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Abstract: Automated pig monitoring is an important issue in the surveillance environment of a pig farm.
For a large-scale pig farm in particular, practical issues such as monitoring cost should be considered
but such consideration based on low-cost embedded boards has not yet been reported. Since low-cost
embedded boards have more limited computing power than typical PCs and have tradeoffs between
execution speed and accuracy, achieving fast and accurate detection of individual pigs for “on-device”
pig monitoring applications is very challenging. Therefore, in this paper, we propose a method for
the fast detection of individual pigs by reducing the computational workload of 3 × 3 convolution
in widely-used, deep learning-based object detectors. Then, in order to recover the accuracy of the
“light-weight” deep learning-based object detector, we generate a three-channel composite image
as its input image, through “simple” image preprocessing techniques. Our experimental results
on an NVIDIA Jetson Nano embedded board show that the proposed method can improve the
integrated performance of both execution speed and accuracy of widely-used, deep learning-based
object detectors, by a factor of up to 8.7.

Keywords: agriculture IT; computer vision; pig detection; embedded board; image preprocessing;
light-weight deep learning; YOLO; TinyYOLO

1. Introduction

The early detection and management of problems related to the health and welfare of individual
livestock are important issues [1–5]. Pigs, in particular, are highly susceptible to many diseases and
stresses due to many pigs in a “closed” pig room. In Korea, for example, five million pigs out of 20 million
pigs die every typical year, according to statistics published by the Korean government [6]. Therefore,
it is essential to minimize the potential problems (i.e., infectious diseases, hygiene deterioration, etc.)
with individual pigs. However, farms generally have few farm workers relative to the number of pigs
in a pig farm. For example, the pig farm from which we have obtained video monitoring data in Korea
in the past had more than 2000 pigs per farm worker. It is almost impossible to take care of many
individual pigs with a small number of farm workers. Therefore, the basic purpose of this solution is
to identify the number of pigs in a room and to prevent deaths of individual pigs caused by potential
problems (i.e., infectious diseases, deterioration of hygiene, etc.) using early detection of abnormalities.

Since the early 1990s, many studies have reported the use of surveillance techniques to solve the
health and welfare problems in a pig room [7–9]. By using these camera-based surveillance techniques,
for example, we can recognize the biter and the victim piglets of tail-biting in order to reduce the damage of
the aggressive behavior. For analyzing this type of motion behavior, it is essential to detect individual pigs
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in each video frame because object detection is the first step for various types of vision-based high-level
analysis. Although many researchers have reported the detection of pigs with typical learning and
image processing techniques, the detection accuracy for highly occluded images may not be acceptable.
Recently, end-to-end deep learning techniques have been proposed for object detection and thus some
deep learning-based pig detection results have been reported very recently, in addition to results using
typical learning and image processing techniques (see Table 1) [10–48]. However, “end-to-end” deep
learning techniques that accept the input images directly without any image processing steps require
a large number of parameters and heavy computational workload. For continuous video monitoring,
such as various high-level analysis of pig monitoring, processing each video frame without delay is
required. In the process of a large-scale installation, the problem of increased network bandwidth and
heavy analyzation workload of the server arises due to the server requiring large-scale image data
(i.e., video stream). In order to provide a practical method for pig monitoring system, it is efficient to
analyze the data in a built-in device system that supports small-sized data processing after the data
has been gathered [49]. Furthermore, we should consider practical issues, such as the monitoring cost,
for large-scale pig farms. In Korea, for example, there is a large-scale pig farm having about 1000 pig rooms
and the farm owner emphasized to us of the “installation/maintenance cost” in applying any vision-based
monitoring solution to his farm. Additionally, due to the severe “ammonia gas” in a closed pig room,
many pigs die from wasting disease and any PCB board will be corroded faster than normal monitoring
environments. Therefore, a low-cost solution (rather than a typical PC-based solution) is required for
“practical” monitoring of a pig room. Considering the effect of both the reduction in installation and
the management costs through edge computing such as that shown in Reference [49], we can extend
the solution for many high-level vision-based analyses, such as aggressive behavior analysis, in order to
reduce damage to a pig farm by using a single embedded board.

In this study, we focus on detecting individual pigs with a low-cost embedded board to analyze
individual pigs cost effectively, with the ultimate goal of 24 h monitoring in a large-scale pig farm.
We propose first a “light-weight” version of a deep learning technique for detecting pigs with a low-cost
embedded board. However, such light-weight object detector may not satisfy the accuracy requirement.
To improve the accuracy of the light-weight object detector, we “preprocess” an input image in order
to generate a three-channel composite image for the light-weight object detector, using simple image
processing techniques. By effectively combining light-weight image processing and deep learning
techniques, we can simultaneously satisfy both execution speed and accuracy requirements with
a low-cost embedded board. The contribution of the proposed method can be summarized as follows:

• Individual pigs are detected with a low-cost embedded board, such as an NVIDIA Jetson Nano [50].
Although many pig detection methods have been proposed with typical PCs, an embedded
board-based pig detection method is proposed here, to the best of our knowledge for the first
time. Since low-cost embedded boards have more limited computing power than typical PCs,
fast and accurate detection of individual pigs for low-cost pig monitoring applications is very
challenging. Because this research direction for a light-weight pig detector is a kind of “on-device”
AI [51–55], it can also contribute to the on-device AI community.

• For satisfying both execution speed and accuracy requirements with a low-cost embedded board,
we first reduce the computational workload of 3 × 3 convolution of a deep learning-based object
detector, in order to get a light-weight version of it. Then, with simple image preprocessing steps,
we generate a three-channel composite image as an input image for the light-weight object detector,
in order to improve the accuracy of the light-weight object detector. With this fast and accurate
pig detector, we can integrate additional high-level vision tasks for continuous monitoring of
individual pigs, in order to reduce the damage of a pig farm.

This paper is organized as follows: Section 2 summarizes previous pig detection methods. Section 3
describes the proposed method to detect pigs efficiently by using light-weight image processing and
deep learning techniques. Section 4 explains the details of the experimental results, while Section 5
concludes the paper.
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2. Background

The final goal of this study is to analyze the behavior of individual pigs automatically over 24
h in a cost-effective manner. In general, a low-cost camera, such as the Intel RealSense camera [56],
can be used for the individual pig detection with color, infrared and depth input images. However,
we cannot guarantee to get the color input image at night because many pig farms turn off the light
at night. Therefore, we exclude the color image in this study for 24-h monitoring. Furthermore,
the accuracy of each input image obtained from the low-cost camera may not be satisfactory for
accurate pig detection. Figure 1b shows the detection results by adaptive thresholding technique [57]
with the infrared and depth input images. Note that depth images produce inferior results than
those with infrared images. Therefore, we use infrared input image to detect the individual pigs
at daytime and nighttime. Note that, a typical color image such as RGB consists of three-channels
(i.e., 24 bits) information while an infrared image consists of one-channel (i.e., 8 bits) information.
From the one-channel infrared input image, we can carefully generate a three-channel “composite”
image which can contain more useful information to detect individual pigs. The image preprocessing
steps to generate a three-channel composite image will be described in Section 3.1.
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Figure 1. The foreground detection results of the infrared and depth input images with adaptive
thresholding [57] and TinyYOLO [58] techniques. Some pig parts are missed, while some background
parts are included. Furthermore, it is difficult to detect each individual pig among the pigs in contact
with each other. (a) Input images (b) Image processing results (c) TinyYOLO results.

Recently, end-to-end deep learning techniques have been widely applied to many image processing
problems. For example, CNN-based methods, such as R-CNN [59], Fast R-CNN [60] and Faster
R-CNN [61], have been proposed for end-to-end object detectors. In particular, You Only Look Once
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(YOLO) [58] has been proposed as a single-shot object detector, in order to improve the execution times
of those many-shot object detectors, such as R-CNN, Fast R-CNN and Faster R-CNN. TinyYOLO [58]
is a tiny version of YOLO that has been developed for embedded board implementations. Figure 1c
shows the detection results of individual pigs with TinyYOLO. In the results, many pigs are detected
correctly but some pigs are missed with both the color and infrared input images. Therefore, we should
consider the complementary information to improve the detection accuracy of the individual pigs.

Table 1 summarizes the previous methods for pig detection [10–48]. Due to individual pigs
having high mortality rate, the owners face difficulty at identifying exact number of pigs which lead to
management problems. Considering how this may result in various potential problems (i.e., contagious
infection and hygiene deterioration), therefore, removing it in the early stage is ideal. Hence, the primary
purpose of solving this issue would be identification of the number of pigs and mortality prevention
using early detection of abnormalities. For previous research on identification, References [11,16–18,
20–22,24–26,29,31,38,44–48] for detection and References [10,19,37,39,45] for tracking exist. In addition,
previous studies for early detection of abnormalities exist as various topics, including research on
the movement of pigs [17,62], research on aggressive behavior of pigs [63,64], research on attitude
change [16,22,23,31,32,34,35,40,46], research on mounting behavior [21], research on low-growth pig’s
behavior [49], research on pig weight [29,33,38] and research on the density of pigs [9,11].

It is also essential to meet the execution speed requirement, in order to process the successive video
frames without delay. However, many previous methods did not report the execution times. Among
the previous methods of reporting the execution times, only the deep learning-based method [44]
can satisfy both requirements of individual pig detection. However, none of the previous methods
reported the pig detection using embedded boards. In a large-scale pig farm, a “cost effective” solution
is definitely required. As explained, a low-cost solution (rather than a typical PC-based solution) is
additionally required due to the severe ammonia gas in a closed pig room. However, since low-cost
embedded boards have more limited computing power than typical PCs, the fast and accurate detection
of individual pigs for “on-device” pig monitoring applications is very challenging.

To the best of our knowledge, this paper is the first report on how to improve the accuracy of
individual pig detection with an embedded board, while satisfying the execution speed requirement,
by using the complementary techniques of light-weight image processing and deep learning. That is,
we first remove less-important 3 × 3 convolutional filters of a deep learning–based object detector,
in order to obtain a light-weight version of it. Then, we generate a three-channel composite image as
an input image for the light-weight object detector, in order to improve its accuracy.

Table 1. Some of the recent pig detection results (published during 2010–2019).

Target
Platform Data Size No. of Pigs

in a Pen
Detection
Technique

Individual
Detection of Pigs

Execution Time
(ms) Reference

PC

Not Specified Not Specified Image Processing No Not Specified [10]
720 × 540 12 Image Processing Yes 220 (PC) [11]
768 × 576 Not Specified Image Processing No 1000 (PC) [12]
768 × 576 Not Specified Image Processing No 500 (PC) [13]
150 × 113 Not Specified Image Processing No 250 (PC) [14]
640 × 480 9 Learning No Not Specified [15]
720 × 576 9 Image Processing Yes Not Specified [16]
1280 × 720 7–13 Image Processing Yes Not Specified [17]
Not Specified 3 Image Processing Yes Not Specified [18]
352 × 288 Not Specified Learning No 236 (PC) [19]
640 × 480 22–23 Image Processing Yes Not Specified [20]
640 × 480 22 Image Processing Yes Not Specified [21]
Not Specified 17–20 Image Processing Yes Not Specified [22]
256 × 256 Not Specified Image Processing No Not Specified [23]



Appl. Sci. 2020, 10, 2878 5 of 22

Table 1. Cont.

Target
Platform Data Size No. of Pigs

in a Pen
Detection
Technique

Individual
Detection of Pigs

Execution Time
(ms) Reference

1760 × 1840 Not Specified Image Processing Yes Not Specified [24]
1280 × 720 23 Image Processing Yes 971 (PC) [25]
Not Specified 2–12 Image Processing Yes Not Specified [26]
320 × 240 Not Specified Image Processing No Not Specified [27]
512 × 424 Not Specified Image Processing No Not Specified [28]
1440 × 1440 Not Specified Image Processing Yes 1606 (PC) [29]
960 × 540 1 Deep Learning No Not Specified [30]
2560 × 1440 4 Deep Learning Yes Not Specified [31]
Not Specified 1 Image Processing No Not Specified [32]
640 × 480 Not Specified Image Processing No Not Specified [33]
512 × 424 1 Image Processing No Not Specified [34]
512 × 424 Not Specified Image Processing No Not Specified [35]
512 × 424 1 Image Processing No Not Specified [36]
1294 × 964 1 Image Processing No Not Specified [37]
512 × 424 19 Image Processing Yes 142 (PC) [38]
512 × 424 1 Deep Learning No 50 (PC) [39]
512 × 424 22 Image Processing No 56 (PC) [40]
512 × 424 13 Image Processing No 2 (PC) [41]
640 × 480 22, 24 Image Processing No 60 (PC) [42]
1280 × 720 9 Image Processing No 8 (PC) [43]
1920 × 1080 9 Deep Learning Yes 42 (PC) [44]
960 × 720 ~30 Image Processing Yes Not Specified [45]
1920 × 1080 Not Specified Deep Learning Yes 250 (PC) [46]
1024 × 768 4 Image Processing Yes 921 (PC) [47]
Not Specified Not Specified Deep Learning Yes 500 (PC) [48]

Embedded
Board 1280 × 720 9 Image Processing

Deep Learning Yes 29.08 * (Nano) Proposed
Method

* computed with a pipelined implementation.

3. Proposed Method

In this study, we selected TinyYOLO [58] as our base model and improved both of its execution
speed and accuracy. As explained in Section 2, TinyYOLO is a tiny version of YOLO [58] which
is a widely used single-shot object detector. Although TinyYOLO is targeted for embedded board
implementations, its computational workload cannot satisfy the execution speed requirement for our
target embedded board such as Jetson Nano [50]. Furthermore, it is well known that reducing the
computational workload of tiny networks without degrading accuracy is much more difficult than that
of larger networks [55].

In order to reduce the computational workload of TinyYOLO, we first apply the filter clustering
for each 3 × 3 convolutional layer of TinyYOLO and group them into a cluster having the maximum
convolution value. In fact, the proposed filter clustering (FC) algorithm is a kind of filter pruning
techniques [65] widely used for compressing deep networks. Unlike previous filter pruning
techniques [65–71], however, the proposed FC algorithm can determine a pruning rate for each
3 × 3 convolutional layer separately and systematically. Then, we apply the bottleneck structuring
(BS) algorithm to the result of the FC algorithm to obtain EmbeddedPigYOLO (i.e., light-weight
version of TinyYOLO). For example, we apply the bottleneck structure [72] by replacing each 3 × 3 × i
convolutional filter with 1 × 1 × i/4, 3 × 3 × i/4 and 1 × 1 × i convolutional filters, in order to reduce the
computational workload of each 3 × 3 × i convolutional filter further.

After reducing the computational workload of TinyYOLO, we need to improve the accuracy of
EmbeddedPigYOLO. Our idea is to use the otherwise-idle CPU to allow EmbeddedPigYOLO to focus
on individual pigs with the image preprocessing (IP) module. That is, in order to recover the accuracy
of EmbeddedPigYOLO which is executed on GPU, we use CPU to generate a three-channel composite
image as an input image for EmbeddedPigYOLO. In this study, the composite image is generated for
focusing on the possible pig regions in a pig room. That is, the three-channel composite image can
give complementary information to EmbeddedPigDet (i.e., IP + EmbeddedPigYOLO) and thus let
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EmbeddedPigDet focus on individual pigs. Note that the computing power of an embedded CPU
in a Nano is lower than that of a CPU in a typical PC. Based on our previous studies, we carefully
evaluate each image preprocessing step, in order to understand the execution speed-accuracy tradeoff

in the IP module.
Figure 2 shows the whole process of detecting individual pigs in embedded board environments.

Note that the FC and BS algorithms are executed once during the training phase in order to determine the
number of convolutional filters in EmbeddedPigYOLO and thus the IP module and EmbeddedPigYOLO
are executed during the test phase.
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Figure 2. Overview of the proposed method EmbeddedPigDet consisting of image preprocessing (IP),
filter clustering (FC) and bottleneck structuring (BS).

3.1. Image Preprocessing (IP) Module

The objective of this module is to generate attention information to allow EmbeddedPigYOLO to
focus on individual pigs and reduce the effect of illumination variation. Figure 3 shows the infrared input
images at different illumination conditions (i.e., at 2 AM and 8 AM). Even with the infrared input images,
the gray values at 2 AM are generally darker than those at 8 AM. Furthermore, the gray values of a pig
at 2 AM are too dark to detect foreground (i.e., pig) from background, whereas strong sunlight through
a window at 8 AM generates many illumination noises and deletes the texture information of some
pigs. By reducing the effect of this illumination variation, we want to separate pigs from background
(i.e., foreground detection) and separate individual pigs from a pig group (i.e., outline detection).

In this study, we consider two basic image preprocessing steps to help EmbeddedPigYOLO detect
individual pigs. That is, we apply the contrast-limited adaptive histogram equalization (CLAHE)
technique [73] in order to focus on the possible pig regions in a pig room. From the infrared input
images having illumination variation, the objective of this technique is to maximize the “inter-class”
variation (i.e., the gray values between pigs and background should be different) and minimize the
“intra-class” variation (i.e., the gray values of pigs should be similar, regardless of its observed location
and time) simultaneously. Therefore, we apply CLAHE twice with different parameter values in order
to maximize the inter-class variation (block size = 2 × 2, clip limit = 160 and denoted as CLAHE1) and
minimize the intra-class variation (block size = 16 × 16, clip limit = 12 and denoted as CLAHE2).
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Figure 3. Infrared, CLAHE1, CLAHE2 and composite images at different illumination conditions.

Finally, these preprocessed images are concatenated with the infrared input image in order to
generate a three-channel composite image, which is used as an input image for EmbeddedPigYOLO.
As shown in Figure 3, the composite image is less affected by the illumination conditions, compared to
the infrared input image. Although the qualities of these image preprocessing steps are not ideal, we can
utilize this complementary and attention information to improve the accuracy of EmbeddedPigYOLO.
Furthermore, with a pipeline execution between CPU and GPU, the additional CPU time for this
module can be hidden by the GPU time for EmbeddedPigYOLO (see Section 4.3).

3.2. Filter Clustering (FC) Module

As previously explained, we focus on pruning 3 × 3 convolutional filters. As each filter in a 3 × 3
convolutional layer plays the role of a feature extractor, multiple filters extracting a similar feature
can be grouped into the same cluster. For this clustering, we first prepare 511 features, which can be
made with a 3 × 3 binary pattern. Then, each filter in a 3 × 3 convolutional layer is convolved with
511 features and is grouped into a cluster having the maximum convolution value. At the end of the
clustering, some clusters may contain multiple filters. We simply select the filter having the maximum
convolution value in each cluster containing multiple filters.
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As shown in Figure 4, for example, there are 32 filters in a 3 × 3 convolutional layer. Then, #1 filter
goes to #2 cluster (i.e., #1 filter has the maximum convolution value with #2 feature and thus goes to #2
cluster), whereas #2 filter and #32 filter go to #511 cluster. Between #2 filter and #32 filter contained in
#511 cluster, we simply select #32 filter as its convolution value is larger than that of #2 filter. Through
this FC step, we can reduce the number of filters in each convolutional layer.
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Figure 4. Illustration of the filter clustering algorithm.

EmbeddedPigYOLO (with FC) shown in Tables 2 and 3 represents the result of the FC module from
TinyYOLOv2 [74] and TinyYOLOv3 [75] with pig training set, respectively. Note that, for the purpose
of explanation, we denote the result from TinyYOLOv2 and TinyYOLOv3 as EmbeddedPigYOLO(v2)
and EmbeddedPigYOLO(v3), respectively. The previous filter pruning techniques [65–71] removed
half of the filters (i.e., 50% pruning rate) from each convolutional layer, regardless of the training set.
However, each convolutional layer can have different importance and thus, different numbers of filters
may need to be pruned from each convolutional layer. Since the FC module determines a pruning
rate for each 3 × 3 convolutional layer separately depending on the training set, the number of filters
determined by the FC module can be “odd” numbers (e.g., 61 in Conv3, 197 in Conv5, 349 in Conv7
and 353 in Conv8 shown in Table 2).

3.3. Bottleneck Structuring (BS) module

As previously explained, we apply the bottleneck structure [72] to reduce the computational
workload of EmbeddedPigYOLO (with FC) further. In this study, we use the bottleneck structure
(by a factor of four). For example, we apply the bottleneck structure by replacing each 3 × 3 × i
convolutional filters with 1 × 1 × i/4, 3 × 3 × i/4 and 1 × 1 × i convolutional filters. Since the number of
filters determined by the FC module can be even numbers, we derive the minimum number that can
satisfy the bottleneck structure (by a factor of four). For example, for 3 × 3 × 61 convolutional filters in
Conv3 shown in Table 2, the BS module generates the result as 1 × 1 × 16, 3 × 3 × 16 and 1 × 1 × 64
convolutional filters.
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Table 2. Comparison between TinyYOLOv2 [74] and EmbeddedPigYOLO(v2) with pig data set.

TinyYOLOv2 [70] EmbeddedPigYOLO(v2)

Filter Filter with FC Filter with FC+BS

Conv1 3 × 3 (16) 3 × 3 (16) 3 × 3 (16)

Conv2 3 ×3 (32) 3 × 3 (32)
1 × 1 (8)
3 × 3 (8)

1 × 1 (32)

Conv3 3 × 3 (64) 3 × 3 (61)
1 × 1 (16)
3 × 3 (16)
1 × 1 (64)

Conv4 3 × 3 (128) 3 × 3 (114)
1 × 1 (29)
3 × 3 (29)

1 × 1 (116)

Conv5 3 × 3 (256) 3 × 3 (197)
1 × 1 (50)
3 × 3 (50)

1 × 1 (200)

Conv6 3 × 3 (512) 3 × 3 (256)
1 × 1 (64)
3 × 3 (64)
1×1 (256)

Conv7 3 × 3 (1024) 3 × 3 (349)
1 × 1 (88)
3 × 3 (88)

1 × 1 (352)

Conv8 3 × 3 (1024) 3 × 3 (353)
1 × 1 (89)
3 × 3 (89)

1 × 1 (356)

Table 3. Comparison between TinyYOLOv3 [75] and EmbeddedPigYOLO(v3) with pig data set.

TinyYOLOv3 [71] EmbeddedPigYOLO(v3)

Filter Filter with FC Filter with FC+BS

Conv1 3 × 3 (16) 3 × 3 (16) 3 × 3 (16)

Conv2 3 × 3 (32) 3 × 3 (31)
1 × 1 (8)
3 × 3 (8)

1 × 1 (32)

Conv3 3 × 3 (64) 3 × 3 (60)
1 × 1 (15)
3 × 3 (15)
1 × 1 (60)

Conv4 3 × 3 (128) 3 × 3 (115)
1 × 1 (29)
3 × 3 (29)

1 × 1 (116)

Conv5 3 × 3 (256) 3 × 3 (204)
1 × 1 (51)
3 × 3 (51)

1 × 1 (204)

Conv6 3 × 3 (512) 3 × 3 (261)
1 × 1 (66)
3 × 3 (66)

1 × 1 (264)

Conv7 3 × 3 (1024) 3 × 3 (335)
1 × 1 (84)
3 × 3 (84)

1 × 1 (336)

Conv8 1 × 1 (256) 1 × 1 (256) 1 × 1 (256)

Conv9 3 × 3 (512) 3 × 3 (234)
1 × 1 (59)
3 × 3 (59)

1 × 1 (236)

Conv10 1 × 1 (128) 1 × 1 (128) 1 × 1 (128)

Conv11 3 × 3 (256) 3 × 3 (148)
1 × 1 (37)
3 × 3 (37)

1 × 1 (148)
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EmbeddedPigYOLO (with FC+BS) shown in Tables 2 and 3 represents the result of the BS module
from EmbeddedPigYOLO (with FC). For Conv1 of TinyYOLO, the actual execution time of applying
the bottleneck structure was longer than that of Conv1 and thus, we did not apply the bottleneck
structure to Conv1. With this EmbeddedPigYOLO (i.e., light-weight version of TinyYOLO) and the
three-channel composite image (through the IP module), the proposed EmbeddedPigDet can improve
both execution speed and accuracy of TinyYOLO simultaneously.

4. Experimental Results

4.1. Experimental Setup and Resources for the Experiment

For the purpose of comparison, our individual pig detection experiments were conducted in
the following PC as well as low-cost NVIDIA Jetson (NVIDIA, Santa Clara, CA, USA) environments:
Ubuntu 16.04.2 LTS (Canonical Ltd., London, UK), OpenCV 4.1 for image processing [76], and

• PC: Intel Core i5-9400F 2.90 GHz (Intel, Santa Clara, CA, USA), NVIDIA GeForce RTX2080 Ti
(NVIDIA, Santa Clara, CA, USA), 32 GB RAM.

• Jetson TX-2 [77]: dual-core Denver 2 64-bit CPU and quad-core ARM A57 complex, NVIDIA
Pascal™ architecture with 256 NVIDIA CUDA cores, 8 GB 128-bit LPDDR4.

• Jetson Nano [50]: quad-core ARM A57 complex, NVIDIA Maxwell™ architecture with 128 NVIDIA
CUDA cores, 4 GB 64-bit LPDDR4.

We conducted the experiment in a 3.2 m tall and 2.0 m wide × 4.9 m long pigsty at Chungbuk
National University and installed a low-cost Intel RealSense camera (D435 model, Intel, Santa Clara, CA,
USA) [56] on the ceiling to obtain the images. A total of nine pigs (Duroc × Landrace × Yorkshire) were
raised in a pig room and the average initial body weight of each pig was (92.5 ± 5.9) kg. We acquired
color, infrared and depth images through the low-cost camera installed on the ceiling and each image
had a resolution of 1280 × 720, at 30 frames per second (fps). Figure 5 shows a pig room with a camera
installed on the ceiling. To exclude the unnecessary region of the pig room, we set Region of Interest
(RoI) as 608 × 288.
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Figure 5. Experimental setup with Intel RealSense low-cost camera.

From the camera, we acquired 2904 training images and then trained EmbeddedPigYOLO (0.0001
for learning rate, 0.0005 for decay, 0.9 for momentum, leaky ReLU as the activation function, default
anchor parameter and 20,000 for the iterations). Then, we obtained 1000 test images and conducted
the test with light-weight image preprocessing and deep learning modules. The reported accuracy
was the average of five-fold cross validation. Also, we implemented the proposed methods with
YOLOv2 [74] and YOLOv3 [75], respectively (i.e., EmbeddedPigYOLO(v2) and EmbeddedPigDet(v2),
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EmbeddedPigYOLO(v3) and EmbeddedPigDet(v3)). With COCO data set [78], YOLOv3 could improve
meaningfully the accuracy of YOLOv2 with additional computational workload [79]. In pig detection,
however, the accuracy of YOLOv3 was similar to that of YOLOv2 but YOLOv3 was much (i.e., by a factor
of 2) slower than YOLOv2. In the following, therefore, we reported the performance of YOLOv2
related methods only.

4.2. Evaluation of Detection Performance

The main steps of the proposed method are to create a composite image from infrared input images
using the image preprocessing (IP) module and then run EmbeddedPigYOLO with the composite image.
Figure 6 shows the results of detecting pigs through EmbeddedPigDet (i.e., IP + EmbeddedPigYOLO).
To evaluate the effect of the IP module of EmbeddedPigDet qualitatively, the results of TinyYOLO
with the infrared images were also shown in Figure 6. The 2 AM and 8 PM images were night-time
images and there were many pigs lying on the floor. Therefore, in these images, pixel values of pigs
and background had similar values. On the other hand, the 8 AM and 2 PM images were daytime
images. There was sunlight in the room and pigs moved relatively a lot in the daytime images. As we
confirm in Figure 6, EmbeddedPigDet performed well in difficult detection situations, such as similar
pixel values with background and sunlight.
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Figure 6. Detection results of TinyYOLOv2 with infrared images and EmbeddedPigDet(v2) with
composite images.

In fact, this detection accuracy of EmbeddedPigDet was largely due to the IP module. In order to
evaluate the effect of the IP module quantitatively, we compare the quality of the infrared input images
and the three-channel composite images by using the following metrics:

mean =
1

MN

N−1∑
i=0

M−1∑
j=0

Ii j (1)
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where Ii j is the image value at (i, j) of N ×M image.

contrast =

√√√√
1

MN

N−1∑
i=0

M−1∑
j=0

(Ii j −mean)2 (2)

entropy = −
255∑
k=0

Pklog2Pk (3)

where Pk is the proportion of the pixel value k.

Table 4. Comparison of image quality between the input and composite images.

Mean Contrast Entropy

Input Composite Input Composite Input Composite

2 AM 52.76 92.43 0.27 0.41 4.44 5.23

8 AM 74.94 103.82 0.28 0.40 4.53 5.30

2 PM 54.25 95.12 0.22 0.40 4.40 5.25

8 PM 41.19 87.75 0.18 0.38 4.06 5.16

Table 4 compares the values of mean, contrast and entropy of the input image with those of the
composite image. At 8 AM, note that, there was strong sunlight in the input image through a window
in the pig room and thus the values of mean, contrast and entropy of the input image at that time period
were relatively larger than those at other time periods. Based on the difference between mean values of
the input and composite images, we could confirm that, generally, the darker input image became
brighter in the composite image after the IP module (see Figure 6). Also, larger values of contrast
and entropy generally indicate better image quality. Because the values of contrast and entropy were
increased after the IP module, better image quality of the composite image could help to improve the
detection accuracy.

4.3. Comparison of Detection Performance

In order to evaluate the execution speed and the accuracy of the proposed method, we compared
it with YOLOv2 [74] and TinyYOLOv2 [74]. YOLO is one of the most widely used “single-shot” object
detectors, because it is faster than “multi-shot” object detectors. As explained, TinyYOLO is a tiny
version of YOLO and thus YOLO can detect individual pigs more accurately than TinyYOLO but
more slowly. Note that most previous studies of “end-to-end” object detectors used color images.
As explained in Section 2, however, we could not get the color input image at night because of the
turned-off light at night. Therefore, we reported only the accuracies of those object detectors with
infrared input images in order to compare the proposed method at daytime and nighttime.

Figure 7 shows the failure cases of pig detection under two different illumination conditions
(i.e., night-time and daytime images) by YOLOv2, TinyYOLOv2 and EmbeddedPigDet(v2). Since each
method could detect most of the individual pigs, we show only the false positive (i.e., false pigs) and
the false negative (i.e., missed pigs) cases. Regardless of the detection methods, detecting heavily
occluded pigs were difficult. Motion information used for video object detection applications may need
to be considered for detecting heavily occluded pigs more accurately. Furthermore, false detections
occurred on the daytime image, which was caused by sunlight. For handling such pig-like sunlight,
we may need more advanced training techniques to reduce the false positive errors. We will consider
these issues to correct infrequent errors as our future work.
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To compare the quantitative accuracy of the proposed method with YOLO and TinyYOLO,
we used Average Precision (denoted as AP), computed as the area under the precision-recall curve.
Note that the precision was computed as the ratio of actual pigs to detected pigs as true by each
model, while the recall was computed as the ratio of detected pigs as true by each model to actual
pigs. In fact, mean AP (denoted as mAP), computed as the mean of AP for each class, is a detection
metric widely used in object detection challenges, such as PASCAL VOC [79]. However, instead of
mAP for multi-classes detection, we used AP for single-class (i.e., pig) detection. Based on Ref. [79],
we considered the overlap (between bounding boxes of GT and each method) with an Intersection
over Union larger than 0.5 as true detection. Tables 5 and 6 summarize the accuracy (i.e., AP) of YOLO,
TinyYOLO and the proposed method. To evaluate the effect of the IP module, we also compare the
accuracy of EmbeddedPigDet with that of EmbeddedPigYOLO. The accuracy of TinyYOLO was worse
than that of YOLO and the accuracy of EmbeddedPigYOLO was worse than that of TinyYOLO. By
using the IP module, however, the accuracy of EmbeddedPigDet could be improved and even better
than that of TinyYOLO.

Table 5. Comparison of average performance on a TX-2.

Method Accuracy
(AP) ↑

Speed
(fps) ↑

Integrated Performance
(AP × fps) ↑

YOLOv2 [75] End-to-end deep learning for
object detection

98.41 6.86 675

TinyYOLOv2 [75] 96.96 24.94 2418

EmbeddedPigYOLO(v2)
(Ours) 95.60 56.91 5440

EmbeddedPigDet(v2)
(Ours)

Combination of image
processing and deep learning

97.66 32.73 3196

EmbeddedPigDetpipe(v2)
(Ours) 97.66 64.30

6279
(×9.3 than YOLO)

(×2.5 than TinyYOLO)
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Table 6. Comparison of average performance on a Nano.

Method Accuracy
(AP) ↑

Speed
(fps) ↑

Integrated Performance
(AP × fps) ↑

YOLOv2 [75] End-to-end deep learning for
object detection

98.41 3.91 384

TinyYOLOv2 [75] 96.96 12.78 1239

EmbeddedPigYOLO(v2)
(Ours) 95.60 21.19 2025

EmbeddedPigDet(v2)
(Ours)

Combination of image
processing and deep learning

97.66 15.83 1545

EmbeddedPigDetpipe(v2)
(Ours) 97.66 34.38

3357
(×8.7 than YOLO)

(×2.7 than TinyYOLO)

Because the execution speed requirement is another important factor in continuous monitoring
applications, the processing throughput of each method was measured as frames per second
(fps). Like YOLO and TinyYOLO, EmbeddedPigYOLO is an end-to-end deep network. However,
EmbeddedPigDet requires additional overhead of the IP module and thus the CPU time for the IP
module should be included in computing its execution speed. To reduce the effect of additional CPU
time for the IP module of EmbeddedPigDet, we implemented the pipelined version of EmbeddedPigDet
(denoted as EmbeddedPigDetpipe). With a pipelined execution, the additional CPU time for the IP
module (e.g., 12.98 ms on a TX-2) can be hidden by the GPU time for EmbeddedPigYOLO (e.g., 15.55 ms
on a TX-2) in processing the continuous video stream. In Figure 8, for the purpose of explanation
between the CPU and GPU computation of EmbeddedPigDetpipe, we separately represented the
image fetch step by CPU (denoted as Fetch), the image preprocessing module by CPU (denoted as
IP), EmbeddedPigYOLO by GPU (denoted as EmbeddedPigYOLO) and the postprocessing step for
Non-Maximum Suppression by CPU (denoted as NMS).
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As shown in Table 6, YOLO and TinyYOLO could not satisfy the execution speed requirement on
a Nano embedded board, although YOLO is a single-shot detector and TinyYOLO is a tiny version
of YOLO. On the other hand, EmbeddedPigYOLO could improve the execution speed of TinyYOLO
significantly. Although we minimized the additional overhead of the IP module with simple image
processing techniques, the execution speed of EmbeddedPigDet was degraded. However, the CPU
time for the IP module was less than the GPU time for EmbeddedPigYOLO. Therefore, with a pipelined
execution, the additional CPU time for the IP module could be totally hidden by the GPU time and
EmbeddedPigDetpipe could recover its execution speed.

In general, there is a tradeoff between execution speed and accuracy. In order to represent this
tradeoff with a single performance metric, we define the “integrated” performance as a product of
execution speed and accuracy. Compared to the end-to-end deep learning-based methods (i.e., YOLO
and TinyYOLO), the proposed method EmbeddedPigDetpipe could improve the integrated performance
by a factor of up to 9.3 and 2.7, respectively. As explained, the first goal of this study was to improve
the execution speed of a well-known tiny object detector (i.e., TinyYOLO) for low-cost embedded
board implementations. By generating the composite image and applying the pipelining technique,
however, we could improve the integrated performance of both YOLO and TinyYOLO, regardless
of the platform used. Since the proposed method could be applied to any 3 × 3 convolutional
layer, the proposed method can also be applied to other tiny versions of CNN-based object detectors
having 3 × 3 convolutional layers. Finally, we compared the cost effectiveness of each method by
computing “per-cost” integrated performance. Compared to the end-to-end deep learning-based
methods (i.e., YOLO and TinyYOLO), the proposed method could improve the per-cost integrated
performance (see Table 7). For example, the proposed method could improve the per-cost integrated
performance of YOLO and TinyYOLO by a factor of 1.6 and 1.1 on a typical PC, respectively. On
a Nano board, however, the proposed method could improve the per-cost integrated performance
of YOLO and TinyYOLO by a factor of 8.7 and 2.6, respectively. Across the platforms, furthermore,
the proposed method on a Nano could provide better per-cost integrated performance than that of
a PC by a factor of 2.4. TinyYOLOv2 could also provide slightly better per-cost integrated performance
on a Nano than on a PC, whereas YOLOv2 could provide better per-cost integrated performance on
a PC than on a Nano. That is, the lighter the method, the higher the per-cost integrated performance.
Even with low-cost embedded boards, the accuracy of the proposed method was not degraded and
thus the proposed method can be a practical solution for large-scale pig farms.

Table 7. Comparison of per-cost integrated performance on PC and Nano board platforms.

Method
Per-Cost Integrated Performance

(AP × fps÷cost) ↑

PC
($2000)

Nano
($100)

YOLOv2 [75] 8.47 3.84

TinyYOLOv2 [75] 11.94 12.39

EmbeddedPigDetpipe (v2)
(Ours) 13.79 33.57

(×2.4 than PC)

In fact, this analysis of cost effectiveness is closely related with the “on-device” AI issue
(i.e., processing deep networks directly on embedded devices instead of cloud server platforms) [51–55].
For continuous monitoring of individual pigs with a cloud server, we should transmit the video stream
of each pig room into the cloud server. However, the cost of a transmitter is not lower than the cost of
a Nano board. Once we transmit the video stream, then we should consider the additional cost to
detect individual pigs on the cloud server. As shown in Table 7, the higher the platform cost, the lower
the per-cost integrated performance with the proposed method. This situation is very similar to
automated driving and thus the on-device AI community is developing light-weight versions of deep
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networks for low-cost embedded boards. To the best of our knowledge, the main idea of this study
(i.e., applying filter clustering to 3 × 3 convolutional layers in order to obtain a light-weight version of
deep learning-based object detector, then applying image preprocessing for generating a three-channel
composite image in order to improve its accuracy) was not reported by the on-device AI community.
We believe the proposed idea can be one of the possible solutions for developing light-weight versions
of deep networks for low-cost embedded boards. Furthermore, the proposed method can monitor
individual pigs in a pig room with $200 total cost (including a RealSense camera and a Nano board).
Since any owner of a large-scale farm does not want to pay a large monitoring cost, the proposed
method can be one of the possible “practical” solutions for developing deep learning-based smart
farm applications.

4.4. Discussion

The necessity for the pig monitoring is present due to the difficulty in farm management as
identification of exact number of pigs, which have high mortality rate, is impossible for the short-staffed
farms. Our proposed approach expands the Infrared channel into three channels through IP process
and expects the accuracy enhancement. Therefore, the main focus is using fast deep learning one-stage
detector YOLO for the detection, furthermore, lightweight deep network and parallel processing
technique has been applied to satisfy real-time processing in embedded-board. In general, it is challenge
issue to improve both accuracy and speed, because there are tradeoff between them. To solve the
problem, some studies can be considered.

The research can be approached with different machine learning methods which led us to examine
various methods that can be incorporated into the research. The methods can be broadly divided into
Dimensionality Reduction and Texture, Video and 3D, Other confidence methods.

4.5. Dimensionality Reduction and Texture

Among the existing studies, there were methods (i.e., PCA, LLE) for reducing the input dimension
and effectively performing feature extraction to solve the pig monitoring problem. In the case of
Reference [80], the studies proposed a two-stage method combining PCA and SVM to pig detection
problem and that method shows a performance of 2 fps on PC. However, this method has a limitation
that it takes a long time to operate on the embedded board. [81] suggests that the performance of
the classification problem is improved by applying PCA dimension reduction. Therefore, we will
consider a quick detection method that combines our proposed model with PCA as an interesting
future research topic. [82,83] was present as a method for detecting pigs using texture and we will
consider texture fusion to 3-channel composite image or audio.

4.6. Video and 3D

Previous studies that proposed detection using video stream include [84–87] and we will carry out
future studies to improve detection accuracy by improving the accuracy of detection by simultaneously
detecting and tracking using video stream or by fusing detector and LSTM. In addition, as show in
Reference [40], we can consider the study of detecting the estrus through the detection of posture
change of sow by including pose and action information through 3D Video. In case of the detection of
aggressive behavior of pigs, Consideration of applying LSTM by adding motion information like [64]
is at hand.

4.7. Other confidence methods

In the future, we consider the subject of attack behavior and estrus detection using multimodal
method that utilizes both voice information and image information by referring to References [88–91].
We will also compare and review the technology that can improve data by using the generation model
in the proposed method by referring to References [92,93]. Restrictive Boltzmann Machine (RBM) is
known to be an unsupervised learning and to be able to effectively perform machine learning. We will
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also conduct research on efficient preprocessing by introducing RBM method to our future research by
referring to Reference [94], a research that borrowed RBM method.

5. Conclusions

The automatic detection of individual pigs in a surveillance camera environment is an important
issue for the efficient management of pig farms. Especially for large-scale pig farms, practical issues,
such as monitoring cost, should be considered. However, satisfying both execution speed and accuracy
requirements with a low-cost embedded board is very challenging. For example, a deep learning-based
object detector (i.e., YOLO) may not satisfy the execution speed requirement, whereas a tiny version of
it (i.e., TinyYOLO) may not satisfy the accuracy requirement.

In this study, we focused on detecting individual pigs with a low-cost embedded board to analyze
individual pigs cost effectively, with the ultimate goal of 24 h monitoring in a large-scale pig farm.
The main idea of this study was first to apply the filter clustering to 3 × 3 convolutional layers and
group into a cluster having the maximum convolution value in order to get EmbeddedPigYOLO
(i.e., light-weight version of TinyYOLO). Then, in order to recover its accuracy, we generated
a three-channel composite image as an input image for EmbeddedPigYOLO. The composite image
was generated for focusing on the possible pig regions in a pig room by maximizing the inter-class
variation through CLAHE1 while by minimizing the intra-class variation through CLAHE2. That is,
the three-channel composite image could give the complementary information to EmbeddedPigYOLO
and let it focus on individual pigs.

Based on the experimental result with more than 1000 test images, we confirmed that the proposed
method can detect individual pigs more accurately than TinyYOLO and faster than YOLO and
TinyYOLO, regardless of the platform. In terms of the integrated performance representing both
execution speed and accuracy simultaneously, the proposed method can improve the integrated
performance of both YOLO and TinyYOLO, by a factor of up to 9.3 and 2.7, respectively. If we
consider the platform cost, the proposed method on a Nano board can improve the per-cost integrated
performance of it on a typical PC by a factor of 2.4. Although we implemented the proposed method
with TinyYOLO, the proposed method can also be applied to other tiny versions of object detectors
having 3 × 3 convolutional layers.

We believe that the proposed method for low-cost embedded boards can be applied to large-scale
pig farms in a cost-effective manner. Furthermore, by expanding this study, we will develop a tracking
module to achieve our final goal, which is 24 h individual pig monitoring working on a low-cost
embedded board. Once we obtain the tracking module for 24 h individual pig monitoring, we can
extend the solution for many high-level vision-based analyses such as aggressive behavior analysis,
in order to reduce the damage of a pig farm by using a single embedded board.
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