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Abstract: This paper presents an improved multi-objective probabilistic Reactive Power Planning
(RPP) in power systems considering uncertainties of load demand and wind power generation. The
proposed method is capable of simultaneously (1) reducing the reactive power investment cost,
(2) minimizing the total active power losses, (3) improving the voltage stability, and (4) enhancing
the loadability factor. The generators’ voltage magnitude, the transformer’s tap settings, and the
output reactive power of VAR sources are taken into account as the control variables. To solve the
probabilistic multi-objective RPP problem, the ε-constraint method is used. To test the effectiveness
of the proposed approach, the IEEE 30-bus test system is implemented in the GAMS environment
under five different conditions. Finally, for a better comprehension of the obtained results, a brief
comparison of outcomes is presented.

Keywords: ε-Constraint method; multi-objective optimization; reactive power planning (RPP);
uncertainty; wind farms

1. Introduction

Reactive Power Planning (RPP) in power systems can be considered as one of the most difficult
and complicated problems due to its complex variables, constraints, and optimization algorithms [1].
It is related to optimal sizing and allocation of VAR sources in power systems to satisfy prescheduled
objectives, such as determining the optimal allocation and minimizing the operation costs [2,3]. The
main objective of RPP is to achieve feasible operation with a satisfactory voltage profile with a lack
of VAR support conditions. According to the concept of VAR planning in power systems, various
objectives functions can be defined for the RPP problem. These objectives may consist of cost-based
objective functions or objective functions that maximize or minimize indices, such as voltage stability
margin or system loadability [4,5]. Moreover, it is possible to express the RPP as a multi-objective
optimization problem, which optimizes several goals simultaneously [1].

Moreover, there is an increasing interest in using Renewable Energy Resources (RESs), such as
wind farms and solar power plants, in power systems due to their technical, environmental, and
economic advantages [4–6]. However, with the high penetration of RESs in power systems, the
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challenges associated with RPP are dramatically increased. One of the main challenges that can affect
the RPP is the uncertainty in the generation availability of RESs. Uncertainty in the sources’ parameters
leads to difficulties in proper decision-making in the planning of power systems. Furthermore, owing
to the stochastic nature of the load demands in electric power systems, additional uncertainties should
be considered in RPP.

In RPP research studies, the probabilistic decision-making process based on either source
uncertainty or load demand uncertainty is a well-developed research topic. Nevertheless, the
probabilistic multi-objective RPP in power systems considering the uncertainty of loads and wind
farms at the same time has not been fully investigated. In [7], a novel approach for dynamic VAR
planning to improve the short-term voltage stability and transient stability is proposed. The impact of
FACTS devices in RPP is analyzed in [8,9]. However, in both studies, an attempt has been made to
explain the problem in a deterministic context. A multi-objective RPP that mainly focuses on voltage
stability is introduced in [3]. Nonetheless, it is modeled based on a deterministic approach. In [10],
a multi-objective approach for RPP with wind generations is presented. In this study, various objectives,
such as system loadability, power losses, and cost of reactive power investment are considered. In [11],
the RPP is solved using the Genetic Algorithm (GA) to reach coordination in controlling the reactive
power in the presence of wind farms and FACTS devices. The loadability factor of the system is
optimized by the optimal allocation of wind farms and FACTS devices. This procedure is implemented
when loads with constant Power Factor (PF) and wind farms without uncertainty are assumed. Using
the Benders decomposition method and considering the high penetration of wind generation, the RPP
problem is tackled as two-stage stochastic programming in [12]. Using the Differential Evolutionary
Algorithm (DEA), the RPP is solved in a wind integrated system in [13]. A major problem with the
suggested model is that it only includes the uncertainty in wind power generation. In [14], a multi-stage
stochastic model for RPP is extended, which involves the uncertainty of loads. Nonetheless, the
proposed model describes the probabilistic behavior of the system in the absence of wind farms. In [15],
a mixed-integer quadratic model for long term VAR planning is proposed. An attempt was made to
minimize the operation and investment cost of new VAR sources and the load shedding risk through
multi-objective optimization. Though the uncertainty in demand is completely taken into account, the
proposed model does not consider uncertainty in wind power generation. In [16], a stochastic model
based on chanced constrained programming for RPP is defined. The proposed model is solved using
GA. Although the uncertainty is modeled in the power generation, it optimizes only one objective,
including operational and investment costs. A chanced constrained model is proposed for probabilistic
RPP in [17]. The proposed model is solved through two-stage stochastic programming. The main
disadvantage of the proposed model is that it only considers the load as a random parameter. Besides,
only the investment cost of new VAR sources is taken into account as the main objective function.

The main drawback of all the mentioned research studies is that the optimal RPP considering
load demand and wind power generation uncertainties at the same time are not fully investigated.
This paper aims to address RPP as a probabilistic multi-objective problem in order to reduce the total
cost of reactive power investment, minimize the active power losses, maximize the voltage stability
index, and improve the loadability factor. The generators’ voltage magnitude, the transformers tap
settings, and the output reactive power of the VAR sources are considered as the main control variables.
To cope with the probabilistic multi-objective RPP problem, the ε-constraint technique is employed.
To validate the efficiency of the proposed method, the IEEE 30-bus test system is implemented in the
GAMS environment under five various conditions. The obtained results show the effectiveness and
high accuracy of the proposed method. Table 1 shows a comparison between the proposed probabilistic
multi-objective RPP and the previously published research papers.

The rest of this paper is organized as follows. Section 2 deals with the uncertainty modeling.
Problem formulation is presented in Section 3. Section 4 describes the optimization method. Simulation
results are given in Section 5. Finally, some brief conclusions are summarized in Section 6.
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Table 1. Comparison between the previous research studies and the proposed method.

Reference Problem Framework Load Demand
Uncertainty

Wind Power
Generation
Uncertainty

Load Demand and
Wind Power
Generation

Uncertainties

Objective Function Solution Methodology

[3] Deterministic, Multi-Objective - - - Active power losses, Total VAR cost, Voltage
stability index MOEA

[4] Deterministic, Multi-Objective - - - Investment cost, Short-term voltage stability
level, Transient stability level MOEA

[5] Deterministic, Single-Objective - - - Active power losses, Voltage deviations,
Operating cost

WOA, DE, GWO, QODE,
QOGWO

[6] Deterministic, Single-Objective - - - Active power losses, Operating cost SPSO, APSO, EPSO

[7] Deterministic, Multi-Objective - - - Investment cost, Short-term voltage stability,
Transient stability MOEA

[8] Deterministic, Single-objective - - - Active power losses, Voltage deviations,
Operating cost

WOA, DE, GWO, QODE,
QOGWO

[9] Deterministic, Single-Objective - - - Active power losses, Operating cost SPSO, APSO, EPSO

[10] Deterministic, Multi-Objective - - - Loadability factor, Active power losses, VAR
investment cost GA

[11] Deterministic, Single-Objective - - - Loadability factor GA
[12] Probabilistic, Single-Objective 4 4 4 Fuel cost, VAR cost, Total cost Mathematical Programming
[13] Probabilistic, Single-Objective - 4 - VAR investment cost DE
[14] Probabilistic, Single-Objective 4 - - VAR investment cost Mathematical Programming

[15] Probabilistic, Multi-Objective 4 - - Operating cost, VAR investment cost, Load
shedding risk

Multi-Objective Mathematical
Programming (ε-constraint

method)
[16] Probabilistic, Single-Objective 4 - - Operating cost, VAR investment cost GA
[17] Probabilistic, Single- Objective 4 - - VAR investment cost Mathematical Programming

Present Paper Probabilistic, Multi-Objective 4 4 4
Active power losses, Total VAR cost, Voltage

stability index, Loadability factor

Multi-objective Mathematical
Programming (ε-constraint

method)
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2. Uncertainty Modeling

In this section, the uncertainties in load demand and wind power generation in the RPP problem
are modeled to cope with the stochastic nature of the load demand and wind power generation. In the
following subsections, modeling of both the load demand and wind power uncertainties are described.
Finally, modeling of the system uncertainty via scenario generation is presented.

2.1. Modeling the Load Demand Uncertainty

The uncertainty of the load is usually modeled by the normal distribution with mean (µ) and
standard deviation (σ) [18]. In this paper, it is assumed that all the loads have constant PF, the same
mean, and standard deviation. Therefore, for simplicity, a normal distribution is applied at the load
level (λ) instead of applying in each load independently. The probability of each load level is shown
by (πl), and is calculated using Equation (1). The associated value of each load level is denoted by (λl),
and can be obtained using Equation (2) [19]. It is worth mentioning that λMin,l and λMax,l are known as
the minimum and maximum levels of the system loading at the lth load level, respectively.

πl =

∫ λMax,l

λMin,l

1
√

2πσ2
exp (−

(λ− µ)2

2σ2 )dλ (1)

λl =
1
πl

∫ λMax,l

λMin,l

λ
1

√

2πσ2
exp (−

(λ− µ)2

2σ2 )dλ (2)

2.2. Modeling the Wind Power Generation Uncertainty

Considering the intermittent nature of the wind speed, the Weibull distribution is often considered
as the probability density function that can approximate the behavior of the wind with a reasonable
error. Therefore, by defining the Weibull distribution for wind speed, the probability of wind speed
at different intervals (scenarios) can easily be calculated. Equation (3) is a general expression for
Weibull distribution [20]. Equation (4) can be used to calculate the probability of a wind speed interval
(scenario). The corresponding value of each wind speed interval can be achieved using Equation (5).

PDF(v) =
β

α

( v
α

)β−1
exp (−

( v
α

)β
) (3)

πw =

∫ v f ,w

vi,w

β

α

( v
α

)β−1
exp (−

( v
α

)β
)dv (4)

vw =
1
πw

∫ v f ,w

vi,w

v
β

α

( v
α

)β−1
exp (−

( v
α

)β
)dv (5)

where v denotes the wind speed, and α and β are the wind speed parameters that vary depending on
the region in which the wind blows. Considering vi,w and v f ,w as the initial speed and final speed of the
hypothetical scenarios for wind speed, the probability (πw) of occurrence of any wind speed scenario
can simply be obtained. Thereafter, the wind speed (vw) associated with each scenario is gained using
the calculated probabilities.

The output power of a wind turbine is highly dependent on wind speed. Therefore, any wind
turbine has a characteristic named power curve that exactly shows the capability of a wind turbine in
power generation versus existing wind speed. Knowing a specific wind speed (vw), one can estimate
the output power of a wind turbine (Pest

w ) through its power curve. The power curve is generally
defined by a set of equations as it is stated in Equation (6) [21], which in terms, (vc

in), (vrated), and
(vc

out) denote the cut-in wind speed, rated wind speed, and cut-out wind speed for a wind turbine,
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respectively. The rated power (Pr
w) and the estimated output power of the wind turbine are also evident

from Equation (6).

Pest
w =


0, vw ≤ vc

in
vw−vc

in
vrated−vc

in
, vc

in < vw < vrated

Pr
w, vrated < vw < vc

out
0, vw ≥ vc

out

(6)

In most research studies, the concept of the power curve is extended to a wind farm. Hence,
instead of studying a single wind turbine, it is preferable to focus on a group of wind turbines that are
in a special area and usually known as wind farms.

Considering several scenarios for a probabilistic problem is generally not an easy procedure.
Depending on the problem type, various methods exist for scenario generation [22,23]. However, in
this paper, a technique based on [19,24,25] is applied to generate a desirable number of scenarios with
reasonable accuracy. In order to have a combination of load and wind scenarios, the following steps
are taken:

1. Several scenarios for the load level are considered.
2. The probability of each system loading scenario (level of the load) and its corresponding value

using Equations (1) and (2) are calculated.
3. Several scenarios for wind speed are considered.
4. The probability of each wind speed scenario and its corresponding value using Equations (4) and

(5) are calculated.
5. The output power of the wind farm using the estimated wind speed in each scenario and Equation

(6) is generated.
6. The final number of combined load-wind scenarios is obtained by multiplying the number of load

scenarios by the number of wind scenarios. By multiplying the probability of the load scenario
by the probability of wind speed scenario, the probability of the combined load-wind scenarios
(πs) can be calculated as follows [19]:

πs = πl ×πw (7)

3. Problem Formulation

As mentioned earlier, a wide range of objective functions for the RPP in power systems can be
represented. This matter enormously affects the control variables, state variables, and all constraints of
the RPP problem. Thus, by a proper formulation, all objectives can be achieved, all constraints can
be satisfied, and the feasibility of the problem can be ensured. Due to the fact that the probabilistic
nature of the problem has a major impact on its formulation, it is very important to use the probabilistic
variables accurately in the problem formulation.

3.1. Variables

The same as the other optimization problems in power systems, such as Optimal Power Flow
(OPF), two types of variables, named control variables and state variables, are defined for the RPP.

Normally, for a typical RPP, control variables are defined as generators’ voltage magnitudes,
transformers tap settings, and output reactive power of VAR sources. Considering a scenario-based
approach to model the uncertainty of the problem, the control variables set (U) for a probabilistic RPP
are expressed as Equation (8) [14–17].

U =


Vgi,s , i ∈ Ωg, s ∈ Ωs

tki,s , i ∈ ΩTapCh, s ∈ Ωs

QCi,s , i ∈ ΩComp, s ∈ Ωs

(8)
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where Vgi,s shows the voltage magnitude of the ith generator for the sth scenario, tki,s is used to assign
the settings of the ith tap-changing transformer for the sth scenario, and QCi,s shows the output reactive
power of the ith VAR compensator device for the sth scenario. Likewise, Ωg, Ωs, ΩTapCh, and ΩComp
symbolize the set of generators, set of scenarios, set of tap-changing transformers, and set of VAR
compensator devices, respectively.

The state variables in a typical RPP consist of the generated active power by the slack bus, the
generated reactive power by each of the existing generators, the voltage magnitude of the load buses,
and the flow of the transmission lines.

Using a scenario-based approach to model the uncertainty of the problem, the state variables set
(X) for a probabilistic RPP are expressed as Equation (9) [14–17].

X =



PGSlack,s , s ∈ Ωs

QGi,s , i ∈ Ωg, s ∈ Ωs

VLi,s , i ∈ ΩPQ, s ∈ Ωs

SFrom
l,s , l ∈ ΩLines, s ∈ Ωs

STo
l,s , l ∈ ΩLines, s ∈ Ωs

(9)

where PGSlack,s indicates the generated active power by the slack generator (bus) for the sth scenario, QGi,s

is used to denote the generated reactive power by the ith generator for the sth scenario, VLi,s shows the
voltage magnitude of the ith load bus for the sth scenario, and SFrom

l,s and STo
l,s show the apparent power

flow of the sending and receiving ends of the lth line for the sth scenario, respectively. Additionally,
ΩPQ and ΩLines specify the set of the load buses and the set of transmission lines, respectively.

3.2. Objective Functions

For probabilistic multi-objective RPP, the aim is to satisfy three main objectives. These objectives
include the minimization of total VAR investment cost, minimization of voltage stability index (L-index),
and maximization of loadability factor, which lead to a reduction in total active power losses and
improvement of voltage stability.

3.2.1. Minimization of Total VAR Investment Cost

One of the important objectives in the RPP is the total cost of VAR planning. In spite of allocating
the optimal location and capacity for VAR sources, optimal VAR planning can handle the RPP problem
from economic aspects. For this reason, the first objective function is a cost-based objective function
comprising two main parts, as follows:

(1). The first part evaluates the expected cost of energy loss (Wc) during the generated scenarios and
is expressed as follows [16–26]:

Wc = πs(h
∑
s∈Ωs

tsPloss,s) (10)

where Ploss,s shows the active power losses during the sth scenario, ts represents the duration
of the sth scenario, h is a constant parameter that is related to the first part cost-based objective
function and identifies the per-unit energy cost, and πs denotes the probability of the sth scenario.
To calculate the total active power losses, Equation (11) can be used as follows [27–30]:

Ploss,s =
∑

l ∈ ΩLine
l = (i, j)

G(l,s)

(
V2

i,s + V2
j,s − 2Vi,sV j,s cos

(
θi,s − θ j,s

))
(11)

where Vi,s and V j,s are the sending and receiving ends voltage magnitude of the lth transmission
line for the sth scenario, respectively, θi,s and θ j,s are the sending and receiving ends voltage
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angles of the lth transmission line for the sth scenario, respectively, and G(l,s) is used to designate
the conductance of the lth transmission line for the sth scenario.

(2). The second part measures the expected cost of VAR investment (Ic) during the generated scenarios
and is derived as follows [14–17]:

Ic =
∑
s∈Ωs

πs(
∑

i∈ΩComp

(ei + CCiQCi,s)) (12)

where ei and CCi are the fixed and variable installation costs of VAR sources, respectively.

Accordingly, the first objective function ( f1) can be derived as follows:

f1 = Fc = Wc + Ic (13)

where Fc shows the expected Total VAR Cost (TVC).

3.2.2. Minimization of Voltage Stability Index

In this paper, the L-index is proposed as the voltage stability index that is a well-known static
voltage index [31]. In order to estimate the static voltage stability of the power system, the L-index
should be calculated for all load buses (PQ buses). All the load buses that have higher values of the
L-index than others are considered as the weak buses. Weak buses mostly suffer from a lack of reactive
power and are prone to the voltage collapse. Equation (14) can be used to calculate the L-index (L j) for
the jth load bus, as follows [31]:

L j =

∣∣∣∣∣∣∣∣1−
Ωg∑
i=1

F ji
Vi

V j

∣∣∣∣∣∣∣∣, ∀ j ∈ ΩPQ (14)

where Vi shows the voltage of the ith generator, and V j represents the voltage of the jth load bus. F ji
can be derived from Ybus matrix of the system. Thus, by rearranging the current and voltage equations
in power systems, as shown in Equation (15), the consecutive Ybus matrix is achieved. Thereafter, using
the arrays of the consecutive Ybus matrix, the F ji matrix can be calculated as Equation (16).[

Ig

Il

]
=

[
Ygg Ygl
Ylg Yll

][
Vg

Vl

]
(15)

F ji = −[Yll]
−1Ylg, ∀ j ∈ ΩPQ,∀i ∈ Ωg (16)

where Ig and Il show the current of generators and loads, respectively, and Vg and Vl are the voltage
of generators and loads, respectively. In addition, Ygg, Ygl, Ylg, and Yll are the submatrices of the
consecutive Ybus matrix. It should be noted that only Yll arrays of the consecutive Ybus matrix are
related to the PQ nodes. Also, the consecutive Ybus matrix is a symmetric matrix. Therefore, Ylggl = Ylg.

By minimizing the values of the L-index at the weak buses, there is a possibility to increase
the level of static voltage stability in power systems. The voltage stability of power systems can be
determined by the L-index when the maximum value of the L-index (Lmax) is assigned to the static
voltage stability level in power systems, as follows:

Lmax = max
(
L j

)
, ∀ j ∈ ΩPQ (17)

To improve the static voltage stability of power systems, it is necessary to minimize Lmax. It should
be noted that the equations proposed for the L-index are related to the deterministic problem. In the
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case of a probabilistic problem, considering all necessary modifications on the Ybus matrix in each
scenario, after re-formulating Equations (14)–(17), new equations can be rewritten as follows:

L j,s =

∣∣∣∣∣∣∣∣1−
Ωg∑
i=1

F ji,s
Vi,s

V j,s

∣∣∣∣∣∣∣∣, ∀ j ∈ ΩPQ, ∀s ∈ Ωs (18)

where L j,s indicates L-index value for the jth load bus and sth scenario, Vi,s and V j,s are the voltage of
the ith generator and jth load bus for the sth scenario, respectively. For each scenario, the F ji,s matrix
can be calculated as Equation (20).[

Ig,s

Il,s

]
=

[
Ygg,s Ygl,s
Ylg,s Yll,s

][
Vg,s

Vl,s

]
, ∀s ∈ Ωs (19)

F ji,s = −
[
Yll,s

]−1
Ylg,s, ∀ j ∈ ΩPQ,∀i ∈ Ωg,∀s ∈ Ωs (20)

where Ig,s and Il,s denote the current of generators and loads for the sth scenario, respectively, Vg,s and
Vl,s are the voltage of generators and loads for the sth scenario, respectively. Also, Ygg,s, Ygl,s, Ylg,s, and
Yll,s are the submatrices of the consecutive Ybus matrix for the sth scenario.

According to the aforementioned descriptions, Equations (18)–(20) can be obtained for each
scenario. The maximum value of the L-index for each scenario can be derived as follows:

Lmax,s = max
(
L j,s

)
, ∀ j ∈ ΩPQ,∀s ∈ Ωs (21)

Consequently, the second objective function ( f2), which is the expected value of the static voltage
stability index during the generated scenarios, can be derived as follows:

f2 =
∑
s∈Ωs

πsLmax,s (22)

3.2.3. Maximization of the Loadability Factor

The injected active power (Pi) and reactive power (Qi) at the ith bus can be expressed in terms
of the voltage (V), the elements of the Ybus matrix of the system, and the loadability factor (Γ) as
follows [32]:

Pi = PGi − (1 + Γ)PDi −Re{Vi

NB∑
j=1

(
V jYi, j

)∗
} (23)

Qi = QGi − (1 + Γ)QDi − Im{Vi

NB∑
j=1

(
V jYi, j

)∗
} (24)

where PGi and QGi are the active and reactive power generation at the ith bus, respectively, PDi and
QDi represent the base-case active and reactive power consumption at the ith bus, respectively, and NB

denotes the total number of buses.
Maximizing the loadability factor is defined as the third objective function, in this paper. However,

considering the random nature of the problem, a probabilistic formulation is required. Therefore,
by re-formulating Equations (23) and (24), a stochastic formula is derived to obtain the expected
loadability factor, as shown in Equations (25) and (26).

Pi,s = PGi,s − (1 + Γ(s))PDi,s −Re{Vi,s

NB∑
j=1

(
V j,sYi, j,s

)∗
}, ∀s ∈ Ωs (25)
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Qi,s = QGi,s − (1 + Γ(s))QDi,s − Im{Vi,s

NB∑
j=1

(
V j,sYi, j,s

)∗
}, ∀s ∈ Ωs (26)

where Pi,s and Qi,s denote the injected active and reactive power at the ith bus for the sth scenario,
respectively, PGi,s and QGi,s represent the active and reactive power generation at the ith bus for the sth

scenario, respectively, PDi,s and QDi,s are the base-case active and reactive power consumption at the ith

bus for the sth scenario, respectively, Γ(s) denotes the loadability factor for the sth scenario; Vi,s and V j,s
indicate the voltage of the ith bus jth bus for the sth scenario, respectively, and lastly, the elements of the
Ybus matrix for the sth scenario are shown by Yi, j,s.

According to the above-mentioned descriptions, the third objective function ( f3), which is the
expected value of the loadability factor, can be derived as follows:

f3 =
∑
s∈Ωs

πsΓ(s) (27)

Finally, the optimization criteria subjected to equality and inequality constraints are as follows:

Optimization Criteria =


min( f1)
min( f2)
max( f3)

(28)

3.3. Constraints

The role of constraints in creating a feasible space for the problem and satisfying optimality
conditions to find optimal solutions is undeniable. For this reason, the correct expression of constraints
is one of the major priorities in the problem formulation.

3.3.1. Equality Constraints

The power flow equations are taken as the equality constraints for the RPP. Using the output
power of wind farms and also considering the probabilistic nature of the problem, Equations (25) and
(26) can be rewritten as follows:

Pi,s = PGi,s + PWi,s − (1 + Γ(s))PDi,s −Re{Vi,s

NB∑
j=1

(
V j,sYi, j,s

)∗
}, ∀s ∈ Ωs (29)

Qi,s = QGi,s + QWi,s − (1 + Γ(s))QDi,s − Im{Vi,s

NB∑
j=1

(
V j,sYi, j,s

)∗
}, ∀s ∈ Ωs (30)

where PWi,s and QWi,s show the output active and reactive power of the ith wind farm for the sth

scenario, respectively. It should be noted that the output reactive power of the wind farms is neglected
in this paper.

3.3.2. Inequality Constraints

To keep both the control and state variables within their specific limits, another set of
constraints is added to the problem, named as inequality constraints. Those constraints involve
Equations (31)–(38) [24,25].

• Limits on the Control Variables

The upper limit (Vmax
gi

) and lower limit (Vmin
gi

) of a generator voltage magnitude for the sth scenario
can be applied, as follows:
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Vmin
gi
≤ Vgi,s ≤ Vmax

gi
, ∀i ∈ Ωg,∀s ∈ Ωs (31)

For all tap-changing transformers in each scenario, the following constraint should be satisfied.

tmin
ki
≤ tki,s ≤ tmax

ki
, ∀i ∈ ΩTapCh,∀s ∈ Ωs (32)

where tmin
ki

and tmax
ki

show the minimum and maximum settings of the ith tap-changing transformer,
respectively.

The output reactive power of the VAR sources in each scenario is as follows:

Qmin
Ci
≤ QCi,s ≤ Qmax

Ci
, ∀i ∈ ΩComp,∀s ∈ Ωs (33)

where Qmin
Ci

and Qmax
Ci

show the minimum and maximum output reactive power of the ith VAR
compensator device, respectively.

• Limits on the State Variables

In terms of the generation units, for each scenario, two important constraints should be satisfied;
(1) the limitation on the generated active power of the slack bus and (2) the limitation on the generated
reactive power of each generation unit. Those constraints are given as follows:

Pmin
GSlack

≤ PGSlack,s ≤ Pmax
GSlack

, ∀s ∈ Ωs (34)

Qmin
Gi
≤ QGi,s ≤ Qmax

Gi
, ∀i ∈ Ωg,∀s ∈ Ωs (35)

where Pmin
GSlack

and Pmax
GSlack

indicate the maximum and minimum generated active power of the slack

bus for the sth scenario, respectively. In addition, Qmin
Gi

and Qmax
Gi

show the maximum and minimum

generated reactive power of the ith generator for the sth scenario, respectively.
In order to prevent the voltage collapse or insulating problems, it is required to limit the voltage

magnitude of loads for each scenario, as follows:

Vmin
Li
≤ VLi,s ≤ Vmax

Li
, ∀i ∈ ΩPQ,∀s ∈ Ωs (36)

where Vmin
Li

and Vmax
Li

are considered as the lower and upper limits of the voltage magnitude at the ith

load bus for the sth scenario, respectively.
To reduce the risk of overload in transmission lines, the apparent flow of the transmission

lines should be lower than a specified value. Equations (37) and (38) enforce the apparent flow of
transmission lines to be at the secure level, as follows:

SFrom
l,s ≤ Smax

l , ∀l ∈ ΩLines,∀s ∈ Ωs (37)

STo
l,s ≤ Smax

l , ∀l ∈ ΩLines,∀s ∈ Ωs (38)

where Smax
l indicates the maximum apparent flow of the lth transmission line.

3.4. Other Considerations in the Problem Formulation

There are other considerations in the problem formulation, which are listed as follows:

• The transformers tap settings and output reactive power of the VAR sources are treated as
continuous variables. Therefore, the whole problem is stated as a probabilistic multi-objective
nonlinear problem.
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• Since the Ybus matrix of power systems is dependent on the transformers tap settings and due to
the fact that the transformers tap settings are defined as scenario-dependent variables, the Ybus
matrix should be calculated for each scenario separately.

• The L-index value varies between 0 and 1 for power systems. It should be noted that except for
the defined boundaries, the L-index value should be obtained without any further restriction
during the optimization procedure.

4. Optimization Method

Once an optimization problem is formulated carefully, it is required to solve the problem via
an optimization method. To choose an optimization method to solve a problem, it is necessary
to consider the number of optimization variables, the type of variables, the number of objective
functions, the number of constraints, and the convexity or non-convexity of the problem and the
other characteristics [27–29]. In this regard, the optimization methods can be classified into three
major groups; (1) exact methods based on mathematical calculations, (2) heuristic methods, and (3)
combination of the exact methods and heuristic methods.

4.1. Multi-Objective Optimization Using ε-Constraint Method

According to [33,34], the ε-constraint method is considered as one of the classic methods for
multi-objective optimization. This method is in line with the exact methods. In addition to its efficiency
and simplicity, this method is applicable to both convex and non-convex problems. The main idea of
the ε-constraint method is to reformulate the multi-objective problem as a single-objective problem.
Then, by iteratively solving the single-objective problem, a Pareto Front is obtained. In the following,
the details of the ε-constraint method are explained [34].

Considering a multi-objective problem (Ψ(X)), as shown in Equation (39), subjected to different
constraints that should be optimized, the following steps should be taken.

Ψ(X) = ( f1(X), f2(X), . . . fi(X)), i = 1, 2, . . . , n (39)

where fi(X) denotes the ith objective function and n shows the maximum number of existing objective
functions.

1. Each objective function ( fi(X)) is optimized with the existing constraints separately and the
results are saved in a table, called the payoff table.

2. According to the priority of the objective functions, one objective function is selected as the main
objective function. Then, the rest of the objective functions are treated as new constraints and
added to the main constraints. It should be noted that except for the main objective function, if
the goal is to minimize and maximize all the objective functions, then, fi(X) ≤ ei and fi(X) ≥ ei,
respectively. Also, ei is a variable parameter.

3. In order to assign values to ei, the maximum ( f max
i ) and minimum ( f min

i ) values of each objective
function should be considered, as shown in Equation (40). It should be noted that those values
can be obtained from the payoff table.

f min
i ≤ fi(X) ≤ f max

i (40)

4. To generate different values for ei,ni , Equations (41) and (42) are used to minimize and maximize
the objective function, respectively. By dividing the domain of the ith objective function into qi
equal parts using Equations (41) and (42), qi different values are obtained for ei,ni . It should be
noted that ni denotes the number of available generated values for ei,ni .

ei,ni = f max
i − (

f max
i − f min

i
qi

)ni, ni = 0, 1, . . . , qi (41)
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ei,ni = f min
i − (

f max
i − f min

i
qi

)ni, ni = 0, 1, . . . , qi (42)

5. By using the obtained values from Step 4, it can be derived that fi(X) ≤ ei,ni or fi(X) ≥ ei,ni . For
different values of ei, a set of solutions is obtained, which forms the Pareto front of the problem.

According to the above-mentioned descriptions, to solve the probabilistic multi-objective RPP, the
following equation is formed.

min f1 (43)

subjected to 
f2 ≤ e2,n2

f3 ≤ e3,n3

Equations (29)–(38)
(44)

4.2. Fuzzy Decision Maker (FDM)

As already mentioned, after solving a multi-objective optimization problem, a set of optimal
solutions is obtained, called the Pareto Front. While only one solution from the Pareto Front can be
chosen as the final optimal solution to the problem, which is known as the Best Compromise Solution
(BCS). One way to choose the BCS is to use the Fuzzy Decision Maker (FDM). Having used a fuzzy
membership function, each of the optimal solutions is mapped between 0 and 1. For the kth objective
function, Fk, the linear fuzzy membership is defined as Equation (45) [24], and it is supposed that all
the objective functions are minimized.

F̂k =


1, Fk ≤ Fmin

k
Fmax

k −Fk

Fmin
k −Fmax

k
, Fmin

k ≤ Fk ≤ Fmax
k

0, Fk ≥ Fmax
k

(45)

where F̂k represents the kth normalized objective function. In addition, Fmin
k and Fmax

k are used to
express the minimum and maximum values of the kth objective function, respectively.

After obtaining the fuzzy values of each objective function using Equation (45), there are several
ways to find the BCS. In this paper, to obtain the BCS, the min-max method, which is introduced in [35],
is used.

BCS = max
(
min

(
F̂1, F̂2, . . . , F̂k

))
(46)

5. Simulation Results and Discussions

To evaluate the performance of the proposed ε-constraint method in the presence of various
objectives, containing expected total VAR cost ( f1), expected active power losses, expected voltage
stability index ( f2), and expected loadability factor ( f3), two deterministic and three probabilistic cases
are studied, as follows:

A. Deterministic multi-objective RPP without considering the loadability factor (assessing the
proficiency of ε-constraint method)

B. Deterministic multi-objective RPP considering the loadability factor
C. Probabilistic multi-objective RPP considering the load demand uncertainty
D. Probabilistic multi-objective RPP considering the wind power generation uncertainty
E. Probabilistic multi-objective RPP considering load demand and wind power generation

uncertainties at the same time

All the cases are implemented in GAMS environment Ver. 25.1.2 [36–39], and are solved using the
CONOPT 3 Solver [40], in an ASUS laptop, with 8 GB of RAM and 2.4 GHz. The descriptions of the
case study are presented in the next subsection.
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5.1. Case Study Descriptions and Simulation Results

The test system is the IEEE 30-bus test system, which has 6 generation units, 4 transformers, and
41 branches. The initial settings of the generators’ voltage magnitude and transformers tap settings are
obtained from [30]. Figure 1 shows the single line diagram of the IEEE-30-bus test system. Also, both
the output active and reactive power of generators are set according to [41]. The loads’ data and line
data are available in [42]. It is assumed that there is not any VAR source in the case study.
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Figure 1. Single line diagram of the IEEE-30 bus test system [43].

To allocate appropriately the VAR compensation devices, firstly, the L-index should be determined
for the load buses. Then, the load buses with high values of L-index are taken into account as the
candidate buses for the VAR compensation devices installation. It is observed that after implementing
the proposed methodology, the load at bus 24, bus 25, bus 26, bus 29, and bus 30 obtain the higher
values of L-index than the other load buses. As a result, the VAR compensator buses are found. After
the allocation of VAR compensation devices, it is supposed that the capacities of the VAR compensators
can be set to zero. The initial conditions of the system considering the full-load and 1-year planning
are stated in Table 2.

Table 2. Control variables and objectives under initial conditions.

Generator Voltage Magnitude

Vg1 (p.u.) 1.050
Vg2 (p.u.) 1.044
Vg5 (p.u.) 1.023
Vg8 (p.u.) 1.025
Vg11 (p.u.) 1.050
Vg13 (p.u.) 1.050

Transformer Tap Settings

t6−9 (p.u.) 0.950
t6−10 (p.u.) 1.100
t4−12 (p.u.) 1.025
t28−27 (p.u.) 1.050

VAR Compensator

Qc24 (MVAR) 0.000
Qc25 (MVAR) 0.000
Qc26 (MVAR) 0.000
Qc29 (MVAR) 0.000
Qc30 (MVAR) 0.000

Objective

Ploss (MW) 5.4970
f1 ($) 2.8892 × 106

f2 0.1635
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The control variables limits are expressed in Table 3. The per-unit energy cost is equal to
0.06 ($/h) [3], the fixed installation cost (ei) for all VAR sources is 1000 ($), and the variable installation
cost (CCi) for all VAR sources is 3.0 ($/kVAR) [44].

Table 3. Control variables limits.

Control Variable Value

Vmin
gi

(p.u.) 0.900
Vmax

gi
(p.u.) 1.100

tmin
ki

(p.u.) 0.900
tmax
ki

(p.u.) 1.100
Qmin

Ci
(MVAR) 0.000

Qmax
Ci

(MVAR) 35.00

The voltage magnitude at the load buses, which are considered as the state variables, must be
limited between 0.95 (p.u.) and 1.05 (p.u.). To show the effectiveness of the proposed method, two
deterministic and three probabilistic cases are considered in the following subsections.

5.1.1. Case A: Deterministic Multi-Objective RPP without Considering the Loadability Factor

In order to validate the efficiency of the proposed method for multi-objective RPP, the ε-constraint
method is applied to a deterministic multi-objective RPP problem. The obtained results are also
compared with the approach presented in [3]. The deterministic multi-objective RPP aims to minimize
the total VAR cost and voltage stability index. Thus, it is expected to achieve a reduction in active
power losses and an improvement in the voltage stability index. Table 4 shows the obtained results
from deterministic multi-objective RPP without considering the loadability factor in IEEE 30-bus test
system with the initial settings. The duration of the load for deterministic multi-objective RPP is
assumed to be 8760 h for full-load condition and without changes in the load level. According to
Table 4, 15 Pareto optimal solutions are obtained by the ε-constraint method. After that, the min-max
approach chooses the fifth solution (highlighted row) as the BCS. The active power losses for the BCS
are 4.9813 MW.

Table 4. Obtained Pareto optimal solutions for the deterministic multi-objective RPP without considering
the loadability factor.

χ f1($) f2
^
F1

^
F2 min(

^
F1,

^
F2)

1 3.0334 × 106 0.1241 0.0000 1.0000 0.0000
2 2.9064 × 106 0.1241 0.3033 0.9286 0.3033
3 2.8182 × 106 0.1246 0.5139 0.8571 0.5139
4 2.7532 × 106 0.1249 0.6692 0.7857 0.6692
5 2.7084 × 106 0.1252 0.7762 0.7143 0.7143
6 2.6802 × 106 0.1255 0.8437 0.6429 0.6429
7 2.6611 × 106 0.1257 0.8892 0.5714 0.5714
8 2.6496 × 106 0.1260 0.9166 0.5000 0.5000
9 2.6415 × 106 0.1263 0.9360 0.4286 0.4286
10 2.6350 × 106 0.1266 0.9516 0.3571 0.3571
11 2.6294 × 106 0.1269 0.9649 0.2857 0.2857
12 2.6247 × 106 0.1271 0.9762 0.2143 0.2143
13 2.6207 × 106 0.1274 0.9858 0.1429 0.1429
14 2.6174 × 106 0.1277 0.9936 0.0714 0.0714
15 2.6147 × 106 0.1280 1.0000 0.0000 0.0000
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Considering the same operating condition, the ε-constraint method is compared with the
Multi-Objective Differential Evolution (MODE) algorithm, which is recommended to solve the
deterministic multi-objective RPP [3]. For the BCS, the results of the comparison are presented in
Table 5. As it can be observed from Table 5, the ε-constraint method shows better performance
compared with the MODE algorithm in minimizing total VAR cost and active power losses. The
superiority of the ε-constraint method is confirmed by a 6.2578 % reduction in total VAR cost and a
9.3815 % decrease in the active power losses over the Base Case. However, as it can be observed from
Table 5, the voltage stability index of the conventional method is better than the proposed approach.

Table 5. Comparison of the obtained results between the ε-constraint method and MODE algorithm
for the BCS under the same operating conditions.

Method Ploss (MW) f1($) f2

ε-constraint
Method

Base Case 5.4970 2.8892 × 106 0.16350
BCS 4.9813 2.7084 × 106 0.12520

Reduction (%) 9.3815 6.2578 23.4251

MODE Algorithm
Base Case 4.9630 2.6085 × 106 0.19780

BCS 4.8300 2.5387 × 106 0.12040
Reduction (%) 2.6798 2.6759 39.1304

The optimal values of the control variables for Case A are represented in Table 6. As it can be
observed, only one VAR source has a value of zero. Note that the fixed installation VAR cost is also
considered for all VAR sources with the value of zero during the planning studies. It is apparent
from Case A that the ε-constraint is an effective method to generate Pareto optimal solutions for the
multi-objective RPP.

Table 6. The optimal values of the control variables for the deterministic multi-objective RPP without
considering the loadability factor.

Control Variable Optimal Value

Vg1 (p.u.) 1.06940
Vg2 (p.u.) 1.06150
Vg5 (p.u.) 1.04110
Vg8 (p.u.) 1.04260
Vg11 (p.u.) 1.10000
Vg13 (p.u.) 1.05550
t6−9 (p.u.) 1.03640
t6−10 (p.u.) 0.92960
t4−12 (p.u.) 0.97700
t28−27 (p.u.) 0.99910

Qc24 (MVAR) 20.9529
Qc25 (MVAR) 1.84190
Qc26 (MVAR) 2.34290
Qc29 (MVAR) 3.28580
Qc30 (MVAR) 0.00000

5.1.2. Case B: Deterministic Multi-Objective RPP Considering the Loadability Factor

In this part, the ε-constraint method is applied to the multi-objective RPP problem in a complex
form. However, the uncertainties of the load demand and wind power generation are not considered
in this case. In comparison with Case A, another objective, which is called the loadability factor, is
added to the problem. Therefore, the main objectives in this part include minimizing the total VAR cost,
reducing the active power losses, improving the voltage stability index, and maximizing the loadability
factor. In order to solve a deterministic multi-objective RPP considering the loadability factor, it is
assumed that the system is under full-load condition. The duration of the load is assumed to be 8760 h.
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Table 7 provides the simulation results of the deterministic multi-objective RPP problem considering
the loadability factor. In addition, this table illustrates that among the 15 generated Pareto optimal
solutions, the eighth solution (highlighted row) is the BCS through the min-max approach. The active
power losses for the BCS is 9.3494 MW. Also, it can be observed that the total VAR cost and active
power losses are dramatically increased for BCS in comparison with Case A. Moreover, the voltage
stability index is not improved compared with Case A. Nevertheless, the loadability factor is improved
in Case B. The main reason behind the deterioration of active power losses and voltage stability index
is due to the enhancement of the loadability factor. It should be noted that the loadability factor can
hugely affect the active power losses and voltage stability of power systems.

Table 7. Obtained Pareto optimal solutions for the deterministic multi-objective RPP considering the
loadability factor.

χ f1($) f2 f3
^
F1

^
F2

^
F3 min(

^
F1,

^
F2,

^
F3)

1 2.9015 × 106 0.1272 0.0000 1.0000 1.0000 0.0000 0.0000
2 3.1145 × 106 0.1309 0.0236 0.9511 0.9286 0.0724 0.0724
3 3.3885 × 106 0.1347 0.0472 0.8881 0.8571 0.1448 0.1448
4 3.7008 × 106 0.1384 0.0708 0.8164 0.7857 0.2172 0.2172
5 4.0028 × 106 0.1421 0.0944 0.7470 0.7143 0.2896 0.2896
6 4.3051 × 106 0.1459 0.1181 0.6776 0.6429 0.3620 0.3620
7 4.6107 × 106 0.1496 0.1417 0.6074 0.5714 0.4344 0.4344
8 4.9361 × 106 0.1533 0.1653 0.5326 0.5000 0.5068 0.5000
9 5.2798 × 106 0.1571 0.1889 0.4537 0.4286 0.5792 0.4286
10 5.6345 × 106 0.1608 0.2125 0.3722 0.3571 0.6515 0.3571
11 5.9691 × 106 0.1645 0.2361 0.2953 0.2857 0.7239 0.2857
12 6.2864 × 106 0.1683 0.2597 0.2224 0.2143 0.7963 0.2143
13 6.6184 × 106 0.1720 0.2833 0.1462 0.1429 0.8687 0.1429
14 6.9648 × 106 0.1757 0.3070 0.0666 0.0714 0.9411 0.0666
15 7.2547 × 106 0.1795 0.3262 0.0000 0.0000 1.0000 0.0000

Table 8 depicts the optimal values of the control variables for Case B. As it can be observed,
three VAR sources have a value of zero. It should be noted that the fixed installation VAR cost is also
considered for all VAR sources with the value of zero during the planning studies.

Table 8. The optimal values of the control variables for the deterministic multi-objective RPP considering
the loadability factor.

Control Variable Optimal Value

Vg1 (p.u.) 1.06300
Vg2 (p.u.) 1.05310
Vg5 (p.u.) 1.07610
Vg8 (p.u.) 1.05420
Vg11 (p.u.) 1.10000
Vg13 (p.u.) 1.08520
t6−9 (p.u.) 1.02690
t6−10 (p.u.) 0.90000
t4−12 (p.u.) 1.00600
t28−27 (p.u.) 0.97310

Qc24 (MVAR) 0.00000
Qc25 (MVAR) 0.00000
Qc26 (MVAR) 0.00000
Qc29 (MVAR) 3.03920
Qc30 (MVAR) 2.66360
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5.1.3. Case C: Probabilistic Multi-Objective RPP Considering the Load Demand Uncertainty

In Cases A and B, the multi-objective RPP in power systems is solved using the deterministic
approach. However, with the increasing level of uncertainty, probabilistic multi-objective is required
for the RPP problem. In Case C, the probabilistic multi-objective RPP considering three different
scenarios for the load level is performed. Each scenario for the load level consists of two main parts:
(1) probability of the load level and (2) duration of the load. The overall duration of the load is assumed
to be 8760 h, which is the expected time horizon for the RPP. The specifications of the system loading
are described in Table 9.

Table 9. The specifications of the system loading for probabilistic multi-objective RPP considering the
load demand uncertainty.

Scenario Level of the Load Probability Duration of the Load (h)

S1 0.95 0.1 2920
S2 1.00 0.8 4380
S3 1.05 0.1 1460

The simulation results obtained from the probabilistic multi-objective RPP considering the load
demand uncertainty are given in Table 10. As it can be observed from this table, 15 Pareto optimal
solutions are generated using the ε-constraint method. Using the min-max approach, the eighth
solution (highlighted row) is chosen as the BSC. It is worth mentioning that the expected active power
losses are 9.5049 MW for the BCS. From Table 10, it is clear that the expected total VAR cost is reduced
compared with the Base Case. The expected voltage stability index and the expected loadability factor
also show improvement towards the initial conditions. However, with more considerations, it is
revealed that the expected active power losses are increased. This fact stems from the evident increase
in the loadability factor. As a common incidence in power systems, following the escalation of the
loadability factor, the active power losses increase and the system becomes voltage unstable. Generally,
from the power systems operators’ perspective, monitoring of the voltage magnitude at the load buses
as a way of preventing voltage collapse is in high priority. Therefore, the voltage profile of the load
buses for each loading scenario is plotted for the BCS, as shown in Figure 2.

Table 10. Obtained Pareto optimal solutions for the probabilistic multi-objective RPP considering the
load demand uncertainty.

χ f1($) f2 f3
^
F1

^
F2

^
F3 min(

^
F1,

^
F2,

^
F3)

1 1.3129 × 106 0.1294 0.0000 1.0000 1.0000 0.0000 0.0000
2 1.4223 × 106 0.1339 0.0237 0.9443 0.9197 0.0722 0.0722
3 1.5418 × 106 0.1383 0.0473 0.8834 0.8395 0.1443 0.1443
4 1.6647 × 106 0.1428 0.0710 0.8207 0.7592 0.2165 0.2165
5 1.7954 × 106 0.1472 0.0946 0.7542 0.6790 0.2887 0.2887
6 1.9328 × 106 0.1517 0.1183 0.6841 0.5987 0.3609 0.3609
7 2.0774 × 106 0.1561 0.1420 0.6105 0.5185 0.4330 0.4330
8 2.2510 × 106 0.1606 0.1688 0.5220 0.4382 0.5148 0.4382
9 2.3848 × 106 0.1637 0.1893 0.4538 0.3818 0.5774 0.3818
10 2.5365 × 106 0.1673 0.2131 0.3765 0.3172 0.6501 0.3172
11 2.7000 × 106 0.1713 0.2379 0.2932 0.2447 0.7256 0.2447
12 2.9942 × 106 0.1783 0.2852 0.1433 0.1187 0.8700 0.1187
13 3.1909 × 106 0.1828 0.3143 0.0431 0.0376 0.9586 0.0376
14 3.2627 × 106 0.1844 0.3252 0.0065 0.0072 0.9919 0.0065
15 3.2754 × 106 0.1848 0.3278 0. 0000 0. 0000 1. 000 0.0000
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It is clear from Figure 2 that the voltage magnitude of the load buses remains in the range of 0.95 
p.u. and 1.05 p.u. for all three load scenarios. Although the loadability factor is improved, the voltage 
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The optimal values of the control variables for the BSC among the different load scenarios are
given in Table 11. Having checked this table closely, it is noticed that some VAR sources have a value
of zero. Consequently, the variable cost of those VAR sources is equal to zero. However, those VAR
sources are allocated, and their fixed VAR installation costs are considered for the planning studies in
this paper.

Table 11. The optimal values of the control variables among the load scenarios for probabilistic
multi-objective RPP considering the load demand uncertainty.

Control Variable S1 S2 S3 Expected Value

Vg1 (p.u.) 1.0621 1.0632 1.0640 1.0632
Vg2 (p.u.) 1.0530 1.0532 1.0533 1.0532
Vg5 (p.u.) 1.0749 1.0783 1.0794 1.0780
Vg8 (p.u.) 1.0550 1.0522 1.0514 1.0524
Vg11 (p.u.) 1.1000 1.1000 1.1000 1.1000
Vg13 (p.u.) 1.0828 1.0903 1.0927 1.0898
t6−9 (p.u.) 1.0285 1.0249 1.0234 1.0251
t6−10 (p.u.) 0.9000 0.9000 0.9000 0.9000
t4−12 (p.u.) 1.0036 1.0143 1.0171 1.0135
t28−27 (p.u.) 0.9721 0.9500 0.9492 0.9521

Qc24 (MVAR) 0.0000 0.0000 0.0000 0.0000
Qc25 (MVAR) 0.0000 0.0000 0.0000 0.0000
Qc26 (MVAR) 0.0000 0.0000 0.0000 0.0000
Qc29 (MVAR) 1.8307 0.0000 0.0000 0.1831
Qc30 (MVAR) 3.1448 0.0000 0.1993 0.3344

It is clear from Figure 2 that the voltage magnitude of the load buses remains in the range of
0.95 p.u. and 1.05 p.u. for all three load scenarios. Although the loadability factor is improved, the
voltage stability index of the system is ensured from the voltage magnitude point of view. Therefore,
by making an allowance for the load demand uncertainty, the obtained total VAR cost seems to be
more realistic. In the same way, the voltage stability index and the loadability factor are more reliable
due to including more scenarios for the planning horizon.
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5.1.4. Case D: Probabilistic Multi-Objective RPP Considering the Wind Power Generation Uncertainty

In Case D, it is assumed that a wind farm is located at a PQ node. After generating the wind
speed scenarios using the Weibull distribution and power curve, a probabilistic multi-objective RPP is
performed. In this case, the IEEE 30-bus test system is modified based on [45]. Hence, a wind farm
with a rated power of 40 MW is added to bus 22. The wind farm data is derived from [45] and is
presented in Appendix A. To evaluate the impact of the wind farm, six scenarios for the output power
of the wind farm are generated. The duration of the load is assumed to be 1460 h and without changes
in the load level. The generated wind scenarios and their details are given in Table 12.

Table 12. Generated wind scenarios for the probabilistic multi-objective RPP considering the wind
power generation uncertainty.

Scenario Wind Power
Generation (MW) Probability Level of the Load Duration of the

Load (h)

S1 0.00000 0.0861 1 1460
S2 5.27050 0.1212 1 1460
S3 15.0917 0.1492 1 1460
S4 24.9726 0.1546 1 1460
S5 34.8784 0.1413 1 1460
S6 40.0000 0.3476 1 1460

The obtained results from the probabilistic multi-objective RPP using the generated wind scenarios
are represented in Table 13. As it is observed from this table, among the 15 generated Pareto optimal
solutions using the ε-constraint technique, the eighth solution (highlighted row) is selected as the BSC
after applying the min-max approach. The corresponding value of expected active power losses is
8.5777 MW. Compared with the Base Case and Case A, it is clear that the expected total VAR cost
has had a remarkable reduction for the best compromise solution. In addition, the enhancement of
expected voltage stability index and expected loadability factor is undeniable towards the Base Case
and Case A. In addition, the expected active power losses are elevated in contrast with the Base Case.
However, the expected active power losses show a reduction of roughly 1 MW, when it is compared
with Case A. The main reason for this reduction is the existence of the wind farm in the case study.

Table 13. Obtained Pareto optimal solutions for the probabilistic multi-objective RPP considering the
wind generation uncertainty.

χ f1($) f2 f3
^
F1

^
F2

^
F3 min(

^
F1,

^
F2,

^
F3)

1 3.7924 × 105 0.1222 0.0000 1.0000 1.0000 0.0000 0.0000
2 4.1835 × 105 0.1282 0.0300 0.9538 0.9096 0.0724 0.0724
3 4.6485 × 105 0.1335 0.0600 0.8988 0.8293 0.1448 0.1448
4 5.1663 × 105 0.1386 0.0900 0.8376 0.7523 0.2172 0.2172
5 5.7321 × 105 0.1442 0.1200 0.7707 0.6683 0.2896 0.2896
6 6.3071 × 105 0.1480 0.1500 0.7028 0.6093 0.3620 0.3620
7 6.9212 × 105 0.1525 0.1800 0.6302 0.5418 0.4344 0.4344
8 7.5741 × 105 0.1570 0.2100 0.5530 0.4740 0.5068 0.4740
9 8.2287 × 105 0.1615 0.2400 0.4757 0.4058 0.5792 0.4058
10 8.8964 × 105 0.1661 0.2700 0.3968 0.3355 0.6515 0.3355
11 9.4995 × 105 0.1706 0.3000 0.3255 0.2680 0.7239 0.2680
12 1.0169 × 106 0.1752 0.3300 0.2463 0.1984 0.7963 0.1984
13 1.0876 × 106 0.1798 0.3600 0.1628 0.1285 0.8687 0.1285
14 1.1621 × 106 0.1845 0.3900 0.0747 0.0583 0.9411 0.0583
15 1.2253 × 106 0.1883 0.4144 0.0000 0.0000 1.0000 0.0000
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The optimal values of the control variables for the BCS over the wind scenarios are represented in
Table 14. Taking a look at Table 14, it is shown that the VAR sources gain the value of zero in almost all
scenarios. Therefore, the variable VAR investment cost for those VAR sources equals to zero. However,
the VAR sources are allocated and their fixed VAR investment costs are taken into account during the
planning horizon.

Table 14. The optimal values of the control variables among the wind scenarios for probabilistic
multi-objective RPP considering the wind power generation uncertainty.

Control
Variable S1 S2 S3 S4 S5 S6

Expected
Value

Vg1 (p.u.) 1.0630 1.0627 1.0619 1.0611 1.0604 1.0599 1.0611
Vg2 (p.u.) 1.0531 1.0530 1.0527 1.0523 1.0520 1.0518 1.0523
Vg5 (p.u.) 1.0767 1.0778 1.0773 1.0769 1.0766 1.0765 1.0769
Vg8 (p.u.) 1.0536 1.0525 1.0528 1.0531 1.0533 1.0534 1.0531
Vg11 (p.u.) 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000 1.1000
Vg13 (p.u.) 1.0867 1.0893 1.0887 1.0883 1.0882 1.0883 1.0883
t6−9 (p.u.) 1.0264 1.0266 1.0289 1.0311 1.0330 1.0338 1.0310
t6−10 (p.u.) 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000
t4−12 (p.u.) 1.0084 1.0121 1.0094 1.0071 1.0052 1.0043 1.0070
t28−27 (p.u.) 0.9657 0.9499 0.9490 0.9480 0.9468 0.9462 0.9491

Qc24 (MVAR) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qc25 (MVAR) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qc26 (MVAR) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qc29 (MVAR) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Qc30 (MVAR) 3.8586 0.0000 0.0000 0.0000 0.0000 0.0000 0.3321

The voltage profile of the load buses for the BCS is plotted in Figure 3. As it can be observed, the
voltage magnitude of the load buses is kept in the interval of 0.95 p.u. and 1.05 p.u. during all wind
scenarios. Hence, it can be concluded that based on a proper RPP and having adequate reactive power
reserve, the voltage magnitude of the load buses are restricted with specific limits.Appl. Sci. 2020, 10, x FOR PEER REVIEW 22 of 31 
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5.1.5. Case E: Probabilistic Multi-Objective RPP Considering Load Demand and Wind Power
Generation Uncertainties

To have a more comprehensive overlook of the probabilistic RPP, in Case E, it is preferred to
perform RPP in the presence of two stochastic input variables, including the load demand and wind
power generation. Hence, considering the level of the load and wind power generation as the stochastic
input variables, combined load-wind scenarios are generated via the proposed technique. After
determining the load-wind scenarios, a probabilistic multi-objective RPP is performed to evaluate
the existing objectives, while the number of random input variables increases. Taking the IEEE 30
bus-test system with initial settings as the benchmark, 18 combined load-wind scenarios are generated.
In general, three load scenarios and six wind scenarios are used to generate 18 combined load-wind
scenarios. The descriptions of generated load-wind scenarios are given in Table 15.

Table 15. Generated load-wind scenarios for probabilistic multi-objective RPP considering load demand
and wind power generation uncertainties.

Scenario Wind Power
Generation (MW) Level of the Load Duration of the

Load (h) Probability

S1 0.00000 0.95 400 0.0086
S2 5.27050 0.95 400 0.0121
S3 15.0917 0.95 400 0.0149
S4 24.9726 0.95 400 0.0155
S5 34.8784 0.95 400 0.0141
S6 40.0000 0.95 400 0.0348
S7 0.00000 1.00 730 0.0689
S8 5.27050 1.00 730 0.0970
S9 15.0917 1.00 730 0.1194
S10 24.9726 1.00 730 0.1237
S11 34.8784 1.00 730 0.1130
S12 40.0000 1.00 730 0.2781
S13 0.00000 1.05 330 0.0086
S14 5.27050 1.05 330 0.0121
S15 15.0917 1.05 330 0.0149
S16 24.9726 1.05 330 0.0155
S17 34.8784 1.05 330 0.0141
S18 40.0000 1.05 330 0.0348

Table 16 shows the obtained results for the probabilistic multi-objective RPP using the generated
load-wind scenarios. As seen from Table 16, by applying the min-max method among the 15 generated
Pareto optimal solutions using the ε-constraint approach, the eighth solution (highlighted row) is
selected as the BCS. The associated value to expected active power losses is 8.5575 MW. It can be
observed that the expected Total VAR cost is considerably reduced, while the expected voltage stability
index and the expected loadability factor are not significantly improved towards Case B. In contrast
with Case A and the Base Case, both the expected voltage stability index and the expected loadability
factor are improved compared with case B. Considering the expected active power losses, no substantial
decrease is observed in Case C when it is compared with Case B. Compared with Cases A and C,
a reduction of about 1 MW in expected active power losses can be estimated. Due to enhancing the
expected loadability factor, the expected active power losses escalate relative to the Base Case.
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Table 16. Obtained Pareto optimal solutions for the probabilistic multi-objective RPP considering load
demand and wind power generation uncertainties.

χ f1($) f2 f3 F̂1 F̂2 F̂3 min(F̂1, F̂2, F̂3)

1 2.0134 × 105 0.1172 0.0011 1.0000 1.0000 0.0000 0.0000
2 2.1190 × 105 0.1224 0.0307 0.9718 0.9277 0.0717 0.0717
3 2.2563 × 105 0.1277 0.0607 0.9352 0.8555 0.1441 0.1441
4 2.4456 × 105 0.1330 0.0907 0.8847 0.7832 0.2165 0.2165
5 2.6724 × 105 0.1382 0.1207 0.8242 0.7110 0.2889 0.2889
6 2.9247 × 105 0.1435 0.1507 0.7569 0.6387 0.3614 0.3614
7 3.1866 × 105 0.1487 0.1807 0.6871 0.5667 0.4338 0.4338
8 3.4683 × 105 0.1539 0.2107 0.6119 0.4946 0.5062 0.4946
9 3.7578 × 105 0.1592 0.2407 0.5347 0.4224 0.5786 0.4224
10 4.0375 × 105 0.1644 0.2707 0.4601 0.3503 0.6511 0.3503
11 4.3143 × 105 0.1697 0.3007 0.3863 0.2782 0.7235 0.2782
12 4.6080 × 105 0.1749 0.3307 0.3079 0.2061 0.7959 0.2061
13 4.9207 × 105 0.1801 0.3607 0.2245 0.1351 0.8684 0.1351
14 5.2537 × 105 0.1850 0.3910 0.1357 0.0672 0.9414 0.0672
15 5.7623 × 105 0.1899 0.4153 0.0000 0.0000 1.0000 0.0000

The optimal values of the control variables among 18 generated load-wind scenarios for the BCS
are represented in Table 17. As it can be observed from Table 17, the VAR sources gain the value of
zero in most of the scenarios for the BCS. Hence, the fixed installation cost is calculated for the VAR
sources that gain the value of zero.

In order to investigate the impact of VAR planning in bus voltage magnitude over the different
load-wind scenarios, the voltage profile of load buses is plotted for each load-wind scenario in Figure 4.
This Figure shows that the voltage magnitude of the load buses is limited to the range of 0.95 p.u. and
1.05 p.u. for all scenarios. As a result, the voltage magnitude of the load buses is regulated within the
predefined limits.
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Table 17. The optimal values of the control variables for probabilistic multi-objective RPP considering load demand and wind power generation uncertainties.

Control
Variable

Vg1
(p.u.)

Vg2
(p.u.)

Vg5
(p.u.)

Vg8
(p.u.)

Vg11
(p.u.)

Vg13
(p.u.)

t6−9
(p.u.)

t6−10
(p.u.)

t4−12
(p.u.)

t28−27
(p.u.)

Qc24
(MVAR)

Qc25
(MVAR)

Qc26
(MVAR)

Qc29
(MVAR)

Qc30
(MVAR)

S1 1.0622 1.0530 1.0766 1.0534 1.1000 1.0868 1.0271 0.9000 1.0103 0.9522 0.0000 0.0000 0.0000 0.0000 0.0000
S2 1.0618 1.0528 1.0759 1.0539 1.1000 1.0854 1.0288 0.9000 1.0072 0.9563 0.0000 0.0000 0.0000 0.0000 1.1342
S3 1.0610 1.0525 1.0754 1.0545 1.1000 1.0849 1.0311 0.9000 1.0047 0.9555 0.0000 0.0000 0.0000 0.0000 1.1557
S4 1.0602 1.0521 1.0751 1.0545 1.1000 1.0846 1.0333 0.9000 1.0026 0.9546 0.0000 0.0000 0.0000 0.0000 1.1916
S5 1.0594 1.0518 1.0747 1.0547 1.1000 1.0846 1.0351 0.9000 1.0007 0.9541 0.0000 0.0000 0.0000 0.0000 1.3510
S6 1.0594 1.0517 1.0751 1.0545 1.1000 1.0856 1.0353 0.9000 1.0008 0.9532 0.0000 0.0000 0.0000 0.0000 1.4686
S7 1.0631 1.0532 1.0775 1.0529 1.1000 1.0884 1.0257 0.9000 1.0114 0.9569 0.0000 0.0000 0.0000 0.0000 1.6385
S8 1.0627 1.0530 1.0772 1.0530 1.1000 1.0881 1.0270 0.9000 1.0100 0.9558 0.0000 0.0000 0.0000 0.0000 1.4814
S9 1.0619 1.0526 1.0768 1.0533 1.1000 1.0874 1.0294 0.9000 1.0073 0.9551 0.0000 0.0000 0.0000 0.0000 1.5306
S10 1.0611 1.0523 1.0764 1.0536 1.1000 1.0870 1.0315 0.9000 1.0050 0.9540 0.0000 0.0000 0.0000 0.0000 1.5171
S11 1.0603 1.0519 1.0760 1.0538 1.1000 1.0869 1.0335 0.9000 1.0029 0.9534 0.0000 0.0000 0.0000 0.0000 1.6548
S12 1.0599 1.0518 1.0758 1.0540 1.1000 1.0868 1.0344 0.9000 1.0018 0.9535 0.0000 0.0000 0.0000 0.0000 1.8457
S13 1.0639 1.0533 1.0787 1.0521 1.1000 1.0910 1.0240 0.9000 1.0141 0.9575 0.0000 0.0000 0.0000 0.0000 2.2814
S14 1.0635 1.0531 1.0786 1.0521 1.1000 1.0908 1.0253 0.9000 1.0130 0.9555 0.0000 0.0000 0.0000 0.0000 1.8830
S15 1.0628 1.0528 1.0781 1.0524 1.1000 1.0901 1.0277 0.9000 1.0102 0.9544 0.0000 0.0000 0.0000 0.0000 1.8246
S16 1.0620 1.0524 1.0775 1.0527 1.1000 1.0895 1.0299 0.9000 1.0076 0.9544 0.0000 0.0000 0.0000 0.0000 2.0862
S17 1.0610 1.0518 1.0764 1.0527 1.1000 1.0905 1.0316 0.9000 1.0075 0.9524 0.0000 0.0000 0.0000 0.0000 1.9060
S18 1.0606 1.0515 1.0758 1.0528 1.1000 1.0910 1.0324 0.9000 1.0074 0.9518 0.0000 0.0000 0.0000 0.0000 1.9321

Expected Value 1.0611 1.0523 1.0764 1.0536 1.1000 1.0874 1.0314 0.9000 1.0053 0.9543 0.0000 0.0000 0.0000 0.0000 1.6427
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5.1.6. Case F: Probabilistic Multi-Objective RPP Considering Load Demand and Wind Power
Generation Uncertainties Incorporating Reactive Power from Wind Farms

In order to evaluate the impact of generated reactive power by wind farms on RPP, the reactive
power of wind farms is taken into account during the planning process. Assuming the constant PF
operation for the proposed wind farms, the generated reactive power is calculated for each scenario
based on Table 18. The value of PF for the proposed wind farms is taken to be 0.98. It should be
noted that the generated reactive power by the proposed wind farms is calculated using Equation (47),
as follows:

QWi,S = PWi,S tan
(
cos−1(PF)

)
(47)

where QWi,S and PWi,S indicate the generated reactive and active power by the proposed wind
farms, respectively.

Table 18. The characteristics of generated reactive power by the proposed wind farm for
different scenarios.

Scenario Wind Power Generation (MVAR)

S1 0.0000
S2 1.0702
S3 3.0645
S4 5.0709
S5 7.0824
S6 8.1223
S7 0.0000
S8 1.0702
S9 3.0645
S10 5.0709
S11 7.0824
S12 8.1223
S13 0.0000
S14 1.0702
S15 3.0645
S16 5.0709
S17 7.0824
S18 8.1223



Appl. Sci. 2020, 10, 2859 25 of 30

Similar to the former case studies, after performing the probabilistic multi-objective RPP
considering the reactive power injection by the proposed wind farms, 15 Pareto optimal solutions are
obtained, as shown in Table 19.

Table 19. Obtained Pareto optimal solutions for the probabilistic multi-objective RPP considering load
demand and wind power generation uncertainties incorporating the generated reactive power by the
proposed wind farms.

χ f1($) f2 f3
^
F1

^
F2

^
F3 min(

^
F1,

^
F2,

^
F3)

1 2.0015 × 105 0.1164 0.0010 1.0000 1.0000 0.0000 0.0000
2 2.1125 × 105 0.1215 0.0308 0.9706 0.9279 0.0719 0.0719
3 2.2251 × 105 0.1267 0.0608 0.9407 0.8559 0.1443 0.1443
4 2.4128 × 105 0.1319 0.0908 0.8910 0.7838 0.2167 0.2167
5 2.6295 × 105 0.1370 0.1208 0.8336 0.7118 0.2892 0.2892
6 2.8786 × 105 0.1422 0.1508 0.7676 0.6397 0.3616 0.3616
7 3.1517 × 105 0.1474 0.1808 0.6953 0.5677 0.4340 0.4340
8 3.4345 × 105 0.1525 0.2108 0.6203 0.4959 0.5064 0.4959
9 3.7331 × 105 0.1577 0.2408 0.5412 0.4240 0.5789 0.4240
10 4.0216 × 105 0.1629 0.2708 0.4648 0.3521 0.6513 0.3521
11 4.3098 × 105 0.1680 0.3008 0.3884 0.2802 0.7237 0.2802
12 4.6004 × 105 0.1732 0.3308 0.3115 0.2083 0.7961 0.2083
13 4.9099 × 105 0.1782 0.3609 0.2295 0.1377 0.8685 0.1377
14 5.2389 × 105 0.1831 0.3909 0.1423 0.0696 0.9410 0.0696
15 5.7760 × 105 0.1881 0.4153 0.0000 0.0000 1.0000 0.0000

From Table 19, it is clear that for the BCS, all the objectives are slightly improved towards Case
E. Although this enhancement does not seem to be significant, it shows the penetration of generated
reactive power by the proposed wind farms on planning studies. Moreover, the related active power
loss reaches 8.4807 MW, which shows a reduction with respect to Case E. The optimal values of the
control variables among 18 generated load-wind scenarios incorporating the generated reactive power
by the proposed wind farms for the BCS are represented in Table 20.
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Table 20. The optimal values of the control variables for probabilistic multi-objective RPP considering load demand and wind power generation uncertainties
incorporating the generated reactive power by the proposed wind farms.

Control
Variable

Vg1
(p.u.)

Vg2
(p.u.)

Vg5
(p.u.)

Vg8
(p.u.)

Vg11
(p.u.)

Vg13
(p.u.)

t6−9
(p.u.)

t6−10
(p.u.)

t4−12
(p.u.)

t28−27
(p.u.)

Qc24
(MVAR)

Qc25
(MVAR)

Qc26
(MVAR)

Qc29
(MVAR)

Qc30
(MVAR)

S1 1.0622 1.0530 1.0766 1.0534 1.1000 1.0868 1.0271 0.9000 1.0103 0.9522 0.0000 0.0000 0.0000 0.0000 0.0000
S2 1.0618 1.0528 1.0757 1.0541 1.1000 1.0845 1.0301 0.9000 1.0063 0.9568 0.0000 0.0000 0.0000 0.0000 1.0974
S3 1.0609 1.0524 1.0748 1.0547 1.1000 1.0821 1.0350 0.9000 1.0020 0.9570 0.0000 0.0000 0.0000 0.0000 1.0878
S4 1.0601 1.0521 1.0739 1.0553 1.1000 1.0800 1.0397 0.9000 0.9980 0.9572 0.0000 0.0000 0.0000 0.0000 1.1175
S5 1.0594 1.0517 1.0732 1.0559 1.1000 1.0782 1.0441 0.9000 0.9945 0.9576 0.0000 0.0000 0.0000 0.0000 1.2400
S6 1.0593 1.0516 1.0732 1.0558 1.1000 1.0782 1.0458 0.9000 0.9936 0.9576 0.0000 0.0000 0.0000 0.0000 1.4022
S7 1.0631 1.0531 1.0773 1.0530 1.1000 1.0881 1.0258 0.9000 1.0109 0.9584 0.0000 0.0000 0.0000 0.0000 2.0174
S8 1.0627 1.0530 1.0770 1.0532 1.1000 1.0871 1.0284 0.9000 1.0090 0.9563 0.0000 0.0000 0.0000 0.0000 1.4457
S9 1.0619 1.0526 1.0761 1.0538 1.1000 1.0846 1.0333 0.9000 1.0045 0.9565 0.0000 0.0000 0.0000 0.0000 1.4365
S10 1.0611 1.0522 1.0753 1.0544 1.1000 1.0824 1.0380 0.9000 1.0005 0.9565 0.0000 0.0000 0.0000 0.0000 1.3856
S11 1.0603 1.0519 1.0744 1.0550 1.1000 1.0805 1.0425 0.9000 0.9967 0.9569 0.0000 0.0000 0.0000 0.0000 1.4942
S12 1.0598 1.0517 1.0740 1.0553 1.1000 1.0795 1.0447 0.9000 0.9948 0.9572 0.0000 0.0000 0.0000 0.0000 1.5764
S13 1.0639 1.0533 1.0787 1.0521 1.1000 1.0910 1.0240 0.9000 1.0141 0.9574 0.0000 0.0000 0.0000 0.0000 2.2599
S14 1.0635 1.0531 1.0783 1.0523 1.1000 1.0898 1.0266 0.9000 1.0120 0.9559 0.0000 0.0000 0.0000 0.0000 1.8262
S15 1.0628 1.0527 1.0774 1.0529 1.1000 1.0872 1.0315 0.9000 1.0073 0.9559 0.0000 0.0000 0.0000 0.0000 1.7669
S16 1.0620 1.0524 1.0766 1.0535 1.1000 1.0849 1.0363 0.9000 1.0030 0.9561 0.0000 0.0000 0.0000 0.0000 1.7580
S17 1.0612 1.0520 1.0758 1.0541 1.1000 1.0828 1.0408 0.9000 0.9990 0.9564 0.0000 0.0000 0.0000 0.0000 1.8356
S18 1.0608 1.0518 1.0754 1.0544 1.1000 1.0819 1.0431 0.9000 0.9971 0.9566 0.0000 0.0000 0.0000 0.0000 1.9071

Expected Value 1.0610 1.0522 1.0753 1.0544 1.1000 1.0826 1.0380 0.9000 1.0006 0.9569 0.0000 0.0000 0.0000 0.0000 1.5296
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It can be inferred from Table 3 that in almost all scenarios, the VAR sources gain the value of zero,
except for the installed VAR compensator at bus 30. In addition, it is revealed that the expected value
of the required VAR compensator device at bus 30 reduces while the generated reactive power of the
hypothetical wind farms is taken into account. As a result, wind farms have the capability to participate
in VAR planning. This leads to a reduction in the size and amount of VAR sources. Therefore, practical
power systems show less desire to install new VAR support while numerous large-scale wind farms
with sufficient generated reactive power are available.

5.2. Discussions

Table 21 compares the performance of Case E with other cases. As it can be observed, compared
with Case B, the performance of Case E in terms of obtaining better values for f1, f2, and Ploss is
improved. Case E also shows better performance rather than Case C. All objectives are improved
considerably compared with Case C. Note that, due to the presence of wind farms, f2 is enhanced,
while improving on the loadability index. In addition, Case E is compared with Case D, and it can be
observed that all objectives are improved. f1 is improved significantly. However, f2, f3, and Ploss are
not enhanced considerably. This is due to the fact that wind power generation uncertainty has a great
impact on all objectives, which in both Case E and Case D are considered. While, the performance of
Case F is better than Case E considering f1, f2, and Ploss, and is slightly more than f3.

Table 21. Comparison of different cases.

Case f1($) f2 f3 Ploss (MW)

B 4.9361 × 106 0.1533 0.1653 9.3494
C 2.2510 × 106 0.1606 0.1688 9.5049
D 7.5741 × 105 0.1570 0.2100 8.5777
E 3.4683 × 105 0.1539 0.2107 8.5575
F 3.4345 × 105 0.1525 0.2108 8.4807

6. Conclusions

A multi-objective RPP in power systems considering load demand and wind power generation
uncertainties to minimize reactive power investment cost, reduce active power losses, improve voltage
stability level, and enhance loadability factor is presented in this paper. The ε-Constraint method
is used to solve the probabilistic multi-objective RPP. For this purpose, using the L-index, the VAR
compensation buses are found at the first stage. Then, to distinguish the exact difference between the
deterministic and probabilistic VAR planning studies, five different cases are investigated. In order
to test the efficiency of the proposed method, the IEEE 30-bus test system is implemented in GAMS
software under five various conditions. The simulation results show that the proposed probabilistic
multi-objective RPP considering load demand and wind power generation uncertainties is effective in
reducing the VAR installation cost, improving the voltage stability of the system, and enhancing the
loadability, simultaneously.
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Appendix A

Table A1. Parameters of the wind farm.

Parameter Value

α 2
β 10

vc
in 3 m/s

vrated 10.28 m/s
vc

out 25 m/s
Pr

w 40 MW
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