression

The video camera in front of driver was set to record parts of the participant’s face. The subjective
evaluation of their drowsiness levels was then processed offline by two evaluators in intervals of 10 s
in accordance with predetermined criteria. The evaluation of drowsiness levels based on the features
of facial expressions has been defined in several different methods [2,3]. In this study, the scale for
drowsiness levels was based on the Zilberg’s criteria [3], which uses whole integer numbers ranging
from 0 (alert state) to 4 (extremely drowsy state). The details of the states, values and indicators in
images are listed in Table 1.
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Table 1. Drowsiness level based on facial expression [3].

State (Value) Indicators in Images

Alert (0) Fast eye blinks, often reasonably regular; apparent focus on driving
with occasional fast sideways glances; normal facial tone.

Slightly Drowsy (1)
Increase in duration of eye blinks and possible increase in the rate of eye

blinks; increase in duration and frequency of sideways glances;
appearance of “glazed-eye” look, occasional yawning.

Moderately Drowsy (2)

Occasional disruption of eye focus; significant increase in eye blink
duration; disappearance of eye blink patterns observed during the alert
state; reduction in the degree of eye opening; occasional disappearance

of facial tone.

Significantly Drowsy (3) Discernible episodes of almost complete eye closure; eyes are never fully
open; significant disruption of eye focus.

Extremely Drowsy (4) Significant increase in frequency of eye closure episodes; longer
duration of episodes.

2.2.2. Driving Performance

To assess driving performance related to longitudinal and lateral control, the following parameters
were calculated from a 10-s segment of DS recording data at a sampling rate of 60 Hz. Vehicle velocity,
longitudinal acceleration, offset from lane center (lateral position), steering wheel acceleration (SWA),
standard deviation of lateral position (SDLP), time headway (THW), and time to lane crossing (TLC)
were recorded. SWA, which is utilized as the evaluation index of steering smoothness [26], was
calculated from steering angle data. SDLP, which is used as the evaluation index of steering control [27],
was calculated from lateral position data. THW is defined as the difference between the time when
the preceding vehicle arrives at a point on the road and the time when the test vehicle arrives at the
same point. TLC is defined as the time required to reach the edge of the lane, assuming that the vehicle
velocity and steering angle are constant at a certain point while driving on a road [28].

2.2.3. Behavioral Features

Visual behaviors were measured by an eye mark camera (Smart eye, Toyo Technica, Japan) with a
sampling rate of 60.1 Hz. The number of eye blinks and the percentage closure of eyes (PERCLOS)
over 10 s were calculated from the recorded data. The seat pressure distribution was measured by a
pressure sensor (SR Softvision, Sumitomo Riko, Japan) with a sampling rate of 5 Hz. Movement of the
centroid, the mean values of X (lateral direction of driver) and Y (longitudinal direction of driver), and
the coordinates of the centroid during a 10-s interval were also calculated from the data. A positive x
and y coordinate indicates the left and forward direction of the driver, respectively.

2.2.4. Physiological Signals

EEG

To investigate the activity of the central nervous system, signals were measured by an EEG
measuring device (EEG-1200, Nihonkohden, Japan) at a sampling rate of 500 Hz. The EEG cap was
positioned on the head of the participants, and the EEG signals of 16 channels based on international
10–20 systems (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, and T6) were recorded.
The raw signals were filtered by a band-pass filter with cutoff frequencies of 1–40 Hz. Artifacts such
as electromyography, electrooculography and signal due to body movement and heartbeat were
eliminated by filtering using a band-pass filter with cutoff frequencies of 1–40 Hz, and by utilizing a
MATLAB program (EEGLAB toolbox) based on independent component analysis. The 10-s segments
were then processed by the fast Fourier transform analysis with the Hanning window [29]. Finally,
the power spectral density (PSD) and the content of each frequency band (delta wave (1–4 Hz), theta
wave (4–8 Hz), alpha wave (8–13 Hz), and beta wave (13–30 Hz)) of 16 channels was calculated. In the
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previous study [20], we calculated the mean value of the content in each part of the brain (frontal
lobe: Fp1, Fp2, F3, and F4, Parietal lobe: P3 and P4, Occipital lobe: O1, O2, and Temporal lobe: T3
and T4), and these integrated parameters for each part of the brain were included in the dataset
(4 bands × 4 parts = 16 parameters); however, in this study, the parameters for each band of the 16
channels (4 bands × 16 channels = 64 parameters) were used instead.

ECG

To investigate the activity of the autonomic nervous system, ECG signals were measured by an
ECG measuring device (WEB-7000, Nihonkohden, Japan) at a sampling rate of 1000 Hz. Electrodes
were attached to the bodies of participants with precordial leads. The peaks of R-waves were detected,
and the R-R interval (RRI—the time interval of two successive peaks of R-wave) was calculated from
the raw signals by utilizing a MATLAB program (Signal processing toolbox). The 10-s segments
of RRI data were utilized to calculate mean RRI values and coefficients of variation of RRI (CVRR).
Additionally, the RRI data were processed by the fast Fourier transform analysis with the Hanning
window. The PSD of each frequency band was also calculated: low frequency (LF)—0.04–0.15 Hz and
high frequency (HF)—0.15–0.45 Hz.

2.3. Experimental Protocol

The experiment was conducted with approval of the ethics committee of the University of Tokyo
(named the Office for Life Science Research Ethics and Safety). The experimental procedures were
sufficiently explained to the participants, and the participants gave written informed consent prior
to the experiment. To stabilize their physiological states, participants were asked to be seated in a
waiting room where the indoor temperature was set as 26 ◦C, which is a temperature known to be
thermally neutral [30], for 30 min. The sensors for measuring EEG and ECG signals were then attached
to the participants. Pre-driving was conducted for approximately five minutes prior to the main
driving session to accustom participants to the operation of the DS. The main driving session was then
performed for 30 min. A view of the experimental scene is shown in Figure 2.
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2.4. Data Analysis

2.4.1. Data Processing

A diagram of the data processing is shown in Figure 3. Preprocessing of the raw data, such as
filtering and artifact elimination, was conducted. The preprocessed data was segmented into 10-s
sections to investigate the feasibility of detecting driver drowsiness over a short timeframe using
hybrid measures. The values of drowsiness levels based on subjective evaluation of 80 features were
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extracted from the recorded video and measured data. The details of the extracted features are listed in
Table 2.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 13 
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Table 2. Details of extracted features.

Measurement Details Extracted Feature

Physiological Measures
Electroencephalogram

(EEG)

Delta, theta, alpha, and beta wave content of
16 channels

(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, and T6)

Electrocardiogram
(ECG)

Mean of R-R interval (RRI)
Coefficient of variation R-R interval (CVRR)
Low frequency per high frequency (LF/HF)

High frequency (HF) content

Behavioral Measures
Visual Behavior The number of eye blinks

Percentage of eye closure (PERCLOS)

Seat Pressure
Distance of centroid movement

X coordinate of the centroid
Y coordinate of the centroid

Vehicle based Measures DS Parameter

Vehicle velocity
Longitudinal acceleration

Offset from lane center (Lateral position)
Steering wheel acceleration (SWA)

Standard deviation of lateral position (SDLP)
Time headway (THW)

Time to lane crossing (TLC)

2.4.2. Classification of the Drowsy State Using Machine Learning Algorithms

To distinguish the drowsy state with high accuracy, two ensemble machine learning algorithms
were adopted in this study. The first algorithm is a majority voting classifier using LR, SVM, and
kNN. The second algorithm is an RF algorithm. A majority voting classifier (MVC) is an example
of a general ensemble algorithm. It is an algorithm that reflects the result of a majority vote based
on the results of three or more classifications. RF is an ensemble of decision tree models. An RF
algorithm can calculate the importance of features and run efficiently on large databases. In addition,
the classification using a decision tree algorithm was performed to compare with these two ensemble
machine learning algorithms. The datasets that were used for the above algorithms consisted of target
data and predictor data. The target data consisted of the drowsiness levels categorized as a whole
number from 0 (alert state) to 4 (extremely drowsy state) based on facial expression, as listed in Table 1.
The predictor data consisted of all the extracted features identified by hybrid measures and listed
in Table 2. To select the proper features that facilitate high-performance classification, sequential
backward selection was performed for the MVC (LR, SVM, and kNN) algorithms. Lasso method [31]
was used for performing regularization. For the RF algorithm, the numbers of features and estimators
that were used for classification were optimized to improve the classification performance. To validate
the classification performance indices, k-fold cross-validation was performed with k set to 5. As shown
in Figure 4, the dataset was randomly partitioned into five equally sized subsets. Among the subsets,
a single subset was used as the validation data for testing the model, and the remaining four subsets
were used as training data. After that, the cross-validation process was repeated five times, with each
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Finally, the performance of the algorithms was evaluated. In detail, the performance values of the
two classifiers were calculated using detection accuracy (Acc.), precision (Pre.), recall (Rec.) and F1,
which were defined in the following formulas (1)–(4).

Acc. =
TP + TN

FP + FN + TP + TN
(1)

Pre. =
TP

FP + TP
(2)

Rec. =
TP

FN + TP
(3)

F1 = 2×
Pre.×Rec.
Pre. + Rec.

(4)

(TP, TN, FP, and FN in the above formulas (1–4) indicate true positives, true negatives, false
positives, and false negatives, respectively.)

In addition, to discuss the priority order of the features, feature importance was calculated
by utilizing a machine learning library of Python program (Scikit-learn library) in the case of RF.
The importance of a feature is calculated as the total reduction in the mean decrease in impurity (Gini
importance index [25]) brought by that feature.

In order to consider the implementation of this data into a driving detection system, we investigated
how using physiological measures affects the performance of the system. This entailed an investigation
of the performance of the classification not only when all of the hybrid measures (a total of 80 features,
as listed in Table 2) were used, but also when hybrid measures without physiological measures
(12 features excluding features based on EEG and ECG measures) were used.

3. Results

3.1. Changes in Drowsiness Level and the Constitution of the Dataset

The changes in drowsiness level were investigated to confirm the validation of our experimental
setting. The trends of the changes in drowsiness levels of 16 participants were illustrated as a line graph
and error bar using mean and standard error of the mean (SEM) as shown in Figure 5. The drowsiness
level of drivers increased over time in this experiment; thus, it was confirmed that the experimental
setting was effective to increase the drowsiness level of participants. A dataset containing a total of
2847 rows was obtained from 30 min of driving by 16 participants after removing rows with missing
values due to bad conditions of measurement. The dataset consists of 986, 1038, 654, 149 and 20
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rows with drowsiness values of 0 (alert state), 1 (slightly drowsy state), 2 (moderately drowsy state),
3 (significantly drowsy state) and 4 (extremely drowsy state), respectively. The dataset of 2024 rows
(alert vs. slightly drowsy) and 1789 rows (alert vs. moderately drowsy or more) was used for the k-fold
cross-validation in which k was set to 5.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 13 

 

Figure 5. Changes in the mean of the drowsiness level, N = 16, Error bars represent SEM [20]. 

3.2. Performance of Drowsy State Classification Using Ensemble Machine Learning Algorithms 

The performance values of the classification of alert and drowsy state (alert vs. slightly drowsy, 

alert vs. moderately drowsy or more) in the case of using full hybrid measures are listed in Table 3. 

Two ensemble algorithms (MVC, RF) achieved higher values of all performance compared to the DT 

algorithm. The RF algorithm achieved especially higher values of detection accuracy, precision, and 

F1 compared to the MVC algorithm when classifying the alert and the slightly drowsy state; its 

detection accuracy was 82.4%. The MVC algorithm achieved higher values of detection accuracy, 

precision, and F1 compared to the RF algorithm when classifying the alert and the moderately (or 

more than moderately) drowsy states; its detection accuracy was 95.4%. 

The algorithms’ performance values in the case of excluding physiological indices are listed in 

Table 4. The RF algorithm achieved higher values of detection accuracy, precision, recall and F1 

compared to the MVC algorithm in all cases. The RF algorithm achieved values of 78.7% and 89.8% 

detection accuracy in the case of classifying the alert vs. slightly drowsy, and the alert vs. moderately 

drowsy states, respectively. When physiological measures were excluded, detection accuracy 

decreased by 3.7%~9.0% compared to the case in which all measures were used. 

The curves of receiver operating characteristic (ROC) and the value of the area under curve 

(AUC) for each condition are shown in Figure 6. The ROC curve is created by plotting the true 

positive rate against the false positive rate at various threshold settings [32]. The ROC of two 

ensemble algorithms (RF, MVC) show points in the upper-left corner compared to that of the DT 

algorithm in all cases. In addition, the ROC of the RF algorithm show points in the upper-left corner 

compared to that of the MVC algorithm in the case of excluding the physiological indices. 

The details of the selected features and the priority of the features used by the RF algorithms are 

listed in Table 5. When full hybrid measures were used, as shown in Table 5, PERCLOS was selected 

as the most important feature. RRI and THW was then selected as the second and the third important 

feature, respectively. On the other hand, when physiological indices were excluded, PERCLOS was 

still selected as the most important feature (Table 5). The y and x coordinate of the centroid was then 

selected as the second and the third important feature, respectively. 

Table 3. Classification results in the case of using full hybrid measures. 

Classifiers Cases (Alert State vs.) 
Performance of Classification 

Acc. (%) Pre. (%) Rec. (%) F1 (%) 

DT 
Slightly Drowsy 73.5 77.3 67.6 71.9 

Moderately Drowsy (or more) 90.4 90.4 88.3 89.3 

MVC 
Slightly Drowsy 82.0 84.5 78.6 81.4 

Moderately Drowsy (or more) 95.4 97.1 92.9 94.9 

RF 
Slightly Drowsy 82.4 81.6 84.1 82.8 

Moderately Drowsy (or more) 93.7 93.0 93.5 93.2 

 

  

Figure 5. Changes in the mean of the drowsiness level, N = 16, Error bars represent SEM [20].

3.2. Performance of Drowsy State Classification Using Ensemble Machine Learning Algorithms

The performance values of the classification of alert and drowsy state (alert vs. slightly drowsy,
alert vs. moderately drowsy or more) in the case of using full hybrid measures are listed in Table 3.
Two ensemble algorithms (MVC, RF) achieved higher values of all performance compared to the DT
algorithm. The RF algorithm achieved especially higher values of detection accuracy, precision, and F1
compared to the MVC algorithm when classifying the alert and the slightly drowsy state; its detection
accuracy was 82.4%. The MVC algorithm achieved higher values of detection accuracy, precision,
and F1 compared to the RF algorithm when classifying the alert and the moderately (or more than
moderately) drowsy states; its detection accuracy was 95.4%.

Table 3. Classification results in the case of using full hybrid measures.

Classifiers Cases (Alert State vs.)
Performance of Classification

Acc. (%) Pre. (%) Rec. (%) F1 (%)

DT
Slightly Drowsy 73.5 77.3 67.6 71.9

Moderately Drowsy (or more) 90.4 90.4 88.3 89.3

MVC
Slightly Drowsy 82.0 84.5 78.6 81.4

Moderately Drowsy (or more) 95.4 97.1 92.9 94.9

RF
Slightly Drowsy 82.4 81.6 84.1 82.8

Moderately Drowsy (or more) 93.7 93.0 93.5 93.2

The algorithms’ performance values in the case of excluding physiological indices are listed
in Table 4. The RF algorithm achieved higher values of detection accuracy, precision, recall and F1
compared to the MVC algorithm in all cases. The RF algorithm achieved values of 78.7% and 89.8%
detection accuracy in the case of classifying the alert vs. slightly drowsy, and the alert vs. moderately
drowsy states, respectively. When physiological measures were excluded, detection accuracy decreased
by 3.7%~9.0% compared to the case in which all measures were used.
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Table 4. Classification results in the case of excluding physiological indices.

Classifiers Cases (Alert State vs.)
Performance of Classification

Acc. (%) Pre. (%) Rec. (%) F1

DT
Slightly Drowsy 72.2 75.6 67.8 71.4

Moderately Drowsy (or more) 83.6 82.9 81.7 82.2

MVC
Slightly Drowsy 75.3 77.7 72.5 75.0

Moderately Drowsy (or more) 85.1 85.3 82.2 83.7

RF
Slightly Drowsy 78.7 79.9 78.0 78.9

Moderately Drowsy (or more) 89.8 88.7 89.5 89.1

The curves of receiver operating characteristic (ROC) and the value of the area under curve (AUC)
for each condition are shown in Figure 6. The ROC curve is created by plotting the true positive rate
against the false positive rate at various threshold settings [32]. The ROC of two ensemble algorithms
(RF, MVC) show points in the upper-left corner compared to that of the DT algorithm in all cases. In
addition, the ROC of the RF algorithm show points in the upper-left corner compared to that of the
MVC algorithm in the case of excluding the physiological indices.
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The details of the selected features and the priority of the features used by the RF algorithms are
listed in Table 5. When full hybrid measures were used, as shown in Table 5, PERCLOS was selected as
the most important feature. RRI and THW was then selected as the second and the third important
feature, respectively. On the other hand, when physiological indices were excluded, PERCLOS was
still selected as the most important feature (Table 5). The y and x coordinate of the centroid was then
selected as the second and the third important feature, respectively.
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Table 5. Priority of features in the case of using random forest algorithm (Top 10).

Priority Order Selected Feature in Case of Using Full
Hybrid Measures

Selected Feature in Case of Excluding
Physiological Indices

1 PERCLOS PERCLOS
2 RRI Y coordinate of the centroid
3 THW X coordinate of the centroid
4 X coordinate of the centroid THW
5 Y coordinate of the centroid Distance of centroid movement
6 The number of eye blinks The number of eye blinks
7 Beta wave content of F3 Offset from lane center
8 Beta wave content of Fp2 Vehicle velocity
9 HF content SDLP
10 Beta wave content of Fp1 SWA

4. Discussion

In this study, we investigated the accuracy of drowsiness detection with the optimization of
algorithms and utilization of ensemble machine learning to improve classification of the alert and
drowsy states of drivers. We focused on early state detection by performing detection of the slightly
drowsy state based on ensemble machine learning algorithms and hybrid measures applied to datasets
containing 10-s segments of data.

In the DS experiment, we validated that driver drowsiness level would increase in the scenario of
driving on a monotonous highway.

The RF algorithm was the best classifier in this study; it achieved 82.4% accuracy when classifying
the alert and the slightly drowsy state. The accuracy rates of the RF algorithm were slightly improved
compared with our previous results; this improvement is attributed to the optimization of the number
of features and estimators [20]. The accuracy rates of the RF algorithm were higher than that of the
MVC algorithm, excluding the conditions of full hybrid measures and alert vs. moderately drowsy.
PERCLOS and RRI, indices based on behavioral and physiological measures, were selected as the most
important features when using the RF algorithm. Features from EEG measures were also selected
as an important feature, as listed in Table 5. This suggests that the behavioral and physiological
response was more directly affected by changes in the drowsiness level of driver in the early stage
than driving performance. This demonstrates the validity of behavioral and physiological measures
for early detection of driver drowsiness. In their previous study, Awais et al. [12] showed that 80.9%
detection accuracy can be achieved using hybrid features consisting of EEG- and ECG-based data when
classifying the alert and drowsy state, but not the slightly drowsy state. Li and Chung [33] showed that
96.2% detection accuracy can be achieved using hybrid features consisting of EEG and head-movement.
However, head-movement did not occur in the slightly drowsy state based on Zilberg’s criteria (it could
occur in the significantly drowsy state based on the same criteria). In the present study, as shown in
Figure 7, up to 78.7% detection accuracy was obtained by utilizing the hybrid measures excluding
physiological indices in the case of classifying the alert and the slightly drowsy states. Previous
studies focused on EEG-based data that require direct contact with the driver for measurement. It was
generally agreed that the implementation of a direct-contact physiological measurement system in
the vehicle was more difficult than other measurement systems using non-contact sensors. Although
the performance values in past studies were low for the experiments that did not use contact sensors
compared to the ones that performed classification using full hybrid measures with contact sensors, this
study demonstrates the feasibility of early detection of driver drowsiness using non-contact sensors.

In the case of classifying the alert and moderately (or more than moderately) drowsy states, the
accuracy rate was approximately 10% higher than that in the case of classifying the alert and the
slightly drowsy. Detection accuracy of 89.8% was obtained by utilizing the hybrid measures excluding
physiological indices, as shown in Figure 7. This indicates that a system could be implemented to
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improve driver safety without disturbing comfort by installing an alarm system that operates separately
in cases of the driver being in a slightly drowsy or moderately drowsy state.

There were several limitations in the present study. The number of participants was insufficient, and
all participants in the experiment were males in their 20s. Previous studies showed that the participant’s
age and gender affects driving behavior [34,35]; therefore, further studies to increase the number of
participants, and to clarify the effects of age and gender on driving performance during drowsy driving,
should be conducted in order to further improve the reliability of the classification algorithm. Furthermore,
vibration, changes in gravity, sound, etc., in an experiment using a driving simulator are different from
real vehicle driving. Since these factors directly affect the indices of physiological measures such as seat
pressure, further investigation is needed to improve the applicability of the classification algorithm and
accomplish the detection of drowsy drivers in real vehicle driving. As for analysis of drowsiness level
based on facial expression, our method based on Zilberg’s criteria [3] has a limitation caused by the
subjective evaluation of drowsiness level. To improve the objectivity of the evaluation of the drowsiness
level, further investigation that applies the selection method of the drowsiness level such as the Fuzzy
Analytic Hierarchy Process [36] is required. In addition, to improve the performance, further investigations
of machine methods are needed, and these points are our future works.
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5. Conclusions

Focused on the early detection of driver drowsiness, we attempted to classify alert and slightly
drowsy states with machine learning algorithms based on hybrid measures of driving performance,
behavioral features, and physiological indices. A dataset containing 10-s segments of data was created
from the hybrid measures recorded during a DS experiment. The classification of alert and slightly
drowsy states was performed with several machine learning algorithms. The results show that the
RF algorithm can obtain 78.7% accuracy when classifying alert vs. slightly drowsy states utilizing
hybrid measures and excluding physiological measures. These results demonstrate the feasibility of
early detection of a driver’s slightly drowsy state with high accuracy based on hybrid measures using
non-contact sensors. In future work, we will further improve the reliability and applicability of the
drowsiness detection system through real driving experiments.
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