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Abstract: To study the variations in modal properties of a reinforced concrete (RC) slab (such as
natural frequencies, mode shapes and damping ratios) under the influence of ambient temperature,
a laboratory RC slab is monitored for over a year, the simple linear regression (LR) and autoregressive
with exogenous input (ARX) models between temperature and frequencies are established and
validated, and a damage identification based on particle swarm optimization (PSO) is utilized
to detect the assumed damage considering temperature effects. Firstly, the vibration testing is
performed for one year and the variations of natural frequencies, mode shapes and damping ratios
under different ambient temperatures are analyzed. The obtained results show that the change of
ambient temperature causes a major change of natural frequencies, which, on the contrary, has little
effect on damping ratios and modal shapes. Secondly, based on a theoretical derivation analysis
of natural frequency, the models are determined from experimental data on the healthy structure,
and the functional relationship between temperature and elastic modulus is obtained. Based on the
monitoring data, the LR model and ARX model between structural elastic modulus and ambient
temperature are acquired, which can be used as the baseline of future damage identification. Finally,
the established ARX model is validated based on a PSO algorithm and new data from the assumed
5% uniform damage and 10% uniform damage are compared with the models. If the eigenfrequency
exceeds the certain confidence interval of the ARX model, there is probably another cause that drives
the eigenfrequency variations, such as structural damage. Based on the constructed ARX model,
the assumed damage is identified accurately.

Keywords: damage detection; linear model; ARX model; temperature effects; vibration-based;
RC slab

1. Introduction

Actual civil structures are susceptible to the influence of varying environmental factors and
operational conditions such as humidity, wind and moving vehicles, however the most important factor
has proven to be temperature [1–3]. In recent years, structural health monitoring under environmental
variations has become a popular research topic in the field of civil engineering [4–6]. Moaveni and
Behmanesh [7] investigated the effects of changing ambient temperatures on finite element (FE) model
updating of the Dowling Hall Footbridge. Moorty and Roeder [8] studied temperature-dependent
bridge movements and stress development in bridges. Liang et al. [9] proposed a new data normalization
technique based on the improved restoring force model (IRFM) to distinguish the effect of damage
from those caused by environmental and operational variations. Grosso and Lanata [10] conducted a
static continuous monitoring experiment to assess the validity of some damage detection algorithms.
Li et al. [11] proposed a damage identification approach in bridge structures under moving vehicular
loads without knowledge of the vehicle properties and the time-histories of moving interaction forces.
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Yarnold and Moon [12] utilized the relationship between temperature changes and the resulting strains
and displacements of the structure to create a unique numerical and graphical baseline within an
structural health monitoring (SHM) framework and found the temperature-based approach was more
sensitive for the scenarios examined. Chang et al. [13] investigated the feasibility of the pseudo-static
damage identification method derived from a bridge–vehicle interaction system through a moving
vehicle laboratory experiment.

For structural damage identification, damage is generally identified through the dynamic
characteristics test of the structures by analyzing the change of structural modal parameters, such as
natural frequencies, mode shapes, and damping ratios. Doebling et al. [14,15] provided an overview
of methods to detect, locate, and characterize damage in structural and mechanical systems by
examining changes in measured vibration response. Hao and Xia [16] proposed a genetic algorithm
(GA) with real number encoding to identify the structural damage by minimizing the objective
function, which directly compares the changes in the measurements before and after damage occurs.
Deraemaeker and Preumont [17] introduced a novel approach for vibration-based damage detection,
which is based on the use of a large network of sensors’ frequency response function (FRF). Boonlong [18]
performed a vibration-based damage detection of a beam based on a cooperative co evolutionary
GA. However, dynamic characteristics such as natural frequencies, mode shapes and damping ratios
are inherently susceptible not only to structural damage but also environmental variations and
operational conditions, and it is the variation of temperature that induces major fluctuation of structural
dynamic parameters [19]. Among the many factors that affect the modal frequency of the bridge
structure, the change of the modal frequency caused by temperature may be larger than that caused
by structural damage, and the change caused by small damage to the structure is even submerged or
masked. Therefore, it is of great significance to study the effect of temperature on modal properties.
Alampalli [20] took an experiment for one small steel truss bridge and found that the influence of
temperature on frequency exceeds the influence of simulated fault on frequency. Peeters et al. [21]
carried out a 10-month dynamic test on Z24 Bridge and found that the fluctuation range of the 1st to
4th natural frequencies of the bridge was 14%, 18%, 16% and 17%, respectively. Zhao and DeWolf [22]
monitored a steel plate girder bridge for 2 years and it is shown that the natural frequency change
at the lowest temperature (−15.6 ◦C) compared with the reference temperature (12.8 ◦C) could be
up to 15.4%. Xu and Wu [23] found that changes in dynamic characteristics of the bridge due to
damage in girders or cables may be smaller than changes in dynamic characteristics due to variations
in temperature. Martins et al. [24] investigated the variation of wind, temperature and acceleration of
the Braga Stadium suspension roof during a period of 8 months and analyzed the influence of wind
and temperature on the variation of modal parameters.

To distinguish the modal parameter change caused by structural damage and temperature change,
many methods are adopted to identify the structural damage considering temperature variations.
Huang et al. [25] proposed a non-destructive global damage identification method based on a genetic
algorithm (GA) to identify the damage location and severity of the structure under the influence
of temperature variation and noise, which is verified by a number of damage scenarios using a
three-span continuous beam. It shows good robustness under random noise levels with a lab steel
grid experiment. Jin et al. [26] developed an extended Kalman filter-based artificial neural network
(EKFNN) method to eliminate the temperature effects and detect damage for structures equipped with
long-term monitoring systems, and the correlations between natural frequencies and temperature are
analyzed to select proper input variables for the neural network model. Jiao et al. [27] proposed a
fuzzy neural network-based damage assessment method, in which uniform load surface curvature is
used as damage indicator. Under the assumption that the elasticity modulus of concrete is temperature
dependent, the algorithm can distinguish the damage from the temperature effect.

The relationship between frequency and temperature variations are constructed to study the
influence of temperature on frequency. The purpose is to quantify the relationship between temperature
and natural eigenfrequency. Ni et al. [28] adopted support vector machine (SVM) to analyze the
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monitoring data and quantify the influence of temperature on modal frequency, the results obtained
by the SVM models are compared with those produced by a multivariate linear regression model,
and it is shown that the SVM models exhibit good capabilities for mapping between the temperature
and modal frequencies. Farrar et al. [29] monitored the natural variability of the frequencies and
mode shapes of the Alamosa Canyon Bridge that result from changes in time of day considering the
amount of traffic and environmental conditions. Peeters and Roeck [21] monitored the Z24 Bridge and
proposed a black-box model to describe the variations of eigenfrequencies as a function of temperature,
and new data are compared with the models to discriminate the reason that induced the changes
of eigenfrequency. Sohn et al. [30] proposed a linear adaptive model to discriminate the changes
of modal parameters due to temperature changes from those caused by structural damage or other
environmental effects. Xia et al. [31] monitored the influence of temperature and humidity on the
vibration characteristics of the structure, and linear regression models between modal properties and
environmental factors were built. Liu et al. [32] established a multiple linear regression model (MLRM)
to describe the relationship between modal frequency and non-uniform temperature distribution to
raise the accuracy of quantified temperature and frequency. Zhou et al. [33] obtained the correlation
between temperature and frequency by comparing the test data of a simply supported beam under the
effect of temperature.

Few researches focus on the damage identification based on the established relationship model,
such as the linear regressive model and the autoregressive with exogenous (ARX) model. When the
damage causes the nonlinear response of the structure, it is expected that the residual damage will
increase. Therefore, the standard deviation of residual damage is predicted as the damage characteristic
quantity by using ARX model. The results show that this method can detect the damage. In this
paper, continuous vibration testing is carried out for one year. Based on the acquired vibration testing,
the simple LR model and ARX model between the first four eigenfrequencies and temperatures are
established. By comparing the root mean squared error (RMSE) between the simple LR model and
the ARX model, it is found that the prediction accuracy of the ARX model is better. Based on the
established ARX model, two simulated cases are constructed and a hybrid PSO algorithm is adopted
for the damage identification process. It can be seen that the proposed method in the paper can
distinguish the normal and abnormal temperature variations. If the eigenfrequency exceeds the certain
confidence interval of the ARX model, there is probably another cause that drives the eigenfrequency
variations, such as structural damage. Moreover, the method can identify the damage location and
severity, which is more accurate for damage identification based on temperature variation.

2. RC Slab and Vibration Testing

2.1. Testing Setup

A classical simply supported RC slab was constructed for this study which measures 5.4m long,
0.6 m wide, and 0.12 m thick with a 0.2 m overhang at each end, and a mass density of 2410 kg/m3,
as shown in Figure 1. Four laminated rubber bearings support the slab at the endpoints on the top of
the brick pedestal. The main aim of this paper is to investigate the influence of varying temperature on
the performance of damage detection based on long-term monitoring data.

From July 1, 2017 to June 30, 2018, the RC slab was monitored for one year under natural
environmental conditions and environmental temperature and vibration data were acquired. As shown
in Figure 2, 45 measurement points were uniformly located on the top and bottom surface of the slab.
A laser thermometer was utilized to measure the surface temperature, which allowed an error of 0.5 ◦C
in the range of 0–100 ◦C. The temperature measurement and the vibration testing were carried out at
the same time. Moreover, the time interval of the temperature measurement was about 15 min and
vibration testing data from all sensors were captured almost simultaneously.
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The acceleration data was captured by a DH5922 vibration testing system which has the advantages
of light mass and convenient use etc. The operation temperature of acceleration acquisition instrument
ranges from 0 ◦C to 60 ◦C. It is also a universal dynamic signal test and analysis system which can
complete the testing and analysis of stress, strain, vibration, shock, acoustics, temperature, pressure,
flow, force, torque, voltage and current, etc. The instrument has 16 24-bit IEPE input channels which
are equipped with an anti-mixing filter, and supports sampling frequency up to 51.2k Hz. The system
was connected with the acceleration sensor by L5 coaxial extension wire and placed in the center of
the equal dividing line to collect the acceleration signal. The operation temperature of acceleration
sensor ranged from −40 ◦C to 80 ◦C and its tolerance was ±1%. The acceleration sensor locations and
vibration testing system are shown in Figure 3.
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Monitoring for one year was performed and 180 sets of data were acquired. The monitoring
temperature ranged from 0 to 55 ◦C, and it was found that the temperatures on the top surface
vary little and the same phenomenon occurs on the bottom surface, so the average top and bottom
surface temperature were calculated based on the acquired temperatures of the top and bottom surface.
Then the average temperature was calculated based on the acquired average top and bottom surface
temperature. Figure 4 shows the surface temperature of the slab. Typical acceleration history in time
and frequency are shown in Figure 5.
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2.2. Variations of Natural Frequencies

In this paper, the modal parameters, natural frequencies, damping ratios and mode shapes, were
acquired for the investigation of the dynamic characteristics of the RC slab which should be estimated
by a monitoring system based on the output-only data. However, it is difficult to excite the structure
with a known force and the environmental excitation may not easily cause vibrations, so a force
hammer was used for the vibration testing. The acceleration history data was analyzed by fast Fourier
transform (FFT), and the mode shapes of the RC slab were extracted and shown in Figure 6.

During the one-year period, 30 separate days were selected for the vibration testing which
included the lowest temperatures in January 2018 and the highest in July 2017 in a year. The vibration
testing was carried out periodically, once every two hours, from 8:00 am to 6:00 pm each day, because
the mean temperature changes slowly from 6:00 pm to 8:00 am of the next day.

The first four natural frequencies vs. date are plotted as Figure 7 and the maximum and minimum
frequencies are listed in Table 1. It can be seen that the highest temperatures and the lowest natural
frequencies were in July 2017. The contrary phenomenon occurred in January 2018. The maximum
variation range was 16.52% for the first natural frequency.
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Table 1. The maximum and minimum natural frequencies.

Mode Minimum/Hz Maximum/Hz Error/%

1st 6.884 8.198 16.52
2nd 26.093 29.467 11.45
3rd 58.292 65.764 11.36
4th 99.051 114.398 13.42

The first four natural frequencies of the slab are plotted as functions of temperature in Figure 8
(degrees Celsius is specified in this paper) and it can be seen that temperature is one of the main factors
affecting the eigenfrequency of the RC slab. When the temperature rises, the eigenfrequency decreases
gradually, and there is a significant linear negative correlation between temperatures and natural
frequencies. The linear fitting coefficients R2 of natural frequencies and temperatures for the first four
modes of the RC slab are 0.898, 0.802, 0.817 and 0.800, respectively, implying that there is a good linear
correlation between natural frequencies and temperatures.Appl. Sci. 2020, 3, x FOR PEER REVIEW 8 of 21 
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2.3. Variation of Damping Ratios

Based on the theory of structural dynamics, that the damping in the RC slab is proportional
and viscous, the first four damping ratios are extracted and the relationships between temperature
variations and modal damping ratio are shown as in Figure 9.
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It can be observed that the damping ratio decreases with the increase of temperature. The linear
fitting coefficients R2 of damping ratios and temperatures for the first four modes of RC slab were
0.0954, 0.0647, 0.3795, and 0.298, respectively. It was found that the first modal damping was relatively
not sensitive to the temperature, and the other three modes had a negative correlation with temperature.
This result was probably due to the fact that a linear viscous model was used. For solids and especially
for concrete the models of dissipations to be used are different [34,35].

2.4. Variation of MAC

In damage detection, modal assurance criterion (MAC), which ranges from 0 to 1, is often used in
automatically pairing and comparing the analytical and experimental mode shapes, here 1 and 0 mean
a perfect correlation and no correlation, respectively.

In the paper, MAC is defined as [36]:

MAC(ϕ(k)
i ,ϕi) =

∣∣∣∣ϕ(k)
i

Tϕi

∣∣∣∣2
(ϕ

(k)
i

Tϕ
(k)
i )(ϕT

i ϕi)
(1)

where ϕ(k)
i is the experimental mode shape at the k-th vibration testing and ϕi is the analytical mode

shape, which are adopted as a baseline mode shape.
The MAC values of the first four modes with respect to temperature are shown in Figure 10,

whose variation ranges are (0.985, 1), (0.985, 1), (0.974, 1) and (0.975, 1), respectively. The obtained
results show that all the MAC values are bigger than 0.97 and very close to unity, which implies that
there is no clear correlation between MAC value and temperature, and the mode shape is less affected
by environmental factors. Because there is a lower test precision for the high-mode modal shape than
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the low-step modal shape, the discretization degree of the MAC value is higher than the low-mode
modal shape.
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3. Mathematical Model

3.1. Theoretical Derivation

The variations of environmental temperature have an important influence on the mechanical
properties of structural materials, especially elastic modulus. The elastic modulus of concrete decreases
with the increase of environmental temperature, which leads to a decrease in eigenfrequency. Here,
a simply supported beam is chosen for the investigation of the influence mechanism of temperature on
structural modal characteristics. Span, elastic modulus, area of cross section, moment of inertia of cross
section and uniform mass of the simply supported beam are expressed by L, E, A, I and m respectively.

The n-th eigenfrequency of the simply supported beam fn is [37]:

fn =
n2π

2L2

√
EI
m

(2)

The rate of change of eigenfrequency can be determined by:

δ fn
fn

=
1
2
δE
E
− 2

δL
L

+
1
2
δI
I

(3)
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where δ represents an increment in corresponding variables. When temperature changes by δt,
the changes of the relative parameters are as follows, respectively:

δE
E = θEδt, δL

L = θLδt, δI
I = θIδt (4)

where θE is the temperature coefficient of elastic modulus, which is an undetermined parameter;
θL = α is the linear thermal expansion coefficient of materials. θI is the same grade of α4 and it can be
neglected. The three coefficients are put in the Equation (3), and it can be rewritten as:

δ fn
fn

=
1
2
θE − 2αδt (5)

Equation (5) can be used to estimate the eigenfrequency variation of a simply supported beam
caused by temperature change. The temperature coefficient θE of concrete is much larger than the
linear thermal expansion coefficient α [38]. It can be seen that the influence of temperature dependence
of elastic modulus of concrete is much greater than that of geometric size with temperature, which is
the main reason for the change of natural frequencies.

3.2. Simple Linear Regression Model

The relationship between eigenfrequency and mean temperature is considered to be linear, which
is shown as:

f = kT + b (6)

where f is the eigenfrequency; T is the temperature; k is the slope coefficient; and b is intercept.
The simple linear regression model of each mode is shown in Figure 11.
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The fitted regression line is plotted in Figure 8a–d together with the 95% confidence bounds,
and the slope coefficients and intercepts for the first four natural frequencies are shown as Table 2.

Table 2. Slope coefficients and intercepts for the first four natural frequencies.

Mode K b

1st −0.025 8.081
2nd −0.0429 28.955
3rd −0.1222 64.572
4th −0.1955 114.398

3.3. ARX Model

The three parameters: the auto-regressive order an, the exogeneous order bm and the pure time
delay between input and output d are the main features of the auto-regressive with exogenous (ARX)
model. The ARX model adopted in this paper consists of an auto-regressive output and an exogeneous
input part, which is shown as follows [39]:

y(t) + a1y(t− 1) + a2y(t− 2) + · · ·+ any(t− n) = b1u(t− d) + b2u(t− d− 1) + · · ·+ bmu(t− d−m + 1) + ε(t) (7)

where y(t) is the eigenfrequency at time instant t, which is the output; u(t − d) is the temperature
at time instant t− d, which functions as the input; ε(t) is the equation error, which functions as the
unknown disturbances during the input–output process, such as white noise.

The ARX model can be rewritten by z-transformation:

A(z−1)y(t) = B(z−1)u(t− d) + ε(t) (8)

where
A(z−1) = 1 + a1z−1 + · · ·+ anz−n (9)

B(z−1) = b1 + b2z−1 + · · ·+ bmz−m+1 (10)

When the temperature input vector is u = [u(1), u(2), · · · , u(M)]T, the output vector of eigenfrequency
is y = [y(1), y(2), · · · , y(M)]T, Equation (7) can be rewritten as:

y(1) = −a1y(0) · · · − any(1− n) + b1u(1− d) · · ·+ bmu(2−m− d) + ε(1)
y(2) = −a1y(1) · · · − any(2− n) + b1u(2− d) · · ·+ bmu(3−m− d) + ε(2)

...
y(M) = −a1y(M− 1) · · · − any(M− n) + b1u(M− d) · · ·+ bmu(M + 1−m− d) + ε(M)

(11)

where the mean values of y(t) and u(t) are zero if t ≤ 0.
In general, the above equations can be expressed in the form of matrix

y = Φθ+ ε (12)

where

Φ =


y(0)
y(1)

...
y(M− 1)

· · ·

· · ·

· · ·

y(1− n)
y(2− n)

...
y(M− n)

u(1− d)
u(2− d)

...
u(M− d)

· · ·

· · ·

· · ·

u(2−m− d)
u(3−m− d)

...
u(M + 1−m− d)

 (13)

θT = [−a1,−a2, · · · ,−an, b1, · · · , bm] (14)

εT = [ε(1), · · · , ε(M)] (15)
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To minimize the sum of squares of the equation errors ε(i), a criterion based on the least squares
method can be defined and the best estimate of the undetermined parameter θ is shown as:

θ = [ΦTΦ]
−1

ΦT y (16)

In this paper, the (akaike information criterion) AIC is adopted, which is practical and can be used
to check mode order and is defined as:

AIC = lg

det

 1
M

M∑
i=1

θ(i,θ)θT(i,θ)


+

k
M

(17)

where M is the set number of experimental data; θ is vector to be identified; k is parameter to be
identified. The function v = aic(H), which is based on MATLAB, can be used to calculate the AIC
value in the model, if the AIC value is small, n, m, d can be the proper mode order of the system.

Equation (12) can be transformed to Equations (18) and (19), which are models with a double
input function, the first is the transfer function from input signal u(t) to output signal which is shown
as Equation (20), the second is the transfer function from error signal ε(t) to output signal, which can
be neglected here.

y(t) =
B(z−1)

A(z−1)
u(t− d) +

ε(t)
A(z−1)

(18)

y(t) =
B(z−1)

A(z−1)
z−du(t) +

ε(t)
A(z−1)

(19)

H(z−1) =
b1 + b2z−1 + · · ·+ bmz−m+1

1 + a1z−1 + a2z−2 · · ·+ anz−n z−d (20)

In the paper, three numbers can be determined based on MATLAB, n = 4, m = 2 and
d = 1; the transfer functions between temperature and the first four natural frequencies are shown
Equations (21)–(24).

H( f1) =
−1.591z−1 + 1.593z−2

1− 0.3364z−1 − 0.1731z−2 − 0.2633z−3 − 0.2169z−4
(21)

H( f2) =
0.8077z−1

− 0.8219z−2

1− 0.249z−1 − 0.1884z−2 − 0.3348z−3 − 0.2107z−4
(22)

H( f3) =
−0.3215z−1 + 0.3315z−2

1− 0.3122z−1 − 0.2461z−2 − 0.2611z−3 − 0.1445z−4
(23)

H( f4) =
−0.02412z−1

− 0.008753z−2

1− 0.1482z−1 − 0.3823z−2 − 0.2703z−3 − 0.1906z−4
(24)

Fitting the mean temperature and the first four natural frequencies of the RC slab, the ARX models
can be plotted as Figure 12.

The root-mean-square error can be used to estimate the precision of the model, which can be
shown as Equation (25). The less the acquired root mean squared error (RMSE) value, the better
the model precision. The comparison of RMSE values of the first four natural frequencies is shown
as Table 3, and it can be observed that the accuracy of the ARX model is better that of the linear
regressive model.

RMSE =

√√
1
n

n∑
i=1

(
fi −

∧

fi

)2

(25)

where n is the sample size; fi is the experimental eigenfrequency;
∧

fi is the estimated natural frequencies.
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Table 3. Comparison of root mean squared error (RMSE) values between ARX model and linear
regressive model.

Model 1st Mode 2nd Mode 3rd Mode 4th Mode

ARX model 0.0104 0.0882 0.561 1.812
LR model 0.0119 0.0969 0.568 2.1904

4. Damage Identification in Test Structure

In the above experiments and analysis, the ARX model, which can reflect the relationship between
natural frequencies and variations of temperature, is obtained, and it can be exploited for the damage
identification problem. Theoretically, the simulated frequencies of the experimental slab can be output
when the measuring temperature data are input to the model. However, if the large discrepancy is
observed between the simulated and measured frequencies, something abnormal may happen and
cannot be explained by temperature effects. For instance, if the measured natural frequencies are
lower, the slab may be damaged. However, the significant deviation is a rather subjective criterion
to judge the state of a structure. In this respect, some more objective statistical criterion needs to be
discussed; if there is an abnormal change, such as a crack in structures [40,41], the procedure of damage
identification will be carried out to identify whether the structure is damaged.

4.1. Statistical Criterion

The reasonable output confidence interval is determined to verify the damage identification
performance of the ARX model. The finite element model of the slab is constructed to obtain some
analytical natural frequencies of the intact and damaged structure. Theoretically, the analytical natural
frequencies of the intact structure should be distributed within the interval. Otherwise the damage
may occur in the structure. The output confidence interval, whose confidence level is 1− α, can be
defined as [42]:

[ŷk − tα/2,v
√

Pdk
, ŷk + tα/2,v

√
Pdk

]

dk = yk − ŷk

Pdk
= E[(dk)

2]

(26)

where ŷk is the output of the model, tα/2,v is found from a statistical table of the Student’s t-distribution,
yk is the experimental value, dk is an asymptotically Gaussian distributed with zero mean and Pdk

is a
certain covariance.

For the intact structure, the first natural frequency calculated based on finite element analysis
is shown in Figure 13, which indicates that the analytical natural frequencies are consistent with the
output of the ARX model. The results of finite element analysis fall in the confidence interval, and
the correctness of the ARX model is verified. Subsequently, the 5% and 10% uniform damage are
introduced to the finite element model through the reduction of the elastic modulus of the slab and the
first natural frequency is extracted. In Figure 14, for 5% uniform damage, although some frequencies
fall in the interval, the ARX model can assess the health condition of the structure. Damage may occur
in the structure, but the change of natural frequencies may arise from the temperature variations,
and if the temperature is monitored simultaneously, the reason for the change can be determined.
For 10% damage cases, the frequency data exceed the lower bound of the interval, damage occurs in
the structure absolutely, which shows that the ARX model can indicate abnormal variation and has a
good damage warning capability.
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4.2. Damage Identification Considering Temperature Variations

The linear relationship between the elastic modulus and the first natural frequencies of a simply
supported beam can be obtained from Equation (2), which can be written as:

E =
4L4 f 2

n m
n4π2I

(27)

where L is the span length; fn is the natural frequency of n-th mode; m is the mass per unit length; I is
the sectional moment of inertia.

Consequently, the elastic modulus under the different environmental temperatures can be
calculated by the experimental frequencies. The linear relationship between the elastic modulus and
temperature can be obtained by least square method, and the linear fitting coefficients R2 of elastic
modulus and temperatures is 0.8375, which is shown in Figure 15.

The linear relationship can be written as:

E = −189.5386× T + 33083.134 (28)
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Then, the linear relationship of temperature vs. elastic modulus is adopted for the finite element
model of the slab, and two damage cases are introduced, which are 5% and 10% uniform damage in
all elements (20 ◦C). Statistical criterion and particle swarm optimization (PSO) are utilized to detect
the damage considering the temperature effect. The PSO algorithm randomly generates the initial
population named particles, which is first raised by Kennedy and Eberhar [43]. The characteristics of
velocity and position are assigned to each particle which can be dynamically changed and updated by
referring to the best particle in the search space. The algorithm as a powerful optimization tool aims to
find the global optimal of an objective function, which is widely use in damage identification [44].
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The position P and velocity V of each particle are updated by Equations (29) and (30) respectively,
which are shown as follows:

Pt=t+1
i = Pt

i + Vt=t+1
i (29)

Vt=t+1
i = ωVt

i + c1α1 · (gbest− Pt=t+1
i ) + c2α2 · (pbest− Pt=t+1

i ) (30)

where i stands for the i-th particle; t is the number of current iterations; c1 = c2 = 2 mean the learning
factors; α1 and α2 are random constants in the range of [0, 1]; gbest and pbest are the global optimal
particle and optimal position respectively. ω is the inertia weight. The objective function can be
defined as:

f (x) = 10·
nmod∑

j=1

( faj − fej

fej

)2

+
nmod∑

j=1

1−
√

MAC j

MAC j

2

(31)

where faj and fej are the j-th analytical and experimental natural frequency respectively; MACj is
the j-th Modal Assurance Criterion (Equation (1)), nmod is the number of modes. The flowchart and
identification results are shown in Figures 16 and 17, respectively.
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Figure 16. The flowchart of damage identification.

From Figure 17 it can be seen that the damage of the RC slab can be precisely located and accurately
quantified. In addition, as shown in Table 4, the first analytical frequency of the slab in damaged
state does not exceed the confidence interval, so it is evident that the proposed damage identification
method is verified and is of good performance.

Table 4. Determination of damage using statistical criterion.

Damage Case Lower Bound of
the Interval

Upper Bound of
the Interval

The First Analytical
Frequency

Determination of
Damage

5% uniform
damage (20 ◦C) 7.266 7.672

7.34 Damaged

10%uniform
damage (20 ◦C) 6.99 Damaged
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5. Conclusions

In this paper, a method that can distinguish natural frequencies changes due to normal temperature
variations from abnormal damage is presented. Based on the vibration testing of a RC slab for one
year, the relationship between temperature and test data was analyzed. The linear regressive and
ARX models were established, and it was concluded that if the experimental natural frequency lies
outside the confidence intervals, it was likely that the slab was damaged. Moreover, two simulated
cases are constructed and PSO is adopted to identify the location and severity of the specified
damage successfully.

(1) The vibration testing of a laboratory simply supported RC slab has been performed for one
year. During the period, temperatures and accelerations at different locations were monitored, and the
variations of temperatures and natural frequencies were acquired. It was found that natural frequencies
and damping ratios decrease with the increase of temperatures for the first four modes and there was
no actual relation with MAC and temperature.

(2) The mathematical derivation of a simply supported beam was performed and it was found that
the influence of temperature dependence on the elastic modulus of concrete was the main reason for
the change of natural frequencies. The relationship between the elastic modulus and the temperature
was obtained by deducing the equation, and the specific parameters of the relationship between the
temperature and the elastic modulus were obtained by analyzing the measured data.

(3) The simple linear regressive model and the ARX model were constructed based on the vibration
testing results, by analyzing the RMSE values of the model and measured data, it was found that the
precision of the ARX model was better than that of the linear regressive model.

(4) An objective statistical method based on ARX model was presented to detect and identify the
location and severity of the simulated damage. A confidence interval was constructed to estimate the
disturbance of natural frequencies due to temperature and two simulated damage cases were set up.
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PSO was adopted to identify the damage and validate the proposed model, and it was found that the
method in this paper can distinguish the variations of natural frequencies due to normal temperature
variations from those variations due to abnormal reasons such as structural damage.
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