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Abstract: Sustained-release delivery systems, such as hydrogels, significantly improve cancer
therapies by extending the treatment efficacy and avoiding excess wash-out. Combined virotherapy
and immunotherapy (viro-immunotherapy) is naturally improved by these sustained-release systems,
as it relies on the continual stimulation of the antitumour immune response. In this article, we consider
a previously developed viro-immunotherapy treatment where oncolytic viruses that are genetically
engineered to infect and lyse cancer cells are loaded onto hydrogels with immature dendritic cells
(DCs). The time-dependent release of virus and immune cells results in a prolonged cancer cell killing
from both the virus and activated immune cells. Although effective, a major challenge is optimising
the release profile of the virus and immature DCs from the gel so as to obtain a minimum tumour size.
Using a system of ordinary differential equations calibrated to experimental results, we undertake a
novel numerical investigation of different gel-release profiles to determine the optimal release profile
for this viro-immunotherapy. Using a data-calibrated mathematical model, we show that if the virus
is released rapidly within the first few days and the DCs are released for two weeks, the tumour
burden can be significantly decreased. We then find the true optimal gel-release kinetics using a
genetic algorithm and suggest that complex profiles present unnecessary risk and that a simple
linear-release model is optimal. In this work, insight is provided into a fundamental problem in the
growing field of sustained-delivery systems using mathematical modelling and analysis.

Keywords: sustained-release therapy; hydrogel; oncolytic virotherapy; immunotherapy; IL-12;
GM-CSF; optimal control; data fitting; genetic algorithm; dendritic cells

1. Introduction

Controlled localised delivery systems have been replacing systemic administration of cancer
therapies for some time [1]. These sustained-release injectable formulations are usually designed as
microparticles, implants or gels [1]. They extend the presence of therapy at the tumour site by gradually
releasing treatment as they degrade, improving treatment efficacy and avoiding excessive treatment
loss to neighbouring tissue or the lymphatic system. Sustained-delivery systems have improved the
effectiveness of a range of cancer treatments, including chemotherapy [2,3], oncolytic virotherapy [4–7]
and immunotherapy [8–10].
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Oncolytic virotherapy and immunotherapy are two promising cancer therapies that have gained
significant attention over recent years [11]. Oncolytic virotherapy focuses on genetically engineering
viruses to infect, replicate within, and lyse tumour cells. Many oncolytic viruses can accommodate gene
insertions and thus be “armed” with therapeutic transgenes to produce immunostimulatory signals
that stimulate an antitumour immune response, making them useful immunotherapy agents [12,13].
Immunotherapy treatments typically involve administration of additional cytokines, molecules or
immature immune cells.

Interleukin 12 (IL-12) and granulocyte–monocyte colony-stimulating factor (GM-CSF) are
cytokines used in immunotherapy clinical trials [14,15]. IL-12 is known to have potent antitumour
effects through promotion of the immunity of helper T cells and activation of killer T cells, whereas
GM-CSF is known to enhance the processing and presentation of antigen on antigen-presenting cells
(APCs) [13]. Immature immune cells, such as dendritic cells (DCs), are also tested in immunotherapy
trials with the goal of overcoming the induction of anergy or tolerance by the cancer [16,17].
Intratumoural administration of DCs increases the probability of tumour antigen recognition and
subsequent activation of helper T cells and killer T cells, leading to heightened tumour cell killing [18].

An increasing number of studies has shown that combined virotherapy and immunotherapy
(viro-immunotherapy) leads to a prolonged antitumour response, where both viruses and immune
cells work simultaneously to eradicate cancer cells [10,13,19–21]. Conventionally, oncolytic virotherapy
and immunotherapy are administered intratumourally or intravenously. This can result in rapid
clearance of the virus and functional impairment of immune cells in the tumour microenvironment [10].
To overcome this, there have been many investigations into the potential of treatment loaded onto
injectable gels or polymer matrix systems [5–7,10]. Oh et al. [10] showed that an oncolytic adenovirus
expressing IL-12 and GM-CSF loaded onto a hydrogel with immature DCs had a higher retention
in tumour tissue. Additionally, the use of the gel resulted in greater antitumour activity due to the
sustained release of therapy. Immune checkpoint blockade therapy and agonists were also shown to be
considerably more effective when loaded onto an degradable gel matrices [8,9]. A major challenge for
sustained-release mechanisms is determining a release profile that achieves optimal therapeutic benefit.

Mathematical models describing the biological response to disease can be used as an important
tool in therapy planning and optimisation [22–25]. Deterministic systems of ordinary differential
equations (ODEs) are used to describe the key biophysical interactions and are then analysed
to determine optimal therapeutic protocols [23]. In oncology, these techniques have been used
to successfully optimise chemotherapy and immunotherapy treatment [25–30]. Zhu et al. [31]
optimised the scheduling of one cycle of chemotherapy drug VP-16 and found a new optimal drug
regime which improved the clinical efficacy. For combined immunotherapy and chemotherapy,
de Pillis et al. [32] developed an ODE system that predicted which treatment protocols would result in
tumour elimination. There are also a handful of examples where deterministic models have also been
used to improve chemotherapy delivery from sustained-release systems [33,34],

Mathematical modelling has also been used to determine optimal dosage protocols for
oncolytic virotherapy and immunotherapy [35–38]. Using ODEs calibrated with experimental data,
Barish et al. [38] demonstrated that lower oncolytic virus doses combined with higher dendritic cell
doses resulted in an optimal robust therapy. Optimising the scheduling of systemic doses of DCs and
oncolytic virus, Wares et al. [37] found that tumour eradication could be achieved only when oncolytic
viruses were administered before DCs. In work by Cassidy and Craig [29], an optimised schedule for
combined virotherapy and chemotherapy treatment was obtained using a genetic algorithm. So far,
however, no one has optimised the release profile of viro-immunotherapy from a sustained-delivery
system. The challenges faced in developing such a system lie in de-complexifying the immune response
to viro-immunotherapy, while still accurately representing a relevant experimental treatment.

In this article, we develop a novel system of ODEs to optimise the effectiveness of an oncolytic
adenovirus genetically modified to express IL-12 and GM-CSF loaded onto a hydrogel with
a population of immature DCs [10]. The parameter values in the model are optimised to in vitro and
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in vivo measurements relating to the release of this therapy from a gelatin-based hydrogel. With this
calibrated model, we conduct a numerical investigation of the hydrogel release profile and investigate
optimised sustained-delivery protocols. Implementing a genetic algorithm, we then determine the true
optimal release curves and discuss how complex release curves may impose a less effective treatment.

2. Mathematical Model

Human immune systems have a very powerful and effective way of eliminating viruses.
Macrophages and dendritic cells (DCs) are activated by virus-infected cells through the presentation
of virus antigen [18,39]. Additionally, when virus-infected cells undergo lysis, cytokines and antigens
are released, and these can activate DCs and macrophages [18]. These activated (mature) cells then
stimulate helper T cells and killer T cells. Helper T cells also secrete specific cytokines (specifically
type Th1) that provide continual stimulation of killer T cells.

Previously, we developed a system of ODEs that assumed the primary driver of the immune
response was virus-infected tumour cells [36]. The virus-infected tumour cells stimulated APCs
which in turn activated killer T cells and helper T cells. This system was used to model an oncolytic
adenovirus expressing IL-12 and GM-CSF (Ad/IL12/GMCSF) created by Choi et al. [13]. Intratumoural
doses of Ad/IL12 were shown to induce the activation and recruitment of helper T cells and killer
T cells, whereas administration of Ad/GMCSF strongly recruited APCs to the tumour site.

In this work, we consider the injection of Ad/IL12/GMCSF, combined with an injection of
immature DCs. Due to the presence of additional immature DCs, we believe the stimulation of the
immune system by uninfected tumour cells would be crucial, and we extend the system of ODEs in
Jenner et al. [36] to consider this,

dU
dt
“ r log

ˆ

L
U

˙

U ´ β
UV
T
´ κ

KU
T

, (1)

dI
dt
“ β

UV
T
´ dI I ´ κ

KI
T

, (2)

dV
dt
“ uVptq ´ dVV ` αdI I, (3)

dDS
dt

“ p1´ f quDCptq ´ sAU DSU ´ sAI DS I ´ dSDS, (4)

dDL
dt

“ f uDCptq ´ sAU DLU ´ sAI DL I ´ dLDL, (5)

dAI
dt

“ rAI I ´ sAU AIU ´ sAI AI I ´ dAI AI , (6)

dAM
dt

“ sAUUpAI `DL `DSq ` sAI IpAI `DL `DSq ´ dA AM, (7)

dH
dt
“ sH AM ´ dH H, (8)

dK
dt
“ sKH H ` sKA AM ´ dKK, (9)

where t is time (days), U is the uninfected tumour population, I is the infected tumour population
and V is the number of virus particles. As the model was developed for an adenovirus expressing
IL-12 and GM-CSF, the populations of immune cells considered here are those most affected by these
cytokines: activated (or mature) antigen-presenting cells (APCs), AM; helper T cells, H; and killer T
cells, K. Additionally, as immature DCs are injected into the system, we now consider populations of
short-lived and long-lived immature DCs that have been injected, DS and DL, and immature APCs
that are already present in the body, AI . The total cell population at the tumour site at any time t is
given by T “ U ` I `DL `DS ` AI ` AM ` H ` K.
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Figure 1 summarises the interactions modelled in Equations (1)–(9). The biological mechanisms
described by each ODE in the system are described below.

• In Equation (1), uninfected tumour cells, U, are growing at a rate described by a Gompertz
function with proliferation rate r and carrying capacity L. Uninfected cells are infected by virus
particles, V, at a frequency-dependent rate with rate constant β. Killer T cells, K, induce apoptosis
in uninfected cells at a frequency-dependent rate with rate constant κ.

• In Equation (2), tumour cells become infected cells, I, at rate βUV{N. Infected cells lyse at rate
dI I, and, like uninfected cells, are killed at a frequency-dependent rate.

• In Equation (3), virus particles enter the system at rate uVptq, either by a single injection or release
from the hydrogel. Virus particles decay at a rate dV , and α new viruses are created through lysis.

• In Equation (4), short-term immature DCs, DS, enter the system at a rate p1´ f quDCptq, either by
a single injection or release from a hydrogel. They are then stimulated to become mature or
activated APCs, AM, at rate sAU or sAI due to the interaction with either uninfected or infected
tumour cells. They decay at a fast rate dS, where dS ąą dL.

• In Equation (5), long-term immature DCs, DL, enter the system at rate f uDCptq, where uDCptq is
the rate of injection or release from the hydrogel and f is the fraction of the initially loaded DCs
that are long-term DCs, 0 ă f ă 1. Similarly to short-term DCs, they become activated APCs at
rate sAU and sAI . These DCs decay slowly at rate dL.

• In Equation (6), immature APCs, AI , are recruited to the tumour site by infected cells at rate rAI I.
Immature APCs are then stimulated at the same rate as immature short-term and long-term DCs.
The immature APCs decay at rate dAI .

• In Equation (7), mature APCs are generated through the maturation of introduced long-term and
short-term DCs and immature DCs recruited by uninfected tumour cells at rate sAU and infected
tumour cells at rate sAI . These cells decay at rate dA.

• In Equation (8), helper T cels, H, are stimulated by mature APCs at a rate sH . These cells decay at
a rate dH . We assume the rate APCs stimulate helper cells and helper cells stimulate killer cells is
independent of antigen.

• In Equation (9), killer T cells, K, are activated by helper T cells and mature APCs at rates of sKH
and sKA, respectively. These cells either die or leave the tumour site at a rate dK.

As the virus was administered either intratumourally or from the gel, there is no need to model
the virus in the organs and blood (discussed by Jenner et al. [40]). Additionally, the influence of
interferon-mediated antiviral immunity is not considered crucial. Note that this is the same killer T
cell population that was considered by Jenner et al. [36], but this time the activation mechanism is
modelled in more detail. The above model is similar to the model used by Kim et al. [35].

We consider two populations of immature dendritic cells (DL and DS) in the initial administration
as the in vitro release curve depicted a biphasic exponential decay profile for the DCs, see Section 3.1.
We separated this population from the immature DCs already present in the mice, as we did not want
to impose the assumption that the same separation in the survival rates would exist in this population.

If a gel is used to release the DCs and/or virus the initial conditions for system are

Up0q “ U0, Ip0q “ 0, Vp0q “ 0, DLp0q “ 0,
DSp0q “ 0 AIp0q “ 0, AMp0q “ 0, Hp0q “ 0, Kp0q “ 0,

(10)

where U0 is the initial tumour size, whereas, for a single injection of virus or DCs, the initial conditions
change to Vp0q “ V0, DLp0q “ f D0 and DSp0q “ p1´ f qD0 for the virus and DCs, where V0 and D0 are
the initial number of viruses or DCs, respectively.
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Figure 1. Flow diagram for the tumour–virus interaction from co-delivered dendritic cells (DCs) and
oncolytic adenovirus expressing IL-12 and GM-CSF. Variables U and I are the uninfected and infected
tumour cell populations, respectively; V is the virus population; DS and DL are the short-lived and
long-lived DCs released from the gel, respectively; AI is the immature APC population already present
at the tumour site; AM is the mature APC population; H is the helper T cell population; and K is the
killer T cell population. Transition between states (e.g., uninfected to infected) is represented by a solid
line, stimulation or activation is represented by a dotted line, death or decay is represented by a double
arrow and programmed killing of tumour cells is represented by a dashed line.

3. Calibrating Parameters to In Vitro and In Vivo Time-Series Measurements

To calibrate the parameters in Equations (1)–(9), we used the in vitro DC viability counts and
in vivo tumour volume measurements of Oh et al. [10]. The release rate of DCs from the gel, uDCptq,
and the decay rate for the long-term and short-term DCs, dL and dS, were determined from DC
viability counts with and without a degradable hydrogel [10]. We then fixed certain parameters to their
values obtained in our previous work [36] where we optimised tumour volume measurements for the
Ad/IL12/GMCSF virus based on experiments by Choi et al. [13]. The remaining parameters were then
optimised to the in vivo tumour time-series measurements from [10] under treatment with a single
injection of either DC, Ad/IL12/GMCSF or DC+Ad/IL12/GMCSF and treatment with a degradable
hydrogel containing DC+Ad/IL12/GMCSF.

3.1. DC Release-Profile and Decay Rates

Oh et al. [10] counted the number of viable DCs after a single injection released from a gel over
6 days. To fit these measurements, we fixed U “ I “ V “ AI “ AM “ H “ K in Equations (1)–(9) as no
tumour cells, immune cells or virus were present, and then optimised the decay rates of the long-term
and short-term DCs, dL and dS, to the DC count after a single injection, see Figure 2a and Table 1.
We initially considered a single decay rate for the injected immature DCs and found that the long-term
model prediction was a significant underestimation. The data seems to suggest a fraction of the injected
DCs live longer and contribute to a slower population decline after the first few days. As the DCs are



Appl. Sci. 2020, 10, 2872 6 of 22

derived from bone marrow, the difference in decay rates may be a result of heterogeneity imposed
from the progenitor cell lineages that generate the DCs [41,42]. We, therefore, assumed that there are
both long-term and short-term surviving immature DCs in the injected population. This biphasic
decay rate is evident in other studies of bone marrow- or monocyte-derived DCs [43]. The decay rate
could be modelled more accurately with a age-structured partial differential equation system, but due
to the limited data, we decided this was not necessary.

From the measurements of the DCs released from the hydrogel [10], we then obtained the
release-rate function uDCptq. Oh et al. [10] used a gelatin-hydroxyphenyl propionic acid (GHPA)-based
hydrogel that can easily be manipulated to achieve appropriate hydrogel properties such as gelatin
time, mechanical stiffness and degradation rate. Previous experiments with this hydrogel showed
that gel weight decreases linearly over time [44], implying that the gel degrades linearly. Taking the
forward finite difference approximation of the data revealed an approximately linear, increasing rate
of change for the DCs released from the gel. As we chose not to model the gel-release mechanics,
we assumed that a linear function would be sufficient to capture the gel-release rate.

We fixed dL, dS and f to the values obtained for Figure 2a and assumed uDCptqwould be

uDCptq “

#

aDt` bD DI ą 0,
0 DI “ 0,

(11)

where aD is the gradient of uDCptq; b is the initial release rate from the gel (i.e., uDCp0q “ bD); and DI
is the number of DCs in the gel, where dDI{dt “ ´uDCptq and DIp0q “ 2.5ˆ 106. Qualitatively,
aD describes the increasing speed that treatment is released from the gel as a function of time, and bD
describes the initial rate at which treatment is released when the gel is first put into the solution bath.
See Figure 2b and Table 1 for the results. From the fitted parameter values, we obtain the approximate
time that the gel degrades as tr “ 5.945 days, which matched the observations of Oh et al. that by day
6 the gel had completely degraded.
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Figure 2. Fitting the viable dendritic cell (DC) count with and without gel to parameters in
Equations (1)–(9) with U “ I “ V “ AI “ AM “ 0, where DS is the short-term DC population
and DL is the long-term DC population. In panel (a), the decay rate of short-term and long-term DCs,
dS and dL, and the fraction of the initial injection that consisted of short-term DCs, f , was fit to the
viable DC count after a single injection, where uDCptq “ 0. In panel (b), the count of DCs released
from the gel was fit to the release function uDCptq fixing the value of dL, dS and f obtained in panel (a).
In both figures, circles represent the number of released viable DCs, the black solid lines are the model’s
approximations to the data, the blue dashed lines are the long-term DCs in the dish, the yellow dotted
lines are the short-term DCs in the dish and the purple dash-dot line is the number of DCs in the gel.
The fitted parameter values are in Table 1.
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Table 1. Parameter values obtained from fitting the release rate of the DCs and the short-term and
long-term decay rates of the DCs to the in vitro viable DC count, see Figure 2.

Parameter Units Description Value

dS day´1 decay rate of short-term immature DCs 1.562
dL day´1 decay rate of long-term immature DCs 0.318
f dimensionless proportion of short-term injected/released DCs 0.325

aD DCs/day2 gradient of release rate 9.725 ˆ104

bD DCs/day constant release rate 1.463 ˆ105

3.2. Tumour, Immune and Viral Parameters

To obtain remaining parameter estimates for the model, we sequentially optimised the tumour
time-series measurements of Oh et al. [10] for PBS, gel, Ad/IL12/GMCSF, DC+Ad/IL12/GMCSF
and DC+Ad/IL12/GMCSF+gel. To reduce the degrees of freedom in the model, the parameters
α, dI , dV , dA, dH , dK, sA, sKA, sH and sKH were fixed to the values obtained from optimising tumour
growth under Ad/IL12/GMCSF treatment in Jenner et al. [36]. The remaining parameters were
obtained by sequentially fitting sub-models of Equations (1)–(9), where fitted parameter values were
fixed for higher level models in accordance with the different treatments investigated. Table 2 gives a
summary of the fitting algorithm, with parameter values in Table 3.

Table 2. Experiment-specific optimisation conditions for the measurements of Oh et al. [10]. Equations
used to optimise each experiment are listed along with the state variables considered and parameters
fitted or fixed. Some parameters were fixed to previous optimisation work in Jenner et al. [36].

Experiment

PBS & Gel Ad/I/G DC DC+Ad/I/G DC+Ad/I/G+Gel

Relevant equations

Equation (1) Equation (1) Equation (1) Equation (1) Equation (1)
Equation (2) Equation (2) Equation (2)
Equation (3) Equation (3) Equation (3)

Equation (5) Equation (5) Equation (5)
Equation (4) Equation (4) Equation (4)

Equation (6) Equation (6)
Equation (7) Equation (7) Equation (7) Equation (7)
Equation (8) Equation (8) Equation (8) Equation (8)
Equation (9) Equation (9) Equation (9) Equation (9)

Variables
U U, I, V U U, I, V U, I, V

A, H AI , AM H AI , AM, H AI , AM, H
K K K K

Parameters fit r, L, U0 β, U0 sAU , U0, rAI , sAI , U0, aV , bV , U0,
κ κ sAU

Parameters fixed - r, L r, L, r, L, β, r, L, β,

to Tables 1 and 3 dS, dL, dAI dS, dLdAI , κ dS, dL, aD, bD,
dAI , rAI , sAI , κ

Parameters fixed dV , α, sH , dH sH , dH , dV , α, sH , dH , dV , α, sH , dH ,

from [36] dI , sA, dA dA dI , sAU , dA, dI , sAU , dA
sKH , sKA, dK sKH , sKA, dK sKH , sKA, dK sKH , sKA, dK
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Table 3. Parameter estimates from the sequential optimisation of the model following the algorithm in Table 2 to the experimental measurements in [10].
Certain parameters were fixed to their value in [36], and this is indicated in the table. Parameters that were fit for a particular experiment have their values
in bold. Note that Ad/IL12/GMCSF has been shortened to Ad/I/G.

Param Units Description PBS& Gel Ad/I/G DC DC + Ad/I/G DC + Ad/I/G + gel

Fit

dAI day´1 Immature DCs decay rate 1.562 1.562 1.562
L cells ˆ106 carrying capacity 13572 13572 13572 13572 135720
r day´1 growth rate 0.1045 0.1045 0.1045 0.1045 0.1045

U0 cells ˆ106 initial tumour size 20.35 85.90 85.90 85.90 47.45
β day´1 infection rate - 0.7295 - 0.7295 0.7295
κ day´1 killing rate - 0.8225 0.218147 0.3626 0.3626

sAU day´1 APC activation rate by U - - 0.001047 0.0022 0.05278
rAI day´1 recruitment rate of AI - - - 0.0192 0.0192
sAI day´1 APC activation rate by I - - - 0.0011 0.0011
aV linear release slope (virus) - - -) - 0.33791
bV initial linear release (virus) - - - - 2.35971

[36]

α virus ˆ1010 viral burst size - 3500 - 3500 3500
dI day´1 burst rate - 1 - 1 1
dV day´1 viral decay rate - 2.3 - 2.3 2.3
dA day´1 decay of mature APCs - 0.23 0.23 0.23 0.23
dAI day´1 decay of immature APCs - 1.562 1.562 1.562 1.562
dH day´1 decay of helper T cells - 0.23 0.23 0.23 0.23
dK day´1 decay of killer T cells - 0.35 0.35 0.35 0.35
sA day´1 APC activation rate - 1.2 - 7.1 7.1

sKA day´1 APC activatet killer T cell - 7.1 7.1
sH day´1 helper T cell activation - 0.78 0.78 0.78 0.78

sKH day´1 helper T cell activate K - 1.6 1.6 1.6 1.6
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As a control, Oh et al. [10] measured the tumour growth under a single injection of PBS and
an empty gel. We assumed that the underlying tumour growth in both of these experiments should be
identical and fit the growth rate, r; carrying capacity, L; and initial tumour size, U0, to both data sets,
fixing I “ V “ AI “ AM “ H “ K “ 0 in Equations (1)–(8), see Figure 3a.
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Figure 3. Model optimisation of the measurements from Oh et al. [10] following the algorithm in
Table 2 for (a) control (PBS and gel) (b) Ad/IL12/GMCSF, (c) DC, (d) DC+Ad/IL12/GMCSF and
(e) DC+Ad/IL12/GMCSF+gel. The individual mouse data are plotted as circles with the mean
and standard error bar at each time point in blue. The model output for the experiment-optimised
parameters is plotted as a solid black line. The parameter values are given in Table 3. In panel (f),
the corresponding model populations are plotted for the DC+Ad/IL12/GMCSF+gel experiment in
panel (e), note the use of both vertical axes. AI was not plotted in panel (f) as the magnitude of the
population was too small.
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Following the control experiments, Oh et al. [10] measured the tumour size under a single injection
of Ad/IL12/GMCSF. As there was no injection of immature DCs in this experiment, we assumed the
immune stimulation would be driven solely by the injected virus with the effects of endogenous DCs
negligible, i.e., we fixed DS “ DL “ AI “ 0. Under this assumption, we removed any activation of
APCs by uninfected tumour cells, and modelled APC stimulation as directly relating to infected cells I,
i.e., sAI IpAI `DL `DSq “ sAI I. The remaining parameters of the model describing the infection rate
of the virus, β; the killing rate of the killer T cells, κ; and the initial tumour size, U0, were optimised,
see Figure 3b.

Oh et al. [10] then measured tumour growth under a single injection of 2.5ˆ 106 immature DCs.
As there was no virus present, we fixed I “ V “ 0. The decay rate for immature APCs, dAI , was fixed to
the short-term DC decay rate, dS, as we assumed that any recruited immature APCs would not reside
at the tumour site for long. The parameters describing the stimulation rate of immature APCs, sAU ;
the killing rate of killing cells, κ; and the initial tumour size were optimised and fixed for subsequent
optimisations, see Figure 3c.

Following this, Oh et al. [10] combined a single injection of Ad/IL12/GMCSF with a single
injection of immature DCs. Fixing the previous fit parameters, we optimised the kinetics for the
activation of immature APCs and DCs using the full model in Equations (1)–(9). Optimising the rate
that infected cells recruit inactivated APCs rAI , the stimulation of immature APCs sAI and initial
tumour size U0 gave the model curve in Figure 3d.

The final experiment of Oh et al. [10] measured the tumour volume after a gel loaded with
Ad/IL12/GMCSF and immature DCs was injected adjacent to the tumour. Using these measurements,
we obtained the release profile for the virus from the gel uVptq. Fixing the release profile of the
immature DCs from the gel, uDCptq, to the profile determined in Section 3.1 and all parameters to the
values for the DC+Ad/IL12/GMCSF experiment, we assumed the release rate for the virus would be
linear, and the time of release tr would be equivalent to that obtained for the DCs, tr “ 5.945 days,

uVptq “

#

aV t` bV , for t ď tr

0 otherwise

where aV ą 0 and bV ě 0. The value of bV was obtained by fixing the initial amount of virus as
V0 “ 2ˆ 1010 and integrating uVptq. Additionally, we obtained an upper and lower bounds of aV
using the condition that uVptq is an increasing function. Optimising the release function parameter aV
was not sufficient, and a fit could only be obtained when the activation rate of APCs by uninfected
cells was also allowed to vary. The resulting fit is in Figure 3e and the parameter values are in Table 3.
The model dynamics for this experiment are plotted adjacent in Figure 3f.

All parameter optimisations were undertaken using a least-squares nonlinear fitting algorithm
“lsqnonlin” in MATLAB2017a. The termination tolerance was 1ˆ 10´6. The maximum number of
function evaluations was fixed as 100ˆnumber of parameters. The maximum number of interactions
for each fit was 400. The solver ode45 was used to solve the model. The model was fit simultaneously
to the set of individual mouse data for a particular experiment. When solving Equations (1)–(9)
numerically, T was replaced by T` ε for ε “ 0.001 to avoid a singularity as T Ñ 0. The goodness of fit
statistics have been reported in Table 4.

It is evident visually in Figure 3 and from the goodness of fit measurements (Table 4) that our
model and the sequential fitting algorithm we used in Table 2 provide a reliable representation of the
data. From the population dynamics in Figure 3f, it is clear that the immune response is driven by
a large increase in helper T cells coinciding with mature APCs. This then prolongs the killer immune
cell population’s survival. From the model, it does appear though that it is the initial viral infection
that drives the tumour population down significantly.
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Table 4. Goodness of fit statistics for the optimisation of the mathematical model Equations (1)–(9)
with the experiments in Figure 3 following the optimisation algorithm in Table 2.

Residual Coefficient of Pearson’s Correlation
Norm Determination (R2) Coefficient

PBS and gel 33,688 0.8998 0.9487
Ad/IL12/GMCSF 10,905 0.6465 0.8041

DC 11,931 0.8980 0.9441
DC+Ad/IL12/GMCSF 7659.4 0.7785 0.8830

DC+Ad/IL12/GMCSF+gel 5249.7 0.5926 0.7736

4. Optimising the Gel Release Profile

Oh et al. [10]’s gel-based medium improved the therapeutic efficacy of the DC+Ad/IL12/GMCSF
treatment and reduced the tumour volume to 1005.9 mm3 by day 20, see Figure 3e. It may be
possible to further improve this treatment through the manipulation of the gel-release profile, uDCptq
and uVptq. To investigate this, we considered gel-release profiles that were constant, linear and
sigmoidal. We chose these functions as they had increasing complexity in their time dependence
and were qualitatively similar for certain parameter regimes. Many therapeutics require a constant
release rate for varying durations [45], and while this is difficult to achieve, there are several
examples [46–48]. In comparison, variable drug release rates, such as linear and sigmoidal curves are
more obtainable [49–52].

We, therefore, define three generalised release rate functions for uDCptq and uVptq: constant fcptq,
linear flptq and sigmoidal fsptq. These have the forms

fcptq “ C, (12)

flptq “ at` C, (13)

fsptq “
L

1` e´kpt´x0q
, (14)

where C is the constant release rate, a is the gradient of the linear release, k is the steepness of the
sigmoidal release rate, x0 is the midpoint of the sigmoidal function and L is the maximum sigmoidal
release rate. We impose the constraint that the total virus and DCs released from the gel over tr days
must be equal to V0 and D0, i.e.,

V0 “

ż tr

0
uVpsqds, D0 “

ż tr

0
uDCpsqds. (15)

Fixing all parameter values not related to the release curves to those in the DC+Ad/I/G+gel
column in Table 3, we simulated the tumour size up to day 20 using Equations (1)–(9) for the different
release profiles fcptq, flptq or fsptq for t ď tr, and 0 otherwise.

4.1. Constant Release Profile

Assuming both virus and DCs are released from the gel at a constant rate, fcptq in Equation (12),
and integrating and simplifying using Equation (15) gives

uVptq “
V0

tr
, uDCptq “

D0

tr
. (16)

We can then simulate the effect of different release periods, tr, for virus and DCs. The tumour
volume on day 20 as a function of the release period is plotted in Figure 4a. The surface has a global
minimum tumour size of 689.24 mm3, which corresponds to a 13-day release period of DCs and
a single day for the virus.
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Figure 4. Effectiveness of a constant gel-release rate fsptq (Equation (16)) for DCs, uDCptq, and virus,
uVptq. In panel (a), the tumour size at day 20 is given as a function of gel-release period tr, specific to
the virus and DCs. The red points in panel (a) correspond to the simulated release profiles in panel (b),
tr “ 13 days for DCs and tr “ 1 day for virus, and in panel (c), tr “ 2.6 days for DCs and tr “ 9.8 days
for virus. The top row in panels (b,c) correspond to the total number of tumour cells U ` I, and the
bottom corresponds to the release profile. Note the use of both vertical axes.

To illustrate the tumour growth dynamics under different constant release profiles, model
simulations are plotted in Figure 4b,c, corresponding to the red points on the surface plot in Figure 4a.
There is a decrease in the initial gradient of the tumour growth in Figure 4b compared to Figure 4c,
which in turn allows for a more gradual linear tumour growth over the period of 20 days. This suggests
that releasing the virus rapidly and then slowly releasing the immature DCs over 13 days, reduces the
growth rate of the tumour by providing continual stimulation for the immune system.

4.2. Linear Release Profile

Assuming both virus and DCs are released from the gel at a linear rate, flptq in Equation (13),
which is increasing, applying the constraint in Equation (15) gives

uVptq “ a
ˆ

t´
tr

2

˙

`
V0

tr
, uDCptq “ a

ˆ

t´
tr

2

˙

`
D0

tr
. (17)

To investigate whether there was an optimal increasing linear release rate, we initially fixed tr

as common for virus and DCs and varied the gradient of the release curve a, which was bounded
by 0 ă a ă 2A0{t2

r so as to be strictly positive and increasing. The resulting tumour size on day
20 is plotted in Figure 5a,b. As tr increases from 1 day to 5 days, the overall tumour size decreases
irrespective of the choice of a. However, after a release period of tr “ 6 days, the minimum achievable
tumour size at day 20 increases and so does the dependence of the tumour size at day 20 on the
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steepness of the release rate a. A minimum tumour size of 887 mm3 was achieved for tr “ 11 days and
tr “ 13 days when a “ 0. In other words, if the release time is common for DCs and virus, the optimal
linear release curve is approximately constant.
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Figure 5. Effectiveness of a linear gel-release rate flptq (Equation (17)) for DCs, uDCptq, and virus, uVptq.
In panels (a,b), the tumour size at day 20 is given as a function of the gradient of the release curve a for
virus and DCs with planes corresponding to fixed values for the release time tr which are noted on
the plot. In panel (c), the tumour size at day 20 is given as a function of the release time for DCs and
virus with planes corresponding to the labelled values of a. In panel (d), the tumour size at day 20 for a
decreasing linear release rate (Equation (18)) is plotted for varying initial release rate b for virus and
DCs. The green point in panel (c) is the corresponding release profile from the results of Oh et al. [10]
in Figure 3e. The red points in panels (c,d) correspond to the simulated release profiles in panel (e)
where tr “ 13 for DCs and tr “ 0.5 for virus with a “ 3, and in panel (f) where b “ 48.7 for DCs and
virus. The top row of figures in panels (e,f) corresponds to the total number of tumour cells U` I and
the bottom row of figures is the corresponding release profile. Note the use of both vertical axes.
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We then numerically simulated the increasing linear release rate with tr varying for virus and
DCs and fixed a “ 0.001, 3.3 and 7.4, see Figure 5c. Qualitatively, the dependence on the value of tr

for uDCptq and uVptq is similar to that of the constant release profile in Figure 4a. A minimum tumour
volume of 628.4 mm3 was achieved for an interval of a between 3.3 and 4.6 for tr “ 1 for the virus and
tr between 11 and 13 for DCs. This suggests that it is possible to obtain an optimal efficacy with the
linear release function, but only when the release time of the constituents are separated.

Although the gel-release mechanisms measured by Oh et al. [10] had an increasing gradient,
it is worth considering how effective a treatment would be when released at a decreasing linear rate.
A decreasing linear function crosses uDCptq “ 0 or uVptq “ 0 when t “ ´b{a. As this can occur before
or after 20 days, we use this to constrain the release curve by fixing the total drug released between 0
and ´b{a days equal to V0 and D0. Integrating and simplifying gives

uVptq “
´b2

2V0
t` b, uDCptq “

´b2

2D0
t` b, (18)

where b is the initial release rate. Note that this means the gel releases until ´b{a days, or 2V0{b for the
virus and 2D0{b days for DCs. This can be outside the window of the evaluated time-frame and as
such may lead to less virus and DCs released than V0 and D0.

Simulating a common value of b for virus and DCs gives the tumour volume on day 20 in
Figure 5d. The tumour volume depends on the value of the initial release rate for the virus with larger
values of b resulting in the lowest tumour volume. Note that when b increases, the release time tr

decreases, so the optimal tumour burden for the decreasing linear release is achieved when b is large
enough so that the total amount of D0 and V0 is released within 20 days. Interestingly, we do not see
a dependence on the time frame in which the treatment is released (in contrast to the cases of constant
release and linear increase). For the linearly decreasing release, the duration of the release is negligible,
even considering separate release rates for virus and DCs. The numerical global minimum for the
decreasing linear release rate is 815.5 mm3. The tumour dynamics for different linear release curve are
plotted in Figure 5e,f.

4.3. Sigmoidal Release Profile

The final release curve considered was a sigmoidal function fsptq, given by Equation (14).
Integrating and simplifying using the constraint in Equation (15) gives

uVptq “
kV0

ˆ

ln
ˆ

1`e´kptr´x0q

1`ekx0

˙

`trk
˙

p1`e´kpt´x0qq
, uDCptq “

kD0
ˆ

ln
ˆ

1`e´kptr´x0q

1`ekx0

˙

`trk
˙

p1`e´kpt´x0qq
. (19)

We imposed additional constraints on the sigmoidal function so that the function was always
positive, i.e., when k ą 0, the function within the “ln” would always be positive, and when k ă 0,
the denominator was always negative.

Assuming initially that the characteristics of the release curve for virus and DCs are equivalent,
gives the tumour size at day 20 in Figure 6a for a release period of 5 days, 9 days and 13 days.
The sign of k determines whether the sigmoidal function is increasing or decreasing. This explains
the clear dynamical switch at k “ 0. For increasing sigmoidal release curves (k ą 0), the tumour
size is minimised when the mid-point x0 is larger. The overall minimum tumour size is achieved for
increasing release curves when the midpoint is decreased below zero. The release period tr influences
the minimum achieved with tr “ 9 achieving a lower tumour volume than tr “ 5, and the planes
associated with tr “ 9 and tr “ 13 approaching the same limit for x0 Ñ 0.

Investigating this further, the release time tr was fixed to 9 days and the value of k varied for
virus and DCs for x0 “ ´1, 1 and 3, see Figure 6b. Lower values of k for the DCs reduced the tumour
volume when the midpoint x0 was positive. As x0 decreases, the variance in the plane reduces, and we
see, overall, the minimum tumour burden is achieved irrespective of k for x0 “ ´1.
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Figure 6. Effectiveness of sigmoidal gel-release rate fsptq (Equation (14)) for DCs, uDCptq, and virus,
uVptq. In panel (a), the tumour size at day 20 as a function of k, x0 and tr is plotted, where the parameters
were common for virus and DC release functions. In panel (b), the tumour size at day 20 is plotted
as a function of varying k for virus and DCs with tr “ 9 and planes representing x0 “ ´1, x0 “ 1 and
x0 “ 3. In panel (c), the tumour size at day 20 is plotted as a function of varying x0 for virus and DCs
with tr “ 9 and planes representing k “ ´1, 1 and k “ 3. In panel (d), the tumour size at day 20 as a
function of tr for virus and DCs where x0 “ 1 and k “ 1. The red points in panels (c,d) correspond
to the simulated release profiles in panels (e,f). In panel (e), k “ 1, tr “ 9 and x0 “ 0.5 for uV and
x0 “ 3 for uDC. In panel (f), k “ x0 “ 1 and tr “ 1.5 for uV and tr “ 14 for uDC. The top row of figures
in panels (e,f) correspond to the number of tumour cells U` I and the bottom row of figures are the
corresponding release profiles. Note the use of both vertical axes.

Simulating varying x0 ą 0 for virus and DCs and fixing k “ ´1, 1 and 3, we see that the value
of the midpoint needed to minimise the tumour burden depends most heavily on the midpoint for
uDCptq, Figure 6c. If k ą 0, then a lower x0 is needed, whereas the opposite is exhibited if k ă 0.
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Unsurprisingly, simulating the sigmoidal function for fixed values of k “ 1 and x0 “ 1 and varying tr

for DCs and virus, we have similar dynamics to the linear and constant release curves, see Figure 6d.
For an increasing sigmoidal function, the optimal tumour size is obtained when the virus is released
quickly and the DCs have an extended release. Two model simulations are provided in Figure 6e,f to
demonstrate the different sigmoidal release functions considered.

4.4. Implementing a Genetic Algorithm to Determine the True Optimal Release Curves

In the previous sections, the gel-release dynamics have been qualitatively linked with the
tumour burden on day 20. To determine the optimal parameter sets for the constant, linear and
sigmoidal dosage functions, the tumour volume on day 20 was minimised under each release
profile using Matlab’s genetic algorithm function ga [53]. Genetic algorithms are heuristic global
optimisation routines inspired by natural selection that are frequently employed to estimate parameters
in computational biology models. They have previously been applied to study optimal dosing routines
in immunology [54,55] and combined oncolytic virotherapy and immunotherapy [29].

The tumour growth under the optimised constant, linear and sigmoidal release curves for virus
and DCs are pictured in Figure 7. The parameter values from the genetic algorithm for each optimal
release curve are given in Table 5. The constraints applied for the numerical simulations were also
applied here for the different release curves. The optimal decreasing linear release curve has not
been plotted as we know from the numerical simulations that it did not achieve a significant global
minimum. Additionally, we found that the decreasing sigmoidal function’s optimal parameters
qualitatively matched that of the increasing sigmoidal function.

Table 5. Optimised parameter values for the constant fc, linear fl and sigmoidal fs release curves
(Equations (12)–(14)) for Ad/IL12/GMCSF and immature DCs from a gel. The virus and DCs were
allowed to have individualised curves. Figure 7 is a plot of the tumour volume under the five
optimised curves.

Constant Linear (Increasing) Sigmoidal

tr tr a tr k x0

Ad/IL12/GMCSF uVptq 0.1261 0.1252 14.9893 0.05 9.2789 ´6.0499
DCs uDCptq 13.7732 13.1629 2.8866 13.6311 9.1951 ´8.3333

Figure 7c shows that all three optimised release curves are able to reduce the tumour burden below
the average size from Oh et al.’s experiments [10]. The dynamics of the immature APC population
(DL `DS ` AI) are similar for the constant and sigmoidal release curves, see Figure 7a, whereas the
optimal linear release profile delays the initiation of the APC accumulation. As the virus dynamics are
the same for the three release curves (Figure 7b), this suggests that the delay on the immature APC
population expansion causes the decrease in tumour size under the optimised linear release therapy in
Figure 7c.

Overall, the parameters returned from the genetic algorithm matched the qualitative results of
the numerical investigation for the constant and linear release functions. Both release curves required
less than a day for the virus release and approximately 13 days for the DCs. The steepness of the linear
curve a was much higher for the virus than the DCs, with the DC’s value of a close to that plotted in
Figure 5c. The sigmoidal release curve had the same dependence on the release curves for viruses
and DCs as the constant and linear release period. Interestingly, the midpoint for both functions
was significantly negative, meaning the curve would be similar to an increasing linear release profile.
These results all suggest that the added complexity of the sigmoidal function with the time-varying
gradient does not improve the efficacy of the gel-release mechanism.
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Figure 7. Genetic optimisation of the gel-release profile. Implementing a genetic algorithm we
determined the optimal constant, linear and sigmoidal curves for the virus, uVptq, and DCs, uDCptq,
see Table 5. The corresponding model dynamics are plotted for (a) the total number of immature DCs
(DL`DS` AI), (b) the virus (V) and (c) the total number of tumour cells (U` I). In panel (c), the mean
and standard error from Oh et al.’s tumour growth under DC+Ad/IL12/GMCSF loaded onto a gel is
plotted in blue, and in grey is the model’s predicted tumour growth under DC+Ad/IL12/GMCSF in
the absence of the gel.

5. Discussion

In this work, we developed a system of ordinary differential equations for the sustained release
of virus and immature dendritic cells from a gel and the resulting interaction with a population of
tumour cells and immune cells. Using our model, we recreated the in vitro and in vivo experiments of
Oh et al. [10] (Figures 2 and 3). Using the calibrated model, we have been able to provide insight into
how the gel-release profile may be optimised to improve treatment.

In the sequential fitting, attributes of the model were calibrated to the tumour response to
combined Ad/IL12/GMCSF and immature DC therapy (Figure 3). To optimise the model to the
Ad/IL12/GMCSF treatment of Lewis Lung Carcinoma (LLC) tumours by Oh et al. [10], we fixed most
parameters to values obtained from our previous optimisation of the Ad/IL12/GMCSF treatment of
melanoma [36], fitting only the virus infection rate, β, and killer T cell killing rate, κ (see Figure 3b).
Both these parameters decreased for the treatment of LLC tumours compared to melanoma, suggesting
that different tumour cells lines will ultimately result in different virus and immune characteristics.

From the optimisation of the single immature DC injection (Figure 3c) and the combined
DCs+Ad/IL12/GMCSF injection (Figure 3d), we found that immature APCs are stimulated
more rapidly by infected as opposed to uninfected cells, parameters sAI and sAU , respectively.
Additionally, we note that the killing rate, κ, decreased for Ad/IL12/GMCSF alone, compared to
DC+Ad/IL12/GMCSF. We hypothesise that the addition of immature DCs results in a heightened
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antitumour immune response, which results in a “division of resources” between the antitumour and
antiviral immune response.

Oh et al. [10] reduced the tumour size by 50% on day 20 by using a GHPA hydrogel to release the
DC+Ad/IL12/GMCSF treatment (Figure 3e). Using our calibrated model (Table 3), we numerically
investigated alternative gel-release profiles to determine whether we could reduce the tumour burden
further. Conserving the total amount of virus and DCs released from the gel, we first considered
a constant gel-release profile. Simulating different release periods, tr, for the virus and DCs we found
a minimum tumour size is attainable when the virus is released over a day, and the DCs are released
for 13 days (Figure 4). This suggests that an initial burst of virus reduces the tumour volume through
infection and stimulates an immune response that, under a prolonged constant release of DCs from
the gel, results in a significantly reduced tumour volume.

A natural extension was then to examine the tumour volume under different linear releases. If the
release period, tr, is fixed for both the DCs and the virus, then release periods between tr “ 5 to
14 days reduce the tumour burden most significantly (Figure 5a,b). The global optimal of this regime
occurs when a « 0, i.e., a constant release profile, suggesting that the optimal protocol is constant
administration if release periods for the virus and DCs cannot be distinct. For unique release times,
the optimal release period is similar to the constant release profiles: virus released rapidly and the DCs
released slowly over time (Figure 5c). Overall, the gel designed by Oh et al. performed optimally and
there are many increasing linear release profiles that would have performed significantly worse.

Considering the more complex sigmoidal gel-release profile, we found that the tumour burden
was reduced when the midpoint was below 0 and the curve was an increasing function (Figure 6a,b).
In other words, when the gradient of the release rate was reducing and tending towards a constant
release profile. Furthermore, explicitly increasing the steepness, k, of the sigmoidal curve always
increased the tumour size (Figure 6b,c). Unsurprisingly, the optimal release period for viruses and
DCs was qualitatively similar to that of the constant and linear release periods (Figure 6d), implying
that it is primarily the release period that optimises the treatment irrespective of the release curve.

Implementing a genetic algorithm, we were able to determine the true optimal constant, linear
and sigmoidal release curves (Table 5 and Figure 7). Unsurprisingly, the optimal release curves each
had a short release time for the virus and an extended release time of 13 days for the DCs. Comparing
the impact of the different optimal release curves (Figure 7c), we see that the difference in the tumour
size was minimal. Although the optimised linear release curve reduced the tumour size the most,
all release curves improved the treatment by a similar amount. This suggests that extending the
complexity of the release mechanisms may not be necessary, as a constant release curve performs
almost as well as a linear release curve, and the optimised sigmoidal curve is more constant than
sigmoidal. Additionally, this also suggests that for the constraints considered on the release curves it is
not possible to optimise the gel so that the tumour is completely eradicated.

Previously, Barish et al. [38] optimised the scheduling of discrete doses of oncolytic virus and
DCs. They showed that higher doses of DCs were needed to result in a robust optimised therapy.
The fact that our results suggest the need for sustained release of DCs complements their findings
and demonstrates that therapy can be optimised when the timing of DC administration is optimal.
Our results also align with the results of Wares et al. [37], where they showed using a calibrated model
that it is more effective to treat a tumour with immunostimulatory oncolytic viruses first and then
follow up with a sequence of DCs than to alternate oncolytic virus and DC injections.

A limiting assumption of this work is that the complex gel mechanics are modelled
phenomenologically. As the goal was to investigate the effect of changing the function uDCptq,
we believe it is not necessary to model the gel-release kinetics explicitly and, as qualitatively the model
formulation for the measurements with and without the gel is able to capture the model dynamics
(see Figure 2), this was a suitable simplification. Future work, however, would look to develop a more
appropriate realisation of the gel kinetics and investigate mechanistically the optimal release profile.
Another simplification in the model is that the rate at which immune cells are stimulated is independent
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of the antigen type. In reality, immune cells are antigen specific [18] with either tumour–antigen- or
virus–antigen-specific cells. Future extensions of this work could consider two populations of immune
cells similar to the work of Mahasa et al. [56] and investigate further why optimised gel-release profiles
require an extended DC release.

Using a system of ODEs, we were able to replicate the experimental conditions of DC+Ad/
IL12/GMCSF therapy and determine possible improvements to the gel-release profile. This model
can be applied to other viro-immunotherapies that aim to activate the adaptive antitumour immune
response. As we only consider simple formulations for the gel-release rate, this model is easily
translatable to other sustained-release delivery systems where the release functions uVptq and uDCptq
may or may not be known. Our results on the optimal timing of virus and DC treatment provide
insight into how future viro-immunotherapies using DCs need to be designed. From this work,
we present a mathematical model that can be used to provide insight into other oncolytic virotherapies
or viro-immunotherapies and predict the impact of sustained-delivery systems.

6. Conclusions

The mathematical model of tumour cell, virus and immune interactions derived in this study
is a good representation of the response to viro-immunotherapy. We have shown how a sequential
optimisation of experimental data provides insight into the underlying biology of the interaction.
From our numerical optimisation of the gel developed by Oh et al. [10], we were able to show which
key characteristics optimised or reduced the gel’s efficacy. We found that if the virus is released
instantaneously and the DCs are released over 13 days, then the tumour size under treatment can be
improved. In turn, we were able to show that additional complexity in the gel-release profile does not
add any improvement to the treatment outcome. Ultimately, to improve this treatment dramatically,
it is not sufficient to solely manipulate the gel: more would need to be done to change the underlying
efficacy of the virus and immune response to ultimately improve treatment.
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