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Abstract: Experimental investigation on cement emulsified asphalt mortar (CA mortar) under
uniaxial monotonic compression by taking into account the stochastic properties were investigated.
An analytical constitutive model based on the statistic damage approach capable of mimicking
the stochastic mechanical responses of CA mortar under uniaxial compression was proposed.
The comparison between the experimental results and the predictions demonstrated that the
proposed model was able to characterize the salient features for CA mortar under uniaxial monotonic
compression. Furthermore, the compressive stochastic evolution (SE) of CA mortar tested in this work
and comparative analyses among typical China Railway Track System-I (CRTS-I) type CA mortar
and concrete in several aspects were examined and performed; it was revealed that the Lognormal
distribution density function can well represent the damage probability density for CA mortar, and its
stochastic constitutive relationship can be reflected by a media process of transition from microscale
to macroscale.

Keywords: cement emulsified asphalt mortar; stress–strain response; monotonic compression;
damage model

1. Introduction

Cement and emulsified asphalt mortar (CA mortar) is an inorganic–organic composite material,
which mainly consists of cement, emulsified asphalt, sand, and admixtures and is considered as a key
material used in the construction of high-speed railway and road pavement [1–6]. In China, CA mortar
is employed as the cushion layer and casted between the ballastless track slab and the concrete bed
plate for providing leveling, load bearing and transmitting, vibration absorption, segregation and
geometrical adjustment in CRTS (China Railway Track System) type I and II track structure [7,8].

To date, much effort has been directed towards the exploration of relevant properties for CA
mortar due to its crucial role in safety and life control for railway track structures. Generally, three
major categories can be identified in present research topics referring to CA mortar: (a) physical and
chemical properties of fresh CA mortar [9–19], which mainly incorporate the properties of rheology,
water absorption and expansibility, seepage, and expansibility; (b) mechanical properties of hardened
CA mortar [8,20–36], where particular attention is chiefly paid to the issues of critical compressive
strength, Young’s modulus, strain–stress relationship, strain rate effect, and temperature sensitivity;
(c) investigations of the durability properties of hardened CA mortar [37–47], which primarily aim at
the behaviors of fatigue properties, creep and stress relaxation, freezing resistance, and water erosion.
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Among foregoing categories of research topics, the mechanical behavior of CA mortar is
recognized as paramount. In view of CA mortar normally being under the coupling effect of
varied loading frequencies and temperatures during the service condition, the mechanical properties
have been usually examined incorporated with strain rate effects and temperature sensitivity.
Such approaches have been applied successfully to deal with relative topics, and a variety of works
can be traced [8,21,23–26,28–33,45]. In detail, several conclusions are can be drawn according to those
researches: (1) the compressive strength, compressive strain, and the elastic modulus are much more
sensitive than traditional Portland cement mortar and concrete to strain rate effect [28]; (2) the peak
strength, discrete dynamic Young’s modulus, and specific energy absorption increase with strain
rate [8,21,23,25,26,31]; (3) the compressive strength and elastic modulus increase monotonically with
confining pressure [24]; (4) increasing temperature results in the decrease of mechanical properties
such as resilient modulus, compressive strength, and flexural strength, the temperature sensitivity and
loading rate dependence for mechanical properties with higher asphalt-to-cement content ratio (A/C)
are greater than those with lower A/C [22,25,32,33,45]; (5) the storage modulus gradually decreases
with increasing temperature and decreases with the increase of A/C and water content [29].

As a fundamental problem with respect to mechanical behaviors, the constitutive relationship of
the material is regarded as the basis of the research on the performance of structural analysis. Up until
now, a variety of empirical or theoretical approaches have been successfully developed and applied in
modelling such behaviors for different materials [8,21–25,35,46,48]. However, relevant studies for CA
mortar are limited at present. From a summary standpoint, present research can be classified into two
categories: (a) Empirical or semi-empirical models, where the constitutive relationship are accounted
for based on the observation of the experimental results; for example, Wang et al. [24] developed a
modified Domaschuk model to characterize the full deviatoric stress–strain relationship of CA mortar
in both the confined and uniaxial cases based on the experimental results of a triaxial compressive test.
Further, by coupling of the effects of loading rate and temperature sensitivity, Wang et al. [25] proposed
a stress–strain model for CA mortar by using a modified Guo’s model. Although such empirical
models may have the advantage of simplifying relative design/analysis process towards certain
problems, the formulated equations can be only used for representing a specific observed phenomenon.
(b) Theoretical analysis models mainly based on adopting the statistical damage approach [8,21,23,35];
the basic idea of this approach is to use mesoscopic elements for delineating the damaging process
and failure characteristics of the macroscopic behavior of materials caused by the initiation, growth,
and coalescence of micro cracks during the loading. Normally, the introduction of suitable probability
density functions for the failure behavior of the mesoscopic elements plays an essential role. In terms
of failure behavior, two types of formalisms for the strength criterion are used to govern the fracture of
such elements, viz., the stress space or strain space. For instance, Fu et al. [35] proposed a statistical
damage constitutive model by adopting the Weibull distribution function and incorporating the Mises
strength criterion, to describe the stress–strain relationships for CA mortar under monotonic uniaxial
compression. Later, based on the Kelvin model, Fu et al. [23] developed a model by employing the
same distribution function to the strength criterion in terms of fracture strain. This model is able
to describe the stress– strain relationship of CA mortar with the strain rate effect. Similar attempts
could be also found in his work [8] on characterizing the stress–strain relationship of CA mortar under
dynamic compressive loading.

However, even above-mentioned models are capable of addressing and modelling the nonlinearity
emerged in stress-strain relationship of CA mortar, they are in deficiency of describing relative stochastic
properties (e.g., the variation of strain–stress relationships induced by loading for a group of identical
specimens), which limit the application of CA mortar in the engineering field inevitably. Usually,
nonlinearity and randomness are two essential characteristics of materials’ mechanical behaviors and
could be easily observed in experiments [47,49–54]. For heterogeneous material subjected to external
load, internal pre-existing flaws (initial damage) will develop and further result in the appearance of
nonlinearity in the stress–strain relationship. Meanwhile, due to the randomly distributed properties
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of the components for heterogeneous material, the initial damage and subsequent damage evolution
process are also endowed with random characteristics, which finally cause the emergence of the
variations in strength and the constitutive relationship. Hence, the coupling effects of the nonlinearity
and randomness for certain materials will cause the fluctuations in nonlinearity and variability of relative
structures’ behaviors, which are directly related to the safety of structures. In fact, the characteristic of
such randomness for other materials (e.g., concrete, rock) has already attracted the attention of several
intensified studies by researchers for years, and a variety of experimental investigations and stochastic
constitutive models have been conducted and developed [47,49–54]. With the aid of those stochastic
constitutive models, the randomness emerging in a material’s mechanical behaviors can be addressed,
which enables us to gain comprehensive information to characterize relative structural performances.

Precisely, CA mortar is a heterogeneous material that inevitably contains randomly distributed
pre-existing flaws with assorted mechanical behaviors. During the loading phase, its stochastic response
can therefore be assumed as the coactions of a number of factors, including ingredient proportions, flaw
distribution, grain size, and bonding capacity. Therefore, the success of a mechanics-based design of relevant
structures depends heavily on the development of appropriate constitutive models of CA mortar capable
of accounting for stochastic mechanical behaviors. Unfortunately, up to now, systematic experimental data
and suitable constitutive models for delineation of the stress–strain response for CA mortar incorporating
the stochastic responses are still lacking, which restricts the development and verification of stochastic
constitutive models for CA mortar in relevant structural analyses and safety control.

Therefore, based on the above assertions, the main objective of the current research is to
experimentally investigate both the mean and variation of the mechanical properties for CA mortar
under uniaxial compressive loading and further develop an analytical model which is able to effectively
predict the stochastic constitutive relationship. With this objective, the remainder of this work is
organized as follows. In Section 2, the materials and experimental methods in this work are firstly
introduced; then the experimental results are investigated by examining the representative mechanical
properties, especially the mean and the standard variation (STD) of the stress–strain curves. In Section 3,
after a brief recall of a statistical damage model named fiber bundle-plastic chain model (BCM), an
analytical model for predicting the stochastic constitutive relationship of CA mortar is developed and
the effectiveness of the proposed model is also verified against experimental results and one existing
model. It is then followed by Section 4, where the transition process for CA mortar under compression
and the comparisons of the constitutive relationships among CA mortar investigated in this work,
CRTS-I type CA mortar and typical concrete, are analyzed and discussed. The conclusions of this work
are finally given in Section 5.

2. Experimental Program

2.1. Raw Materials

CA mortar specimens were prepared with anionic emulsified asphalt, P.II 52.5R Portland cement
(Asia Cement Holdings Corporation, Nanchang, China), pelletized sand (Tiancheng Limited, Changsha,
China), aluminum powder (Oumanke Limited, Wuxi, China), thickening agent (Wacker Chemie AG,
Munchen, Germany), tap water, and other additives. The anionic emulsified asphalt with 60% residue
was used with its main physical properties are given in Table 1 In addition, antifoaming agent
(Daochun Chemical Technology Limited, Zhengzhou, China) and polycarboxylate superplasticizers
(Kao Chemical Corporation, Shanghai, China) were applied in order to eliminate the air bubbles
entrapped during the mixing process and adjust the workability of CA mortar specimens. Aluminum
powder complying with the Chinese National Standard GB/T 2085.1-2007 [55] was employed for
enhancing the damping ability of CA mortar. The physical properties of Portland cement, pelletized
sand, and aluminum powder are presented in Tables 2–4, respectively. The ratio of emulsified asphalt
and cement by mass (A/C) for specimen in this work was determined as 0.3. A detailed mix proportion
of the specimen is listed in Table 5.
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Table 1. Physical properties of emulsified asphalt.

Type Solid Content
(%)

Engler Viscosity
(25 ◦C)

Sieve Residue
(1.18 mm)

Storage Stability
(25 ◦C)

Evaporation Residues
Penetration

(25 ◦C)/0.1 mm

Evaporation Residues
Ductility

(25 ◦C) (cm)1d 5d

Anionic 60 5.6 0.005% 0.32 1.94 81 104

Table 2. Physical properties of cement.

Specific Surface Area
(m2 kg−1)

Loss on Ignition (%) Compressive Strength on 3 d
and 28 d (MPa) Volume Stability Flexural Strength on 3 d and

28 d (MPa)

316 1.8 33.3 and 61.9 Up to standard 5.9 and 8.5

Table 3. Physical properties of pelletized sand.

Apparent Density
(g/cm3)

Moisture
Content (%)

Water Absorption
Rate (%) Clay Content (%) Mud Content (%) Ruggedness (%) Organic Matter

(Colorimetric Method)
Chloride

Content (%)

2.64 0.04 0.4 0 0 2.0 Up to standard 0

Table 4. Main composition of aluminum powder.

Component Al Fe Si Cu H2O Other

Content (%) 99.80 0.076 0.046 0.0019 0.015 0.0611

Table 5. Mix proportion of cement emulsified asphalt (CA) mortar.

Component Cement Sand Emulsified
Asphalt

Water
Reducing

Admixture

Thickening
Agent

Aluminate
Powder

Antifoaming
Agent Water

Mix proportion (g/L) 606 909 303 12.13 1.21 0.05 5 100
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2.2. Specimens Preparation

In order to prepare CA mortar specimens, a specific mechanical CA mortar mixer with rotating
speeds ranging from 140 rpm to 285 rpm was employed. The volume capacity of the stirring pot is 60 L.
The following mixing procedures were taken into consideration: Initially, P.II 52.5R Portland cement,
pelletized sand, aluminum powder, and thickening agent were blended in a specific CA mortar stirring
pot (50 L volume capacity) and stirred at a speed of 140 rpm for 2 min. Second, after the well-mixed
dry powder was removed for later use, the emulsified asphalt and tap water were poured into a new
stirring pot and mixed at the same speed of 140 rpm for 1 min. During this stirring process, after a
certain amount of antifoaming agent (3.75 g/L) was added, the pre-mixed dry powder was gradually
introduced at a proper rate within 30 s to avoid lumps of dry powder. Finally, after continually stirring
for 1 min at the same speed, the stirring speed was turned into 285 rpm for 2 min and then back to
140 rpm for another 30 s. It is worth mentioning that during the final stirring stage (30 s), another
amount of antifoaming agent (1.25 g/L) was added in order to eliminate the small bubbles produced
during the mixing process. The fluidity and gas content of fresh mortar were tested immediately after
the stirring procedure was finished according to the standard of DSTMRPRC 74-2008 [56]. Test results
showed the fluidity was 97.20 s and the gas content was 4.36%.

The fresh mortar was placed into polyvinyl chloride (PVC) molds with inner dimensions of
∅101.6 mm× 100 mm for the monotonic compressive test in this study, considering cost limitation and
simplicity. In addition, three standard cubic molds with dimensions of 100 mm× 100 mm× 300 mm
were used for curing the fresh mortar in order to determine the 1 day and 28 days compressive strength
according to the Chinese National Standard GB/T 17671-1999 [57]. Polyethylene film was applied for
covering both surfaces of each PVC mold to prevent moisture from evaporating of the specimens.
Once the specimen was demolded (typical after 24 h of placing), the mortar specimens were kept in a
condition with a temperature of 23± 2

◦

C and relative humidity of 65%± 5% for 28 days. Test results
showed the average compressive strength at 1 day and 28 days were 2.5 MPa and 15.6 MPa, tested
in accordance with Chinese National Standard GB/T 17671-1999 [57], which fulfill the standard of
DSTMRC 74-2008 [56].

The demolded CA mortar specimens were polished by a double-end face automatic polishing
machine before the experiment to ensure the upper and lower surfaces were parallel; the horizontal
error of double-end faces was controlled to be less than 0.05 mm. The polished specimens are shown
in Figure 1.
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2.3. Experimental Setup

The behaviors of CA mortar specimens, with the cylindrical dimensions of ∅101.6 mm× 100 mm
subjected to uniaxial compressive loading were investigated in this study. A total of 12 specimens were
tested to pursue not only the precise complete stress–strain curves but also the variance among them.

The uniaxial monotonic compressive tests were performed on an electric hydraulic servo-controlled
material testing system (MTS-322-T, MTS Systems Corporation, Eden Praire, MN, USA) with a maximum
capacity of 500 kN and accuracy of ±0.5% as shown in Figure 2. In order to avoid the apparent
increase of the compressive strength of specimen due to a restraint effect caused by friction between
the CA mortar specimen and the loading platens [58], a specially treated smooth steel pad was inserted
between specimens and loading platens during the experiment.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 31 
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In this study, a displacement-controlled loading mode was selected with a constant rate of
0.5 mm/min. The specimens were preloaded three times under approximately one-third of the
compressive strengths (5 MPa) before formal experiments. In order to obtain relevant mechanical
behaviors of CA mortar, the global deformations in the vertical direction of specimens were monitored
by setting up an extensometer as illustrated in Figure 3. The outputs of the extensometers (MTS Systems
Corporation, Eden Praire, MN, USA) were collected by means of the built-in data acquisition system
of the closed-loop control system. The whole process of loading was recorded until the specimen
completely failed.
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3. Experimental Results and Discussion

3.1. Failure Mode

Due to the complexity of the damage and failure evolution in CA mortar, the failure modes are
strongly dependent on the loading and boundary conditions during the test. In order to have a clear
understanding of the mechanical properties of CA Mortar and relative failure mechanism during this
test, it is necessary to study the failure modes of specimens. Figure 3b shows the observed failure of
CA mortar. It can be seen that a typical ductile failure mode appeared during the experiment, since
several cracks could be noticed with partial splitting, the specimens also maintained their integrity.
Under axial loading, microcracks in the transition zone linking hardened cement paste and asphalt
membrane expanded rapidly, forming several randomly distributed observed macrocracks nucleated
and propagated parallel to the loading direction in the specimen until splitting into several parts.
The experimentally observed crack usually occurred when axial strain was up to 2.5%–4%. In addition,
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due to the stability of the ascending and descending stage by using strain-controlled loading pattern,
large deformations were observed before failure for CA mortar specimens.

3.2. Strengths and Critical Strain

The strengths and critical strain data are summarized in Table 6. In this study, critical strain is
defined as the strain measured at the ultimate compressive strength of the CA mortar. In detail, the
values of the compressive strengths are fluctuated between 14.09 MPa and 17.65 MPa, with a mean
value of 15.23 MPa and standard deviation of 1.83 MPa.

Table 6. Strengths of CA specimens.

Specimen No. Strength (MPa) Critical Strain (mm/mm)

1 15.65 0.0057
2 14.96 0.0064
3 16.70 0.0052
4 15.02 0.0051
5 15.76 0.0065
6 14.09 0.0075
7 15.30 0.0075
8 17.65 0.0073
9 16.11 0.0057
10 15.91 0.0061
11 14.44 0.0077
12 15.13 0.0068

Mean 15.23 0.0064
STD. 1.83 0.0037

3.3. Young’s Modulus

3.3.1. Initial Young’s Modulus

The initial elastic modulus is taken as the slope of the best-fit line through the stress–strain curve
between 0% and 30% of the peak stress and is provided in Table 7. Specifically, the values of the
Young’s modulus fluctuated between 2350.86 MPa and 4239.79 MPa, with a mean value of 3359.53 MPa
and standard deviation of 611.00 MPa.

Table 7. Young’s Modulus of the 12 specimens.

Specimen No. Young’s Modulus (MPa)

1 4100.23
2 3316.96
3 4135.15
4 4239.79
5 3365.67
6 2477.80
7 2761.34
8 3186.02
9 3579.87

10 3799.22
11 2350.86
12 3001.41

Mean 3359.53
STD 611.00
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3.3.2. Secant Young’s Modulus

The secant Young’s modulus Esi for a certain stress–strain curve and the mean and standard
deviation values of the secant Young’s modulus, Es(ε) and STDEs .(ε), are obtained from the following
equations, the results of which are plotted in Figure 4.

Esi(ε) =
σi
εi

(1)

Es(ε) =
1
N

N∑
j=1

Es j(ε) (2)

STDES .(ε) =

√√√√
1

N − 1

N∑
j=1

[Es j(ε) − Es(ε)]
2

(3)

where Esi, σi, and εi denote the i-th secant Young’s modulus, stress and strain for a certain stress–strain
curve, respectively. Es(ε) and STDEs .(ε) denote the values of the mean and standard deviation of
the secant modulus for the 12 stress–strain curves, respectively. N denotes the total numbers of the
stress–strain curves.
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In Figure 4a, it is observed that the maximum secant modulus ranged from 2350.86 MPa to
4239.79 MPa and underwent different descending branches until to the minimum value ranged from
190.33 MPa to 309.92 MPa at a corresponding strain of 0.0255. In Figure 4b, the mean secant modulus
was initially 3359.53 MPa, then decreased with increasing of strain to 233.83 MPa. The STDEs .(ε) for
the specimens is varied from 611.00 MPa to 30.25 MPa. Precisely, it is found that after a dramatic drop
before the strain reached 0.0065, the curve of STDEs .(ε) began to decrease at a slower rate.

3.4. Complete Stress–Strain Curves

Stress–strain behavior is one of the most important features in evaluating the mechanical
characteristics of the materials. Therefore, the complete stress–strain curves under uniaxial compression
were obtained and plotted in Figure 5. Due to the intrinsic randomness and complexity of CA mortar,
there was a certain variance among those full curves measured under the same loading conditions.

In detail, assume σi= σi(ε) represents the i-th full curve measured in the experiment. According
to the statistics theory, the average curve (mean stress σ(ε)) and the standard deviation STDσ.(ε) are
capable of representing the integral trend and the variability for the experimental results. By adopting
the following equations, the resulting mean stress–strain curve and the standard deviation curve are
plotted in Figure 5b.

σ(ε) =
1
N

N∑
i=1

σi(ε) (4)

STDσ.(ε) =

√√√
1

N − 1

N∑
i=1

[σi(ε) − σ(ε)]
2 (5)

where σ(ε) and STDσ.(ε) denote the mean stress and the standard deviation corresponds to the
strain ε, respectively. N denotes the total number of stress–strain curves, and σi(ε) denotes the stress
corresponding to the strain ε in i-th stress–strain curve.

The complete stress–strain curves are plotted in Figure 5a, in which the nonlinearities of the
stress–strain behaviors are fully captured while some researchers focus on discovering certain
mechanical behaviors (e.g., strength, Young’s modulus) [11,22,48,59,60]. The corresponding average
curve and standard deviation curve generated by Equations (4) and (5) are illustrated in Figure 5b.
In Figure 5c, the mean and mean ± STD. curves are obtained. It is observed that the CA mortar shows
apparent stochastic responses during the uniaxial monotonic compression test. In Figure 5a, it is
found that the peak stresses in the stress–strain curves are varied from approximately 14.44 MPa to
17.65 MPa, with the corresponding strains of 0.0077 and 0.0073. In Figure 5b, the peak stress σp in the



Appl. Sci. 2020, 10, 2860 11 of 31

mean stress–strain curve is 15.23 MPa with a corresponding strain of 0.0064, and the residual stress σs

is found to be around 6.01 MPa. Moreover, in the standard deviation curve, the peak stress is 1.83 MPa
with a corresponding strain of 0.0037. It is also noted that, the strain corresponding to the peak stress
is significantly larger than that in the mean stress–strain curve. In Figure 5c, it is shown that, in the
ascending branch, the area enveloped by the mean ± STD. of the stress–strain curve is less than that in
the descending post-peak (softening) branch, which reveals a smaller degree of variation appeared
during the early loading stage.
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3.5. Energy Dissipation

Energy dissipation reveals the damage evolution process for material under external load. In a
closed system, the total input energy of certain material in monotonic compression case could be
obtained by the following equation [8,61,62]:

U = Ud + Ue (6)

where U, Ud, Ue denote the total input energy, dissipated strain energy, and elastic strain
energy, respectively.

The total input energy U can be calculated as:

U = Ah
∫
σdε (7)

where A and h denote the cross-section area and the height of the specimen, respectively.
The elastic strain energy is calculated as:

Ue =
Ahσ2

2E0
(8)

where E0 denotes the Young’s modulus of the material. It is worth stressing that when a material is
subjected to an external load less than its yield strength, the difference between unloading modulus Eu

and Young’s modulus E0 is negligible. However, by adopting the above equation, after the external
load exceeded its yield strength, an underestimation will have occurred in the results of the elastic
strain energy Ue. Nevertheless, due to the fact of lacking experimental results for determining the
unloading modulus Eu and for simplicity purposes, the modulus adopted for relative calculations is
selected as the Young’s modulus E0 in this work with reference to the literature [8,62].

Therefore, the dissipated strain energy Ue can be calculated as:

Ud = U −Ue

= Ah(
∫
σdε− σ2

2E0
)

(9)

Since the specimens for this test were of the same size, the input strain energy, dissipated strain
energy, and elastic strain energy can be further expressed as:

AhW = AhWd + AhWe (10)

where W, Wd, We denote the total input strain energy density, dissipated strain energy density, and
elastic strain energy density, respectively.

Hence, the relationship among the input strain energy density, dissipated strain energy density,
and elastic strain energy density can be expressed as:

W = Wd + We (11)

where W, Wd, We denote the total input strain energy density, dissipated strain energy density, and
elastic strain energy density, respectively. A schematic diagram is illustrated in Figure 6.
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Figure 6. Schematic diagram of dividing model of strain energy density.

Specifically, in Figure 6, the boundary of strain energy density is defined as a straight line with
slope equals to the Young’s modulus of material. By constructing a line perpendicular to the horizontal
axis from the point of intersection between the boundary of strain energy density and the stress–strain
curve, the accumulative elastic strain energy density We can be addressed. Moreover, the total input
strain energy density W could be represented as the enclosed area by stress–strain curve, horizontal
axis, and the line perpendicular to the x-axis correspond to current strain.

The total input strain energy density can be calculated by following equation:

W =

∫ ε

0
σdε (12)

By assuming the strain energy boundary intersects with the stress–strain curve at point (ε1, σ1), it
can be expressed as:

σ = E0ε+ q (13)

where q denotes the intercept between strain energy boundary and vertical axis.
Then the elastic strain energy density can be calculated by Equation (14):

We =
1
2

(
ε1 −

E0ε1 − σ1

E0

)
σ1 (14)

The dissipated strain energy density is determined by the following equation:

Wd = W −We (15)

The calculated results of relative energy density with increased strain are shown in Figure 7.
In Figure 7a, the total input strain energy density of CA mortar specimens under monotonic compression
tests are given, with the mean and STD. curves illustrated in Figure 7b. It is found that for each
specimen in Figure 7a, the total input strain energy density increased linearly until the strain reached
approximately 0.005; then it turned into nonlinearity. The maximum total input strain energy densities
varied between 0.224 × 103 J/m3 to 0.296 × 103 J/m3. In Figure 7b,c, it is observed that the mean value
and the STD. of the maximum input strain energy density are 0.244 × 103 J/m3 and 0.019 × 103 J/m3.
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Figure 7. Total input strain energy of CA mortar specimens: (a) Total input strain energy of CA mortar
specimens; (b) Mean and STD of total input strain energy; (c) Mean ± STD of total input energy.

In Figure 8a, it is found that the curves of the elastic energy density for CA mortar specimens are
similar to the stress–strain curves. In detail, during the early loading stage, the elastic strain energy densities
linearly increased until the stress reached 80% of the peak stress, then the growing rates began to decrease.
The maximum elastic strain energy densities varied between 0.027 × 103 J/m3 and 0.049 × 103 J/m3.
In Figure 8b,c, the maximum mean elastic strain energy density is 0.036 with a corresponding strain
of 0.0066. The STD. of the elastic strain energy densities for CA mortar specimens first increased to
0.0025 × 103 J/m3 at the point of 80% of the peak stress approximately. Then it went up to the maximum
value of 0.0094 × 103 J/m3 and decreased at a comparatively slowly rate to 0.00207 × 103 J/m3.
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Figure 8. Elastic strain energy of CA mortar specimens: (a) Elastic strain energy of specimens; (b) 
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Figure 8. Elastic strain energy of CA mortar specimens: (a) Elastic strain energy of specimens; (b) Mean
and STD for elastic strain energy; (c) Mean ± STD for elastic strain energy.

In Figure 9a, the curves of dissipated strain energy densities for CA mortar specimens are similar
to the total input strain energy density curves. The final values for the dissipated strain energy densities
ranged from 0.219× 103 J/m3 to 0.286× 103 J/m3. It is observed that in Figure 9b,c, the maximum mean
dissipated strain energy density is 0.238 × 103 J/m3 with a corresponding STD. of 0.018 × 103 J/m3.



Appl. Sci. 2020, 10, 2860 16 of 31Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 31 

0.000 0.009 0.018 0.027
0.0

0.1

0.2

0.3

 

 

D
is

si
p

at
ed

 S
tr

ai
n

 E
n

er
g

y
 D

en
si

ty
 (

1
0

3
J/

m
3
)

Strain (-)

 Specimen 1

 Specimen 2

 Specimen 3

 Specimen 4

 Specimen 5

 Specimen 6

 Specimen 7

 Specimen 8

 Specimen 9

 Specimen 10

 Specimen 11

 Specimen 12

 
(a) 

0.000 0.009 0.018 0.027
0.0

0.1

0.2

0.3

 

 

D
is

si
p
at

ed
 S

tr
ai

n
 E

n
er

g
y
 D

en
si

ty
 (

1
0

3
J/

m
3
)

Strain (-)

 Mean

 STD.

 
(b) 

0.000 0.009 0.018 0.027
0.0

0.1

0.2

0.3

 

 

D
is

si
p

at
ed

 S
tr

ai
n

 E
n

er
g

y
 D

en
si

ty
 (

1
0

3
J/

m
3
)

Strain (-)

 Mean

 Mean-STD.

 Mean+STD.

 
(c) 

Figure 9. Dissipated strain energy of CA mortar specimens: (a) Dissipated strain energy of 

specimens; (b) Mean and STD. for dissipated strain energy; (c) Mean ± STD. for dissipated strain 

energy. 

3.6. Damage Model of Stress–Strain Relationship 

In this section, a damage model able to characterize the stochastic behaviors of CA mortar 

during uniaxial compression is developed based on the BCM model proposed in the literature [53]. 

3.6.1. Brief Review of BCM 

The BCM is developed based on the classical fiber bundle model (FBM) for characterizing the 

mechanical behaviors of materials. The model is considered as consisting of a bundle of parallel 

Figure 9. Dissipated strain energy of CA mortar specimens: (a) Dissipated strain energy of specimens;
(b) Mean and STD. for dissipated strain energy; (c) Mean ± STD. for dissipated strain energy.

3.6. Damage Model of Stress–Strain Relationship

In this section, a damage model able to characterize the stochastic behaviors of CA mortar during
uniaxial compression is developed based on the BCM model proposed in the literature [53].



Appl. Sci. 2020, 10, 2860 17 of 31

3.6.1. Brief Review of BCM

The BCM is developed based on the classical fiber bundle model (FBM) for characterizing the
mechanical behaviors of materials. The model is considered as consisting of a bundle of parallel
linearly elastic fibers assigned random fracture thresholds with a probability density of Pd(ε) and a
chian of linked perfect plastic sliders with random yield thresholds and a probability density Pr(ε).

After each failure event, the load carried by the intact fibers are redistributed (i.e., the equal-load
sharing pattern), and the same plastic strain is produced by an individual slider after each sliding
event once the yielding threshold is reached. Hence, the damage variable d(ε) (i.e., the accumulative
distribution of the probability density) and the plastic variable (plastic ratio) r(ε) (i.e., the accumulative
distribution of Pr(ε)) can be calculated based on the statistical method such as:

d(ε) =
∫ ε

0
Pd(ε)dε (16)

r(ε) =
∫ ε

0
Pr(ε)dε (17)

Hence, the total damage variable coupling the effects of both the elastic damage and plasticity,
named plastic-damage variable dr(ε), is defined as:

dr(ε) = d(ε) + r(ε) =
∫ ε

0
Pd(ε)dε+

∫ ε

0
Pr(ε)dε (18)

Thus, the constitutive relationship for CA mortar can be modeled as follows:

σ = [1− d(ε)]E0ε (19)

It is assumed in the monotonic compressive case, the plastic-damage variable is not involved
during the loading process in this work. Hence, the values of the total damage for a certain stress–strain
curve, as well as mean and standard deviations of the damage, for the twelve CA mortar specimen can
be calculated by following equations, the results of which are plotted in Figure 10.

di= 1−
σi/εi

E0
(20)

d(ε) =
1
N

N∑
j=1

di(ε) (21)

STD.(ε) =

√√√√
1

N − 1

N∑
j=1

[di(ε) − d(ε)]
2

(22)

where di, σi, εi are the i-th damage variables, stress and strain for a certain stress–strain curve,
respectively. D(ε) and STD(ε) denote the mean damage and its standard deviations for the ten
stress–strain curves, respectively. N denotes the numbers of the stress–strain curves.
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strain curve, as well as mean and standard deviations of the damage, for the twelve CA mortar 

specimen can be calculated by following equations, the results of which are plotted in Figure 10. 
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𝑁
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]2 (22) 

where 𝑑𝑖, 𝜎𝑖, 𝜀𝑖 are the i-th damage variables, stress and strain for a certain stress–strain curve, 

respectively. D(ε) and STD(ε) denote the mean damage and its standard deviations for the ten 

stress–strain curves, respectively. N denotes the numbers of the stress–strain curves. 
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3.6.2. Analytical Model of CA Mortar

In order to develop an analytical constitutive model for CA mortar capable of characterizing the
stochastic behaviors, the expressions for the mean and STD. of the damage variable d should be initially
determined. By observing the calculated results illustrated in Figure 10, a logistic type function was
adopted to depict the mean of the damage variable µd(ε):

µd(ε) =
A1 −A2

1 + ( εε0
)p + A2 (23)
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where A1, A2, ε0, p denote the parameters relating to the mean of the stochastic damage evolution
process. The parameters of the proposed model are determined by using a fitting method based on
the experimental results shown in Figure 10b. The determined values of the parameters are listed in
Table 8.

Table 8. Identification results of parameters of mean of the damage variable µd(ε).

A1 A2 ε0 p

−0.013 0.939 0.0081 3.2578

An Extreme type function was used to characterize the STD. of the damage variable STDd(ε) in
terms of total strain ε:

STDd(ε) = A3e(−e−Z
−Z+1) (24)

Z =
(ε−A4)

w
(25)

where A3, A4, and w denote the parameters related to the variation of the stochastic damage evolution
process. The parameters of the proposed model were determined by using a fitting method based on
the experimental results shown in Figure 10b. The determined values of the parameters are listed in
Table 9.

Table 9. Identification results of parameters of standard variation (STD) of the damage variable
STDd(ε).

A3 A4 w

0.12125 0.00814 0.00393

Therefore, the mean stress–strain curve can be addressed in conjunction with Equation (19):

µσ(ε) = (1− µd(ε))E0ε (26)

where µσ(ε) denotes the mean stress corresponds to strain ε.
For characterizing the standard deviation of the stress–strain curve, the STD. of the stress STDσ(ε)

that corresponds to the strain ε is obtained by direct fitting of the experimental results in Figure 5b by
adopting the Nelder type function:

STDσ(ε) =
ε

b0 + b1ε+ b2ε2 (27)

where b0, b1, and b2 represent the parameters related to the stochastic behaviors of the stress–strain
curve that appeared during loading. The determined values of the parameters are listed in Table 10.

Table 10. Identification results of parameters of STD. of the stress–strain curve STDσ(ε).

b0 b1 b2

0.001 0.237 42.592

3.6.3. Model Verification

In order to verify the effectiveness of the proposed model in this work, it has been validated
by means of comparison with the predictions and experimental results. Figures 11 and 12 show the
comparison of the results in terms of mean and STD. of the damage variable d and stress–strain curves
for CA mortar specimens, respectively. It is observed that a very good matching between the predicted
and experimental results in both of the two figures is obtained. However, in Figure 11a, the predicted
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mean of the damage variable µd(ε) is found to be somewhat underestimated when compared to the
experimental result. Consequently, it results in an overestimation for the value of mean stress µσ(ε)
after the corresponding strain exceeding 0.20.
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Figure 11. Comparison between experimental and theoretical curves for damage variable d: (a) Mean
curve of d; (b) STD. curve of d.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 31 

0.000 0.009 0.018 0.027
0.00

0.25

0.50

0.75

1.00

 

 

 Experimental damage variable d

 Predicted damage variable d
D

am
ag

e 
v

ar
ib

le
 d

Strain (-)

 
(a) 

0.000 0.009 0.018 0.027
0.00

0.25

0.50

0.75

1.00

 

 

 STD.

 Predicted STD.

D
am

ag
g

e 
v
ar

ia
b
le

 d

Strain (-)

 
(b) 

Figure 11. Comparison between experimental and theoretical curves for damage variable d: (a) Mean 

curve of d; (b) STD. curve of d. 

0.000 0.009 0.018 0.027
0

4

8

12

16

20

 

 

 Experimental-mean

 Predicted-mean

S
tr

es
s 

(M
P

a)

Strain (-)

 
(a) 

Figure 12. Cont.



Appl. Sci. 2020, 10, 2860 21 of 31Appl. Sci. 2020, 10, x FOR PEER REVIEW 21 of 31 

0.000 0.009 0.018 0.027
0

4

8

12

16

20

 

 

 Experimental-STD.

 Predicted-STD.

S
tr

es
s 

(M
P

a)

Strain (-)

 
(b) 

Figure 12. Comparison between experimental and theoretical stress–strain curves for CA mortar: (a) 

Mean stress–strain curve; (b) STD. of stress–strain curve. 

In addition, from a practical point of view, although the proposed model can capture the 

nonlinearity and randomness of the stress–strain behavior, a number of models based on empirical 

and theoretical approaches proposed in foregoing studies [8,21–25,35,46–54,59,60,63] also provide 

lucid and acceptable results to predict relevant mechanical properties of certain materials. Thus, in 

order to further verify the applicability and accuracy for the proposed model, a comparison 

between the predicted mean stress–strain curve by using the proposed model and the model 

developed by Fu et al. mentioned in the literature [35] were conducted. In detail, three stress–strain 

curves of CA mortar under uniaxial monotonic compressive test with strain rates of 0.0033/𝑚𝑠−1, 

0.17/𝑚𝑠−1, and 1.7/𝑚𝑠−1 were selected for the verification process, and the results are illustrated 

diagrammatically in Figure 13. The observation shows that the predicted stress–strain curve 

generated by the proposed model is closer to the experimental results. Specifically, in Figure 13a,b, a 

certain degree of underestimations of the stresses in the ascending branch and overestimations in the 

descending branch are found for the predictions by Fu et al. In Figure 13c, it seems that the 

differences in the predicted curves by these two models are relatively small. Furthermore, by 

considering the lack of capability for characterizing the stochastic behaviors (variance), the 

applicability of the proposed model is wider, to some extent, compared with the presented model 

mentioned in this work. 

0.00 0.01 0.02 0.03
0

2

4

6

 

 

S
tr

es
s 

(M
P

a)

Strain (-)

 Experimental results

 Fu et al.

 Proposed model

 
(a) 

Figure 12. Comparison between experimental and theoretical stress–strain curves for CA mortar:
(a) Mean stress–strain curve; (b) STD. of stress–strain curve.

In summary, by examining the comparison results between the predictions and the experimental
results in this work, it is verified that the proposed model is able to characterize the stochastic constitutive
relationship (nonlinear and random stress–strain behaviors) of CA mortar under uniaxial monotonic
compression with clear physical meaning based on a statistical damage approach, while some researchers
used empirical relationships to predict certain mechanical behaviors of materials [11,22,24,25,48,59,60].

In addition, from a practical point of view, although the proposed model can capture the
nonlinearity and randomness of the stress–strain behavior, a number of models based on empirical and
theoretical approaches proposed in foregoing studies [8,21–25,35,46–54,59,60,63] also provide lucid
and acceptable results to predict relevant mechanical properties of certain materials. Thus, in order
to further verify the applicability and accuracy for the proposed model, a comparison between the
predicted mean stress–strain curve by using the proposed model and the model developed by Fu et al.
mentioned in the literature [35] were conducted. In detail, three stress–strain curves of CA mortar
under uniaxial monotonic compressive test with strain rates of 0.0033/ms−1, 0.17/ms−1, and 1.7/ms−1

were selected for the verification process, and the results are illustrated diagrammatically in Figure 13.
The observation shows that the predicted stress–strain curve generated by the proposed model is
closer to the experimental results. Specifically, in Figure 13a,b, a certain degree of underestimations of
the stresses in the ascending branch and overestimations in the descending branch are found for the
predictions by Fu et al. In Figure 13c, it seems that the differences in the predicted curves by these
two models are relatively small. Furthermore, by considering the lack of capability for characterizing
the stochastic behaviors (variance), the applicability of the proposed model is wider, to some extent,
compared with the presented model mentioned in this work.
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4. Further Discussion

4.1. Transition from Microscale to Macroscale

For the purpose of understanding the intrinsic random nature for materials in the aspect of varied
scales, it is essential to focus on the issue of the media process in terms of the transition from microscale
to macroscale.

Figure 14 demonstrates the stochastic and the mean behaviors of the probability density for
the damage variable d in the perspective of microscale. The probability density can be obtained by
differentiating the relative damage evolution function, viz., Equation (23). Specifically, in Figure 13a,
it is illustrated that different probability densities are endowed for CA mortar specimens induced by
the randomness of the microstructure, consequently resulting in the varieties of the damage evolution
processes during loading stage.

In Figure 15, three commonly used density functions in the statistical damage approach are
examined by fitting the mean curve shown in Figure 13b. It is indicated that the best agreement is
obtained for CA mortar by adopting the Lognormal distribution function, which is represented in
Figure 15a, when compared with the Weibull distribution function in Figure 15b and Gauss distribution
function in Figure 15c.

Moreover, the stochastic evolution (SE) illustrated in Figure 4 (in terms of elastic modulus
degradation) and in Figure 10 (in terms of damage accumulation) are also indispensable for investigating
the media process of CA mortar under loading. Precisely, the SE demonstrates the stochastic media
process of transition from microscale (microstructure) to macroscale (macroresponse). It is concluded
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that the progressive accumulation of the damage with different probability densities mentioned above
is treated as the main cause for the SE of the damage variable d. The SE of the damage variable d
results in the stochastic degradation of the elastic modulus plotted in Figure 4 and the stochastic
damage evolutions in Figure 10, which consequently result in the stochastic stress–strain relationships
of CA mortar.
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Figure 14. Stochastic probability density of micro-damage thresholds of CA mortar under compression:
(a) 12 CA mortar specimens; (b) The mean curve.
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4.2. Comparison of Constitutive Relationships among CA Mortar for CRTS I, II and Concrete under Monotonic
Uniaxial Compression

In this section, the comparisons of the mean compressive constitutive relationships among the CA
mortar studied in this work (CRTS-II type CA mortar), typical CRTS-I CA mortar, and concrete are
obtained by examining on the strain–stress responses, evolutions of damage variables, and probability
density. The relevant experimental data used in this sub-section are obtained from the literature [21,51].

Figure 16a shows the compressive stress–strain responses for the three materials. It is found that
the largest peak stress occurs in the stress–strain curve of concrete, which is approximately 3.5 times
larger than CRTS-II type CA mortar and 10 times larger than CRTS-I type CA mortar. Figure 16b,c
represents the stress–strain responses by examining the relationships of normalized strain (ε/εcritical)

versus stress σ and normalized strain (ε/εcritical) versus normalized stress
(
σ/σpeak

)
. It is revealed

that the flattest response appeared in the relevant curve for CRTS-I CA mortar. The reasons can be
attributed to CRTS-I type CA mortar being more ductile when compared with concrete and CRTS-II
type CA mortar, which results in the appearance of the lowest peak stress among the three materials.
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Figure 17a,b illustrated the evolution of the damage variable in terms of strain ε and normalized
strain (ε/εcritical). It is found that that concrete has the most intensive development of the damage, as
shown in Figure 17a, when compared to CRTS-II and I type CA mortars. A more apparent appearance
can be noticed in Figure 17b when the curve is constructed in terms of damage variable versus the
normalized strain (ε/εcritical). More precisely, it is observed that when the value of normalized strain
(ε/εcritical) reaches approximately 2.99, the values of the damage variable d for CRTS II CA mortar,
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CRTS I CA mortar, and concrete are 0.877, 0.789, and 0.956, respectively. The reasons can be concluded
as follows: due to the existence of the viscoelasticity or viscoplasticity in the CRTS II CA mortar and
CRTS I CA mortar, the evolution of the damage for these two materials are comparatively slower than
a quasi-brittle material like concrete.
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mortar, and concrete under compression in terms of: (a) d-ε curve; (b) d-ε/εcritical curve.

Figure 18 plots the developments of probability density in terms of strain and normalized strain
(ε/εcritical), respectively. It is observed that the two curves are similar to the stress–strain curve discussed
above. It is concluded that the lowest concentration of the probability density curve of CRTS-I CA mortar
contributes to a less intensive development of the damage variable and consequently leads to the most
ductile stress–strain response. In detail, the causes for such different probability densities emerging
in the three materials could be attributed to their various microstructures: Concrete is a quasi-brittle
material and considered a three-phase composite material, consisting of aggregated particles, the
cement paste matrix, and the interfacial transition zones around the aggregated particles [64]. Different
from concrete, CA mortar is considered a two-phase composite composed of inorganic binder-cement
and organic binder-asphalt [22,65,66]. Mechanical performance of such composites is a joint reflection
of both binders’ properties. Thus, the cement is a hydraulic binder and its hydration products are
brittle, whereas the asphalt is a viscoelastic binder with a much lower stiffness [46,67]. At low asphalt
emulsion contents (CRTS-II type CA mortar), the phase of the cement hydrates acts as a bulk matrix
in the binder of mortar with asphalt dispersed in it. For CA mortar with higher emulsion contents
(CRTS-I type CA mortar), the asphalt phase becomes dominant and the cement hydrates play the role
of the dispersed phase [68,69].
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5. Conclusions

In this work, the compressive behaviors of CA mortar under uniaxial monotonic loading were
experimentally investigated by taking into account the stochastic properties. In order to characterize
the stochastic behaviors of CA mortar, an analytical stochastic constitutive model based on the statistical
damage approach was proposed. Furthermore, the media process of transition from microscale to
macroscale for CA mortar under compression and the comparisons with typical CRTS I CA mortar and
concrete in terms of constitutive behaviors have also been demonstrated and conducted. Conclusions
can be drawn as follows:

(1) The experimental results indicate that there are considerable variations in the mechanical responses
including: compressive strength, critical strain, Young’s modulus, and stress–strain curve for CA
mortar specimens with the same mix proportions, even when identically prepared.

(2) An analytical model based on the statistical damage approach was developed to describe the
stochastic constitutive stress–strain relationship of CA mortar. The proposed model is capable of
evaluating the mean and the standard deviation of stress–strain curves. The validation of the
proposed model was performed by comparison between the predictions and the experimental
results. It was shown that there is a relatively good coincidence between the predictions and the
experimental results. In addition, a comparison of predictions in terms of the mean stress–strain
curve by the proposed model and those obtained by the model in a previous study was also
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conducted, which revealed that by adopting the proposed model, the accuracy of prediction
is improved.

(3) Further exploration of the behaviors of CA mortar was obtained by examining the media process
in terms of transition from microscale (microstructure) to macroscale (macroresponse). It is found
that the Lognormal distribution density function can well represent the damage probability
density for CA mortar under compression when compared to the Weibull and Gauss distribution
density functions. It is also summarized that the stochastic behaviors that emerged for CA mortar
are attributed to the randomness of the damage probability density at the microscale. The media
process of the transition during the loading process is represented by the stochastic evolution (SE)
of specific variables at the macroscale.

(4) Comparisons of the constitutive relationships among the CA mortar used in this work, typical
CRTS-I type CA mortar, and concrete were conducted. It was demonstrated that the most ductile
stress–strain response was obtained by CRTS-I CA mortar due to its lowest concentration in the
probability density curve induced by the microstructure.
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