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Abstract: In an intelligent smart city like Sejong city in Korea, automatic and smart software is
absolutely necessary for autonomous traffic and vehicles control systems. Therefore, these systems
need to have an accurate and timely performance; otherwise, safety issues may arise. To resolve
this, we propose our code visualization approach to adapt an object-oriented smart traffic control
simulator, which analyzes Java code’s complexity and identifies bad codes against performance.
To achieve an accurate performance, we must repeatedly perform refactoring until attaining a range
of system-defined performances through effective code visualization. As a result, we enhance the
code complexity of the cyber-physical system-based software to achieve the exact performance.
With this approach, we expect to obtain an accurate performance and complexity improvement of the
object-oriented traffic control simulator without significant power consumption.

Keywords: cyber-physical system (CPS); SW performance; code visualization; refactoring;
SW complexity

1. Introduction

In the fourth Industrial Revolution, the smart Sejong city in Korea is focused on solving energy
and transportation problems including environmental monitoring, traffic information analysis,
utility monitoring, public transportation, and incident reporting. Development of smart cities
requires smart technologies and smart infrastructure. Software plays a key role in integrating these
technologies. The cyber-physical system (CPS) technology is used to monitor and integrate smart
city technologies [1,2]. CPS connects the general objects of the physical world with various computer
functions of a complex system. Furthermore, CPS may include an extended concept of the existing
embedded system, which has limited resources such as available power and memory and performance
limitations leading to several operational problems [3]. Therefore, it is necessary that the software
should operate reliably to deliver a high performance even in a limited resource environment.

Today’s embedded systems have evolved from a simple to a complex structure with numerous
computing units. These systems require accurate performance and diverse functions, which may
necessitate huge and complex source codes, but CPS-based software performance or quality cannot be
guaranteed [4,5]. Therefore, to overcome this problem, we propose code visualization for performance
measurement and improvement of CPS-based software, especially Java code, through static analysis.
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The procedure is as follows. (1) First, extract information by parsing the source code for identifying the
internal structure of the CPS Software code and store the extracted information into our defined DB
tables. (2) Thereafter, define queries to represent the internal structure based on our defined quality
factors such as the coupling and cohesion indicators, and the performance degradation factor patterns.
(3) Extract these patterns with a RuleChecker (programming mistake detector, PMD) [6]. (4) Measure
the quantitative SW performance by using profilers. (5) Visualize the measured coupling indicators,
performance degradation factors, and profiling information from the extracted inner structure of the
code. (6) Finally, recommend improving the low-quality and critical code up to its defined quality
factors, which aids in performance enhancement of the code. This method is expected to improve the
performance and quality of CPS-based software.

This paper is structured as follows. Section 2 mentions the related materials and methods.
Section 3 describes the performance measurement mechanism of Java code for a CPS-based smart
traffic control simulator, the performance improvement of the system, and the case studies. The last
section presents the conclusions and future scope.

2. Materials and Methods

2.1. Software Complexity

Software complexity includes the various characteristics of every module that affect the interactions
within a software [7]. Over the last two decades, various complexity calculation techniques have been
proposed in object-oriented programming systems. Traditional software complexity measurement
metrics include McCabe’s cyclomatic [8], Halstead’s complexity measure [9], and Knot metrics [10].
We consider software coupling based on McCabe’s complexity for measuring complexity metrics.

In general, if the level of cyclomatic complexity is more than 10–15, software management is
difficult. For example, Microsoft Developer Network (MSDN) states that the complexity should
not exceed 25 [11]. The Software Engineering Institute (SEI) of Carnegie Mellon summarizes the
requirements for complexity and error rate, as shown in Table 1.

Table 1. Relationship between software complexity and error rate.

Complexity Error Rate

Less than 10 5%

11~20 20%

21~50 41%

More than 51 60%

Cyclomatic complexity has the advantage of quantitatively presenting the complexity of a program.
We specifically consider the increasing complexity within/between modules in the order of data, stamp,
control, external, shared, and content coupling [8,12]. Therefore, content coupling is more complex
than data coupling.

Cyclomatic complexity and Halstead’s complexity measure are numerically represented and easy
to understand for developers. However, these metrics cannot provide the detailed complexity between
the modules of a software. Although the calculation uses part of the program, it is not perfect. Coupling
can, however, accurately express the complexity between the modules in a software. This method
also makes it easy to understand the basic control structures of a software. In this study, we apply the
coupling method based on McCabe’s complexity to reduce the code complexity of a software.

2.2. Tools for Software Performance Analysis

Profiling is a dynamic program analysis method that measures the time complexity together with
the space of a program, the use of specific commands, and the frequency of function calls [13,14].
Common performance analysis tools use a variety of techniques to collect hardware and software
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information. In this study, we use a profiler to verify the performance improvement through detecting
and refactoring performance degradation factors.

Typically, Java applications run on top of a Java virtual machine. Therefore, traditional profiling
methods cannot collect much detailed information. In Table 2, we list the Java profilers used for
measuring the performance of Java applications that apply the profiler in the development of
automation tools.

Table 2. Comparison of Java profilers. JVM, Java virtual machine.

Profiler
Live

Object
Analysis

CPU
Sampling

Heap
Trace

Thread
Analysis

Method
Analysis

Standalone
(Console) CallTree Open

Source
Automation
Possibilities Specificity

JMemProf # × # × × × × # ×
Ant

Dependency

Java
memory
profiler
(JMP)

# × # # # × × # ×
Writing Code

Directly

NetBeans
Profiler # # # # # × # # ×

Net Bean IDE
Dependency

JAMon
API × × × × # × # # ×

Writing Code
Directly

JBoss
Profiler × × × × # # × # ×

Java Server
Application
Only (Using

API)

Java
Interactive

Profiler
(JIP)

# # # × # # # # #

Network
Communication

required
between the

JVM

Profiler4j × # # × # # # # ×

Network
Communication

required
between the

JVM

Hprof # # # × # # × # #

Profiler
provided by

default in
Oracle

JMemProf analyzes the information on the running objects and the information stored in heap
memory when the application is run dynamically [15]. JMemProf has some limitations in that it does
not extract reaction-speed data and depends on a Java build tool called Ant. Therefore, this tool cannot
be used for automation purposes.

Java memory profiler (JMP) is a Java Application Programming Interface (API) based on the
Java virtual machine tools interface (JVMTI) [16]. This tool does not profile CPU applications while
profiling Java applications, but extracts information about running objects, heap memory, thread
information, and method information during actual execution. This tool is also difficult to apply to
automation processes.

NetBeans Profiler is a plug-in profiler provided by NetBeans Integrated Development Environment
(IDE). This profiler can obtain data of heap, Central Processing Unit (CPU), and event through the Java
virtual machine tools interface (JVMTI) [17]. However, this profiler is just dependent on the integrated
development system of NetBeans. So automation is almost impossible.

JAMon provides an API for measuring the performance of web applications written in
Java [18]. However, because this profiler only provides API, it is quite difficult to automate
performance measurement.

JBoss Profiler extracts all information (method execution count, CPU usage, execution time, thread
share, and so on) necessary for measuring the speed of the program [19]. However, JBoss Profiler is
difficult to apply to actual automation because of only running on JBoss WebApplication Server.
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Java interactive profiler (JIP) has less overhead costs and is used by applications to interoperate
profiles of multiple applications [20]. However, it is very inconvenient because it needs to communicate
with the JVM and has the ProcessID (PID) each time data is extracted.

Profiler4j is a Java profiler based on bytecode instrumentation [21]. This tool simply enters
the source code file of the project and connects to the JVM to automatically profile it. Profiler4j is
unstable for overall performance measurement. Therefore, this tool is not suitable for extracting and
visualizing information.

Finally, Hprof can obtain information such as CPU utilization, heap allocation statistics, and
monitor contention profiles [22]. The resulting data from Hprof are automatically printed to a text file
after profiling. Hprof displays information in the order of rank, cumulative, count, and method. This
information is run from the command line and automatically creates a data file. Therefore, we choose
this profiler to be the best for visualizing the performance of Java code.

2.3. Related Studies of Smart City’s Software

A smart city is a technology that combines smart technology and smart infrastructure. Smart
software plays an important role in integrating these technologies. One part of a smart city is focusing
on solving transportation problems such as traffic information analysis, transportation monitoring,
public transportation systems, and accident reporting. In particular, a smart city, Sejong, in Korea needs
smart software for autonomous traffic systems, pedestrian control systems, and vehicle control systems,
which are directly linked to safety issues. These systems must be accurate and perform at the right
time. For this, many researchers are conducting various studies on safety, reliability, and performance.

In [23], Anilloy Frank et al. proposed an Internet of Things (IoT)-based traffic control system to
overcome the effects of traffic congestion. The proposed system measures the actual traffic density on
the road and uses real-time video image processing technology. The system also determines traffic
density on both sides of the road and activates the user’s software application to control traffic.

In [24], Omar Abdel Wahab et al. deals with the problem of detecting and identifying malicious
vehicles CEAP (collection, exchange, analysis, propagation), which is a cluster-based intelligent
detection model for malicious vehicles. This model combines support vector machine (SVM)
classification and monitoring concepts to optimize the decision-making process. This method uses
machine learning techniques of SVM in an incremental and online manner to classify whether or
not multi-agent Vehicular Ad-Hoc Network (VANET)’s smart vehicles are cooperative. This method
collaboratively collects representative evidence to make an integrated decision, and analyzes the
collected data using online SVM. This method can improve the accuracy of detection and the routing
process, and then reduce false information.

In [25], quality of service optimized link state routing (QoS-OLSR) protocol deals with the VANET
clustering problem. Many researchers have proposed several clustering algorithms for VANET and
MANETs (mobile ad hoc networks). However, mobility-based algorithms ignore the quality of service
requirements that are important to VANET’s safety, emergency, and multimedia services. Moreover,
because the QoS algorithm is dedicated to MANET, it ignores high-speed mobility constraints. To solve
these problems, QoS-OLSR [25] proposed a method of forming a stable cluster and maintaining stability
in the event of communication or link failure and satisfying service quality requirements.

In [26], Ke Hong claims that performance, security, and safety are necessary because our daily
lives are rapidly relying on smart-end systems such as smartphones, wearable devices, and emerging
autonomous vehicles. These types of assurance are essential to the design and implementation of
software for smart-end systems. The current system lacks the ability to test and verify performance,
security, and safety requirements for software against new attempts. Therefore, this study proposes the
test method of smart-end systems’ performance, security, and safety requirements; detection of important
security principles through program analysis; and verification of compliance with safety requirements.

These studies are important as a way to solve traffic problems in smart cities. However, each
study is slightly different as follows. The work of [23] has developed a system for traffic control. In
contrast, [24] and [25] are about the stability and service on the network, which is different from the
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purpose of our study. In [26], the research is related to the performance, security, and verification of
the software in the smart end system, which is like the purpose of our study. However, this research
attempts to develop a secure software by testing and verifying the requirements of performance,
security, and safety aspects of the smart-end-system. In contrast, our paper analyzes the complexity of
inner code structure through our visualization method, and guides bad code structures for refactoring to
enhance software performance. As a result, the improved code is improved in quality and performance
compared with the existing code. These factors are different from other researchers [23–26].

3. Performance Measurement Mechanism for Java Codes

Figure 1 shows the performance measurement and quality improvement process for smart traffic
control simulator’s code written in Java [27,28]. This process consists of four steps: code visualization,
extracting performance degradation factors, performance measurement, and SW quality improvement.

The first step is to visualize the internal structure of the Java code by code visualization.
We improved the quality of the software by measuring its coupling based on the visualized results.
Step 2 uses the RuleChecker to define the rule for that pattern. We thereafter extracted the elements that
violate the rule that is newly defined. The extracted information is stored in the database as an Extensible
Markup Language (XML) file. Step 3 involves performance measurement and dynamically analyzes the
Java code using the Hpof profiler. The software performance is measured using dynamically analyzed
results. HprofDataExtractor refines the data extracted by the profiler into XML data. Step 4 improves
software quality by refactoring to reduce software complexity and performance degradation factors.

Finally, steps 1, 3, and 4 are repeated until satisfactory and accurate performance is achieved.
The steps are described in the following subsections.

Figure 1. Performance measurement mechanism for Java code of cyber-physical system (CPS)-based
traffic control simulator. PMD, programming mistake detector.

Step 1: Code Visualization

Code visualization is the process of visualizing the internal complex structure of a source code
and improving the software quality based on coupling and cohesion [29,30]. Code visualization can
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consist of either commercial or open sources. Even though commercial tools are expensive and limited
to linking and expanding with other open sources, we can plug and play with the static analysis, that
is, critical important functions of them. In addition, open source tools are flexible, but have important
functions than commercial tools. In this paper, we just use open source tools (Source Navigator, SQLite,
Graphviz) for the flexible construction of code visualization. For example, source navigator (SN) parses
source code [31], SQLite can store the analyzed data in database tables [32], and Graphviz creates
images of data extracted from database tables [33]. In our other case, we did plug and play these tool
chains with the static analysis of the commercial Liverpool Data Research Associates (LDRA) tool.

Figure 2 shows a code visualization process such as analyzing a Source Navigator Database
(SNDB) file, extracting code information, saving data to DB table, defining quality indicators, and
visualizing code.

Figure 2. Code visualization process.

(1) Analyzing SNDB File: Store the data analyzed by the SN into SNDB files. Thereafter, input the
program source code into the SN, and extract the information from the source code analyzed by
static analysis. The SNDB file contains the complete information of the code program such as
function information, local variables, global variables, and parameters. Figure 3 shows the SNDB
files generated after parsing the SN.

Figure 3. SNDB files generated after parsing the source navigator (SN).

SNDB files are in the form of binary files (.cl, .con, .e, .fu, .gv, .iv, and so on) at the source analysis
stage. These file formats can be converted to text data that can be directly read using DBdubmp.exe.

(2) Extracting Code Information: Extract all code information using DBdump.
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(3) Saving Database: Save data in each table of DB. The tables of the database are SNDB_BY,
SNDB_CL, SNDB_IN, SNDB_IV, SNDB_LV, and SNDB_MD, respectively. SNDB_BY stores the
referenced class name, SYMBOL name, and SYMBOL type; SNDB_IN contains information
such as subclasses and inherited classes; SNDB_IV contains information on member variables;
SNDB_LV contains information on local variables; while SNDB_MD contains information about
the method.

(4) Defining Quality Indicators: Define the quality indicators to determine the quantitative
measurement score and make the query for extracting the degree of coupling strength for
high quality of the software.

Figure 4 shows the types of coupling strength [34]. As the content coupling in a module increases,
the density of coupling increases. In other words, as the degree of coupling strength increases, the
complexity increases. Therefore, in order to improve software complexity, the degree of coupling
strength must be lowered. In this study, we investigated how to extract data coupling and stamp
coupling. For this purpose, we entered the information extracted from the SN into DB tables of SQLite,
and thereafter defined queries to identify and measure coupling in source codes.

Figure 4. Types of coupling strength.

Table 3 shows the example of source codes and queries used to extract data and stamp coupling.
An example of a data coupling method is ‘dataTest’ of data class. This method directly enters the value
of the basic scalar data type. An example of stamp coupling is to create a SampleDataClass, input the
data, and pass the class as a parameter of stampTest of the stamp class.

Table 3. Example of code and queries for extracting data and stamp coupling.

Coupling Sample Source Code Query

Data Data data = new Data();
data dataTest(1, 1.01f, 2, 2);

Select REFER_CLASS_NAME, REFER_SYMBOL_NAME,
REFERREED_CLASS_NAME, Referred_symbol_name, from

SNDB_BY where referred_type = ’mi’

Stamp

Stamp stmp = new Stamp();
SampleDataClass sdc = new

SampleDataClass(1, 1.01f, 2, 2);
Stmp.stampTest(sdc);

Select argument_types from SNDB_MD where class_name =
‘“ + class + ”’ and method_name = ‘“ + method + ”’

In addition, the query for extracting data coupling is called the class (REFER_CLASS_NAME)
called from the SNDB_BY table, the name of the symbol (REFER_SYMBOL_NAME), and the name of
the class (REFERRED_CLASS_NAME) and symbol (REFERRED_SBOL_NAME). The extracting query
sets the condition of ‘Referred_type’ to ‘mi’. The query only detects the method call part.

The query of stamp coupling receives the parameter (argument_types) data from the SNDB_MD
(method definition) table. This query is entered in the ‘isData_Stamp_True’ method to determine
the type of coupling. We defined queries to identify and measure coupling in source codes for other
couplings such as control, external, common, and content.

(5) Visualizing Code: The quality indicators are quantified using the extracted information. Thereafter,
it extracts code data by using a query called ‘GenerateDotContents’. The Graph Description
Language (DOT) script quantifies the quality indicator value. Subsequently, the Graphviz tool
displays quantified values from the DOT script. Finally, it extracts the data into an image file.
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Step 2: Patterns and Rules Checking for Performance Degradation Factors

To visualize CPS-based code performance, we create patterns and rules for the performance
degradation factors [28,29]. Some factors of performance degradation are loop unrolling and loop
down count, unnecessary control statements of the inner loops, and multiple if-then-else, among others.
We used PMD (XPath) for rule extraction.

Programming mistake detector (PMD) is JAVA’s static analysis tool [6], which can identify
non-standard and potential problems in source code that the compiler cannot find. The main function
of PMD is to extract high-value classes by analyzing dead code, empty if/while statements, excessive
and complex expressions, unoptimized code, redundant code, as well as cyclomatic complexity.
For C/C++ code, CPPCheck can automatically detect patterns by defining them in the source code
as regular expressions and manually entering extraction paths [35]. For Java code, PMD is executed
instead of CPPCheck from the command line, and users can add new rules, that is, PMD provides its
own PMD rule designer, so we only need to create XPath rules.

Table 4 shows code patterns for performance degradation and rules for regular expression and
XPath. For C/C++ code, we mentioned the regular expression pattern for loop unrolling and loop down
count in detail [36,37]. The example code of Table 4 is increased by 1 from 0 to 1000 in the ‘for statement’.
The sum variable adds the ‘i-th’ value of the array. In this code, to detect ‘ i < 1000; i ++’ in the target
code, ‘i’ is a variable. The first character of a variable cannot be a number. Thus, the first character
of the variable is defined as ‘[a–z, A-Z, _]’. All other characters of the variable can be any character,
number, or ‘_’. Therefore, the remaining characters of the variable are defined as ‘([a-z, A-Z, _, 0-9]) *’.
Thereafter, the iterator is recognized regardless of the length. To compare values inside a conditional
expression ‘i <1000′, ‘\&lt;’ is used for ‘<‘ and ‘([0-9]) +’ is used for 1000 as numeric values to compare
conditions. For the incremental expression i++, the variable expression ‘[a-z,A-Z,_]([a-z,A-Z,_,0-9])*’ is
used, as described earlier. For the postfix increment ‘++’, ‘\+ \+’ is used.

Table 4. Code patterns and rules of performance degradation. PMD, programming mistake detector.

Pattern Name Code Pattern Regular Expression Rule (for C) XPath Rule (PMD) (for Java)

(1) Loop
unrolling and
loop down count

int sum = 0;
for (int I = 0; i<1000; i++)
{
sum + = array[i];
}

[a-z,A-Z,_]([a-z,A-Z,_,0-9])* \&lt;
([0-9])+;
[a-z,A-Z,_]([a-z,A-Z,_,0-9])* \+\+

//ForUpdate//
PostfixExpression[@Image=’++’]

(2) Unnecessary
control
statements of
inner loops

for(I = 0; i<1000; i++){
if(i&&0 × 01) {
do_odd(i);
}else{
do_even(i);
}
}

[a-z,A-Z,_]([a-z,A-Z,_,0-9])* \&lt;
([0-9])+;
[a-z,A-Z,_]([a-z,A-Z,_,0-9])* \+\+\)
\{
if\(

//ForStatement//Statement//Block//
BlockStatement//Statement//IfStatement

(3) Multiple
if-then-else

if (a==1){
}else if (a==2){
}else if (a==3){
}else if (a==4){
}.....

if\(
([a-z,A-Z,_,0-9, \b, \s, \+„ V, \*,
\%%, -\&gt;, \&gt;, \&lt;, \[, \]])*
==
([0-9])+\)

//Statement//IfStatement[@Else=’true’]

Figure 5 shows the XPath extraction method using the PMD rule designer [6]. For a Java code,
the user enters the Java code in the PMD rule designer in step 1O of Figure 5, and clicks the Go button
in step 2O. At this time, the PMD rule designer generates the Abstract Syntax Tree (AST) tree in step
3O. Using the generated AST tree, the user inputs the XPath query to extract in Step 4O. Finally, the

PMD rule designer automatically generates XML of an XPath query in Step 5O. The XPath of code (1)
in Table 5 is as follows:

//ForUpdate//PostfixExpression[@Image=’++’]
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Figure 5. XPath extraction method using the PMD rule designer.

In this Java code, ‘ForUpdate’ refers to a ‘for statement’. The PostfixExpression [@Image = ’++’]
means that the postfix expression is a ‘++’ value in the ‘for statement’. This pattern can detect all
patterns such as the loop unrolling and loop down count example code. The pattern of unnecessary
control statements of inner loops detects a condition that contains unnecessary conditional statements
inside the loop. In the code pattern of pattern (2) in Table 4, ‘i’ of the ‘for statement’ is increased by 1
from 0 to 1000. The ‘i’ increases by 1 from 0 to 1000 in the ‘for statement’. In the ‘for statement’, if the
result of ‘i && 0x01′ is true, the ‘do_odd ()’ method will be executed.

For C/C++ code [12], the regular expression of this pattern is as follows. This pattern represents
the termination and incremental conditions of the ‘for statement’, like the loop unrolling and loop
down count pattern. Thereafter, the opening of the body is indicated by “{“. Finally, the beginning of
the ‘if-statement’ is expressed as (“if \ (“).

For Java, the XPath of the code pattern of unnecessary control statements of inner loops is
composed of ‘for’, ‘block’, and ‘if’ statements, which are expressed as follows:

//ForStatement//Statement//Block//BlockStatement//Statement//IfStatement

Multiple if-then-else statements determine various conditions with one variable. This code can
create various conditions through the value of the ‘a’ variable. In Table 4, for C/C++ code [12], the
regular expression of the code pattern of pattern (3) is as follows. The beginning of an ‘if-statement’
is represented by ‘if \ (’. The variable inside the if statement (a) is represented by ‘([a-z,A-Z,_,0-9,
\b, \s, \+„ V, \*, \%%, -\&gt;, \&gt;, \&lt;, \[, \]])*’. To compare the ‘a’ value, use ‘==‘ sign. Finally,
the number is represented as ‘([0-9]) + \)’. For Java code, the XPath of the code pattern of pattern (3)
extracts the pattern in which the else statement is true.

Step 3: Performance Measurement (Profiling)

We assume that it is not important to measure the performance of all software. For software
performance measurement, we detect degradation factors, and simultaneously measure the
performance of those modules based on the primary language paradigm such as the basic statements,
loops statements, branch statements, and calling mechanisms. We apply Hprof to measure the speed
and resource usage of Java code for CPS [27].

Figure 6 shows the process of HProf execution. HProf runs during compilation of Java source
codes and stores the bytecodes required for the profile in a class file. Thereafter, Hprof executes the
class file and communicates with the JVM. Finally, we obtain four usage modes analyzed from the
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source code such as heap allocation profiles, heap dump, CPU usage sampling profiles, and CPU
usage time profile. However, we focus on using the CPU usage time profile in our study. This mode
visualizes the number of executions and time information during the execution of the Java methods.

Figure 6. HProf execution process. JVM, Java virtual machine.

Figure 7 shows the profile mode of CPU usage time. Part 1O of Figure 6 is the ‘Total’ data as
the last execution time of the Java application. Part 2O is the ‘Rank’ as the rank of occupancy of real
time. Part 3O is the ‘Self’ as the execution time of the method itself. Part 4O is the ‘Accum’ as the total
cumulative time. The performance time of the method is calculated by comparing the CPU usage
profile data with the overall time.

Figure 7. Result of CPU usage time profile mode.

Step 4: Software Visualization
Data collected in steps 1–3 are stored in a database (using SQLite). On the basis of this data,

we create DotScript programs to visualize the internal structure of the software. Thereafter, we
can generate the visual graph to illustrate SW complexity results, performance determinants, and
performance measurement results of the original code. With this visualization, we show the inner
problematic parts of the original source code. After refactoring with the problematic parts, we can
rebuild the visualization with the improved results.

Step 5: Repeat steps 1, 3, and 4 until a satisfactory and accurate performance is achieved.
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4. Results

In the hardware-based RoboCAR control system of Hanback Electronics Company in Korea,
they need to have the software simulator of RoboCAR system to control remotely their hardware
car, and then monitor their sensing data in real time as a training tool for education. Therefore, we
developed a robot development system as a concept of simulation based on a virtual environment
that deals an abstracted model with real hardware. In particular, the smart traffic control system in a
smart city requires autonomous traffic control for people and vehicles. To achieve this, sophisticated
and standardized software development is required. Therefore, many Korean software companies are
doing their own research and development in their own way.

We show a smart traffic control simulator in Figure 8. In a virtual environment, this tool can
simulate a variety of environments and situations (camera simulation, traffic light control, multiple
vehicle creation, and so on) before operating a real smart traffic control system. In addition, the tool
can create virtual robot cars, and simulate them with simultaneously operating the real car in a real
environment. The smart traffic control simulator controls simulated models through the center screen.
They can make a new robot car model with the part modules on the left of the screen, and represent the
location data of the property window on the right of the screen. Table 5 describes detailed components
of the smart traffic control simulator. The smart traffic control simulator consists of a menu bar, shortcut
icon bar, model view tool bar, simulation view tab, property window, and output window.

Figure 8. Smart traffic control simulator.
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Table 5. Components of the smart traffic control simulator.

Number Name Description

1 MenuBar Provide functions related to simulation such as saving,
loading, starting, and stopping.

2 Icon Bar Frequent used icons among the functions in the menu bar.

3 Model View Assemble with part modules of the simulation view.

4 ToolBar Provides tools for drawing robot models.

5 Simulation View Tab Manage multiple simulation views.

6 Simulation View Screen for running a robot model.

7 Property Manage properties of robot model.

8 Output Output the robot modeling and debugging results.

Figure 9 shows a test platform of a smart traffic system to test on a smart traffic control simulator.

Figure 9. Test platform of a smart traffic light system.

We published ‘Evaluation of a Smart Traffic Light System with an IOT-based Connective
Mechanism’ to apply with a smart traffic control simulator to connect with the Internet of Things (IoT)
technology [38]. With this, it is possible to extract the data needed to build an efficient and smart traffic
signal mechanism. On the test platform with the simulator, the efficiency of smart traffic signals can be
verified in a simulation environment.

Figure 10 shows the code visualization of the smart traffic control simulator. This is the result of
code visualization. In Figure 10, part 1O is the module that is inside the simulator package. Part 2O is
the module that is defined out of the simulator. Part 3O indicates the highest score of strong coupling
between modules. Part 4O indicates each score of coupling with external modules. Both DirectionCtrl
and RobotModelingSimulationView are called from the CarModule of part 5O with the red bolded arrows,
which have strong couplings of modules among the visualization results.
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Figure 10. Inner code visualization of smart traffic control simulator before refactoring.

For example, DirectionCtrl of the red box in part 1O has (8, 260, and 5), where 8 means the number
of calls, 260 means execution time [ms], and 5 means the number of performance degradation factors.
The module also has a red-color incoming arrow with [D*23][S*23][CL*23]=138.0, where D means
23 times of data coupling, S means 23 times of stamp coupling, CL means 23 times of control coupling,
and their sum is 138.0.

To optimize the modules, we set the extraction criteria based on improving the coupling for
refactoring. The extraction criteria are that the number of methods is 15. Here, the extracted module
was displayed in red color. With this visualization of bad code patterns based on our defined quality
indicators, we can easily be guided to rewrite the original code for better quality, that is, refactoring.

This section may be divided by subheadings. It should provide a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions that can
be drawn.
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4.1. Improving Coupling

The method of improving the couplings of the smart traffic control simulator is as follows.
The degree of coupling is improved in the order of (1) stamp coupling-> data coupling and (2) external
coupling-> data/stamp coupling. For reusability, we refactored the coupling of the smart traffic
control system.

In the ‘Before’ area of Figure 11, we show the source code with the stamp coupling before
refactoring. In other words, a source code ‘StampTest’ receives a SampleDataClass object as a parameter
and executes a ‘result +=’ statement with the getA(), getB(), getC(), and getD() methods of object c in a
loop of the for statement.

Figure 11. Enhancement of performance after refactoring stamp into data coupling.

Meanwhile, in the ‘After’ area of Figure 11, we refactor with the data coupling as directly taking a
parameter without calculating from the internal data of the object. In the graph on the right of Figure 11,
we show the performance enhancement when refactoring from stamp coupling to data coupling. The
processing speed is 1.1686 [ms] for stamp coupling and 1.1617 [ms] for data coupling. This coupling
change yields a 0.59% performance improvement. When the data are received as an object through a
parameter, it is copied in memory, but a copy is not made when data are directly received.

In the ‘Before’ area of Figure 12, we show the external coupling before refactoring. The random.txt
file is read through the FileReader object. The corresponding FileReader object is entered into the
BufferedReader class to read the data in random.txt through the BufferedReader object. As each
line goes by, data are added to an Arraylist called arr, and the operation is performed inside the
loop through the data. However, the external coupling cannot be completely eliminated in ‘Before’.
Therefore, in the ‘After’ area of Figure 12, we improved the external coupling in three ways. The first
way is to create a method that only loaded the data directly as in part 1O and set it as private to prevent
direct access. In the second method, as in part 2O, the code sets up a getter that uses the data in another
module. Finally, as in part 3O, we refactor to accept only the ArrayList through the parameter and
perform the operation. The improvement results are shown in the lower left graph. In the case of
external coupling, the processing speed is 0.04236 [ms], and after refactoring with data/stamp coupling,
the processing speed is 0.0198 [ms], which is improved by 55.85%.

As a result, we refactor the high coupling into the low coupling for software complexity. However,
performance improvements are achieved in the case of stamp and refactoring of external coupling,
which may be recommended.
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Figure 12. Enhancement of performance after refactoring external into data/stamp coupling.

4.2. Enhancement of Performance Degradation Factors

We define and detect degradation factor patterns to improve the performance of the smart traffic
control simulator.

Figure 13 shows the source code for improving loop unrolling before and after refactoring.
The case that is before improvement repeated the operation with i increasing by 1 from 0 to 1,000,000.
Thereafter, we divide the sum by i*1.93. The code after the improvement can improve the performance
by executing the functions in one iteration from i to i + 3 at once and the total number of iterations
is reduced by 25%. The result is a 0.21% performance improvement that is increased by running all
the loops, which takes 3.3849 [ms], and running less iterations, which takes 3.3841 [ms], that is, the
performance is improved as the number of iterations decreases.

Figure 13. Before and after improving loop unrolling.

Figure 14 shows the source code before and after improving the loop down counter. In the source
code before improvement, ‘i’ increased by 1 from 0 to 1,000,000. In the code after the improvement,
we set the initial value of ‘i’ to 1,000,000, decreased ‘i’ by 1, and repeated until ‘i’ is zero. As a result,
each execution time before and after the improvement is 3.86 [ms] and 3.85 [ms], respectively. Therefore,
the performance is improved by about 0.26%. Compared with the up counter before improvement,
the down counter does not allocate a register to store the final value. The down counter does not
compare the value with zero each time. It can also reduce one command that compares ‘i’ with
a number.



Appl. Sci. 2020, 10, 2880 16 of 22

Figure 14. Before and after improving loop down counter.

Figure 15 shows the source code before and after the improvement for unnecessary control
statements inside the loop. In this code, ‘i’ is increased by 1 from 0 to 1,000,000. Here, we discuss the
code (‘if (i% 4 == 0)’). If the remainder is different, this code performs different functions through
an ‘if statement’. The result of the performance measurement is 90.72 [ms]. Meanwhile, like the
previous loop unrolling, it performs i ~ i + 3 at once and reduces the number of repetitions to 25% of
the original code. The performance measurement result of this method is 53.82 [ms]. In other words,
the performance measurement time is reduced from 90.72 [ms] to 53.82 [ms], and 40.67% improvement
is achieved. The reason for the improvement is that the branch does not execute because the ‘if then
else statement’ inside the loop is missing. In addition, the code after the improvement has reduced the
number of iterations like loop unrolling.

Figure 15. Before and after improving unnecessary control statement inside the loop.

Figure 16 shows the source code before and after the improvement for multiple if-then-else
statements. The code before improvement differs from the remainder when the codes are divided
by 5 through multiple if-then-else statements. Depending on the remainder, the sum value of the
code may have a different value. Refactoring this code into a switch-case statement puts ‘i%5′ in the
conditional statement of the switch statement. Depending on the value obtained from the result, the
code for different case statements is executed. The improved code takes 664.993 [ms]. In other words,
the performance measurement time is reduced from 686.377 [ms] to 664.993 [ms]. This means that
there is a 3.12% performance improvement. The reason for the improvement is that, when multiple if
then else statements are executed, all the conditions are compared. The function is performed on the
branch statement that also satisfies the condition. However, the code that is improved with switch-case
statements can perform functions at once without requiring multiple comparisons.
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Figure 16. Before and after improving multiple if-then-else statements.

4.3. Result of Refactoring

Figure 17 presents the improved result. At the three checkpoint times, we can enhance the inner
complexity of the simulators, which have low couplings between modules.

Figure 17. Improved result.
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5. Discussion

We showed the performance measurement and quality improvement process in Section 3.
In Section 4, we applied the proposed method to the smart traffic control simulator. In this section,
we compare the results of both before and after refactoring about the smart traffic control simulator to
evaluate the proposed approach.

5.1. Refactoring Results in Terms of the Level of the Coupling Mechanism

Table 6 lists the results of the improvement in the complexity of each module including
CarModule, DirectionCtrl, CarSimulation, Vehicle, Object_Management_Group, Profile, tagged_value,
_tagMotorStatus, and tagCrosswalk_traffic_light at each checkpoint time. However, it is not necessary
to refactor the tagged_value, _tagMotorStatus, and tagCrosswalk_traffic_light modules because of
their 0 complexity values. The second row of Table 5 shows the complexity values of the code before
refactoring at the first baseline time. There are decreasing complexity values at each checkpoint time
after refactoring, that is, we get low complexity values for all modules at the three checkpoint times.

Table 6. Refactoring results.

Checkpoint

Weights of
Coupling CarModule DirectionCtrl CarSimulation Vehicle

Object_
Management_

Group
Profile Tagged_

value
_tagmotorStatus tagCrosswalk_

traffic_light

Baseline 138 + 36 =
174 12 6 + 12 + 6 = 24

96 + 12 +
6 + 28 =

142
8 20 + 6

= 26
20 + 18

= 38 0 0

Checkpoint1 113 + 36 =
149 12 6 + 12 + 6 = 24

72 + 12 +
6 + 28 =

118
8 15 + 6

= 21
16 + 14

= 30 0 0

Checkpoint2 97 + 32 =
129 7 2 + 8 + 2 = 12

29 + 3 +
6 + 18 =

56
3 16 + 6

= 22
12 + 10

= 22 0 0

Checkpoint3 92 + 17 =
109 2 2 + 3 + 2 = 7

28 + 3 +
6 + 10 =

47
3 11 + 6

= 17
7 + 6 =

13 0 0

The difference between couplings scores of CarModule is reduced as 174 – 109 = 65. Additionally,
the difference between coupling scores of vehicle is also reduced as 142 – 47 = 95. The coupling
scores of the remaining modules are also reduced. Here, the coupling score of _tagmotorStatus and
tagCrosswalk_traffic_light is 0. This means that those codes are the dead codes. Therefore, deleting these
two modules does not affect the entire code.

5.2. Identification Results in Terms of Performance Degradation Factors of the Basic Control Structures
of ‘CarModule’

Figure 18 shows the performance between before and after refactoring of the smart traffic control
simulator. After identifying CarModule with the highest coupling value of baseline time in terms of
the level of the coupling mechanism in Table 5, we focus on improving the performance degradation
factors of CarModule. In Figure 18, we show the original information of ‘before-refactoring’ with
the number of calling, execution time [ms], number of performance degradation factors such as
Multiple_if_then_else(1000000, 686.3778[ms], 4), and the changed information of ‘after-refactoring’ such
as Multiple_if_then_else(1000000, 664.9939[ms], 0).
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Figure 18. Code performance view between ‘before’ and ‘after’ refactoring.

In other words, before refactoring, we can see the number of degradation factors. As we show
above, “multiple_if_then_else” modules have the digit 4. “Loop_3” module has 1, “Loop_2” module
has 8, and “Loop_1” module has 1. After refactoring, we see an improvement in the values of these
degradation factors to zero. The execution time between the modules is reduced, which implies that
the CPS-based software speed has improved after refactoring of the code. Our approach extracts the
bad code pattern of the source code based on quality factors. Thereafter, we visualize these code parts
for refactoring.

5.3. Performance Result in Terms of Performance Measurement

Figure 19 depicts the methods of a ‘CarModule’ with performance indicators such as execution
time and the number of executions. We show performance measurements before and after refactoring
methods of the same CarModule, which represented the method name, execution frequency, and
execution time. The arrows connect between before and after refactoring the methods. The arrow
value denotes the changed execution time. For example, a comparison was drawn for the vehicleCtrl
method before and after refactoring. The difference value between these methods was −2347.4297 [ms],
which indicated that the performance speed has improved after refactoring of the code.

Figure 19. Detailed class view with performance indicators on CarModule.
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Table 7 shows the performance measurement results. The total execution time before improvement
is 24,801.455 [ms]. The total run time after improvement is 23,966.994 [ms]. The difference of the
execution time of the CarModule from after to before is −834.4615 [ms]. Thus, we reduce the execution
time of the most complex CarModule through refactoring.

Table 7. Performance measurement results.

Refactoring

Performance
Before After Difference Value

registerCar 5787.1406 6981.6704 1194.5298

vehicleCtrl 7338.604 4991.1743 −2347.4297

daaProto 5109.2686 5705.621 596.3524

getMetaInf 6566.442 6288.528 −277.914

Total 24,801.455 23,966.994 −834.4615

6. Conclusions

In this study, we propose a performance measurement mechanism of Java code for identifying high
quality CPS-based software. For this purpose, we incorporate our code visualization approach into an
object-oriented smart traffic control simulator, which analyzes Java code’s complexity and identifies
bad codes against performance. To achieve an accurate performance, we can perform refactoring until
arriving within a range of system-defined performances through effective code visualization. For this
purpose, we perform dynamic analysis using the Java performance measurement tool (HProf), which
extracts information about the execution speed and frequency of a particular method. As a result, we
enhance the code complexity of the CPS-based software to obtain the exact performance.

In future studies, we will consider all performance degradation factors and their relationships for
resolving the dependent performance problem of basic control structures.
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