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Abstract: In the present paper, we numerically simulate fractional-order model of the Bloch equation
by using the Jacobi polynomials. It arises in chemistry, physics and nuclear magnetic resonance
(NMR). It also arises in magnetic resonance imaging (MRI) and electron spin resonance (ESR). It is
used for purity determination, provided that the molecular weight and structure of the compound
is known. It can also be used for structural determination. By the study of NMR, chemists can
determine the structure of many compounds. The obtained numerical results are compared and
simulated with the known solutions. Accuracy of the proposed method is shown by providing tables
for absolute errors and root mean square errors. Different orders of the time-fractional derivatives
results are illustrated by using figures.

Keywords: fractional-order Bloch equation; nuclear magnetic resonance (NMR); magnetic resonance
imaging (MRI); electron spin resonance (ESR); Jacobi polynomials

1. Introduction

The Bloch equation is a system of differential equations. It is mainly valuable for studying
expensive biological samples like RNA, DNA, proteins and nucleic acids. It has many real-life
applications like process control, liquid media, petrochemical plants and process optimization in oil
refineries. Surface magnetic resonance is based on the principle of NMR, and the measurements can be
used to indirectly estimate the water content of the saturated and unsaturated zones. The standard
system of Bloch equations is given as follows:

dNx(t)
dt = w0Ny(t) −

Nx(t)
T2

dNy(t)
dt = w0Nx(t) −

Ny(t)
T2

(1)

dNz(t)
dt

=
N0 −Nz(t)

T1
,

with the initial conditions Nx(0) = a1, Ny(0) = a2 and Nz(0) = a3.
Here Nx(t), Ny(t) and Nz(t) denote the system magnetisation in x, y and z components,

respectively; w0 is the resonant frequency given by the Larmor relationship w0 = γM0, where
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M0 is the static magnetic field in z−component, N0 is the equilibrium magnetisation, T1 and T2

are the spin-lattice and spin-spin relaxation time, respectively, and a1, a2 and a3 are real constants.
The analytical solution of Equation (1) is given by

Nx(t) = e−
t

T2
(
Nx(0) cos w0t + Ny(0) sin w0t

)
Ny(t) = e−

t
T2

(
Ny(0) cos w0t−Nx(0) sin w0t

) (2)

Nz(t) = Nz(0)e
−

t
T1 + N0

(
1− e−

t
T1

)
Real-life applications of fractional calculus are in subjects like biology [1], viscoelasticity [2–4],

signal processing [5], control theory [6], fluid dynamics [7]. For more details, the reader should refer
to [8]. There are many magnetic resonance systems which are modelled by the fractional-order Bloch
equation, and it is well known that the fractional-order derivatives are non-local in nature. Therefore,
we will replace the integer-order Bloch equation by the fractional-order Bloch equation with a view to
further understand the resulting magnetic resonance systems. Therefore, we replace the integer-order
time-derivative by the non-integer- order time-derivative:

dαNx(t)
dtα = w0Ny(t) −

Nx(t)
T2

dβNy(t)
dtβ

= w0Nx(t) −
Ny(t)

T2

(3)

dγNz(t)
dtγ

=
N0 −Nz(t)

T1
,

where 0 < α, β,γ ≤ 1.
The non-integer-order derivative is in the Liouville–Caputo (LC) sense. The LC non-integer-order

derivative of order β is defined as follows [8]:

Dβ f (x) = Il−βDl f (x) =
1

Γ(l− β)

∫ x

0
(x− t)l−β−1 dl

dtl
f (t)dt, l− 1 < β < l, x > 0.

In this paper, we are considering that β ∈ (0, 1); therefore, we will take l = 1. The time-fractional
derivatives play a key role upsetting the spin dynamics defined by the Bloch equations in Equation (3)
(see [9,10]). The magnetic resonance components of the magnetisation are identified in the initial
state of the system, and hence, these should be visibly predictable. The physical meaning of the
non-integer order Bloch equations can be understood in the basic preparation of the non-integer-order
Schrödinger equation.

Bloch equations in NMR can be simulated numerically and analytically (see, for details, [11–16]).
The time-fractional order Bloch equation having fractional derivative in Caputo sense is solved in [17].
Recently, Kumar et al. [18] solved fractional-order Bloch equation by using homotopy perturbation
method (HPM). Use has been made of operational matrix method with Legendre polynomials in [19]
and with the Laguerre polynomials in [20] for the solution of this equation. In [21], this equation
was solved numerically by using the iterative method. Furthermore, in [22], by using numerical
approximation, a special class of this equation, namely the fuzzy time-fractional Bloch equation,
was solved. In this paper we propose to solve the fractional-order Bloch equation by using the
Jacobi polynomials. Some developments on orthogonal approximations can be found in [23–30].
Some introductory overview and recent development of fractional calculus can be seen in [31]. In this
method, we get unknown coefficients for the approximated parameter in the model and, by the use of
these coefficients, we obtain approximate solutions of the fractional-order Bloch equation in NMR.
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2. Preliminaries

The Jacobi polynomial of degree i on [0, 1] is given by [28]

σi(t) =
i∑

k=0

(−1)i−k Γ(i + b + 1)Γ(i + k + a + b + 1)
Γ(k + b + 1)Γ(i + a + b + 1)(i− k)!k!

tk (4)

The orthogonal property of the Jacobi polynomials with respect to the weight function w(a,b)(t) =
(1− t)atb is given by ∫ 1

0
σn(t)σm(t)w(a,b)(t)dt = va,b

n δmn (5)

where δmn is Kronecker delta function and

va,b
n =

Γ(n + a + 1)Γ(n + b + 1)
(2n + a + b + 1)n!Γ(n + a + b + 1)

(6)

A function f ∈ L2[0, 1], with
∣∣∣ f ′′ (t)∣∣∣ ≤ Q, can be expanded as follows:

f (t) = lim
n→∞

n∑
i=0

ciσi(t), (7)

where ci =
1

va, b
i

∫ 1
0 σi(t) f (t)w(a,b)(t)dt.

Equation (7), for finite dimensional approximation, is written in the following form:

f �
m∑

i=0

ciσi(t) = CTqm(t), (8)

where C and qm(t) are (m + 1)× 1 matrices given by C = [c0, c1, . . . ., cm]
T and qm(t) = [σ0, σ1, . . . ., σm]

T.

Theorem 1. If qn(t) = [σ0, σ1, . . . ., σn]
T denotes the shifted Jacobi vector and if v > 0, then Ivσi(t) = I(v)qn(t),

where I(v) = (u(i, j)), is the (n + 1) × (n + 1) operational matrix of fractional integral of order v, and its
(i, j)th entry is given by

u(i, j) =
i∑

k=0

j∑
l=0

(−1)i+ j−k−l Γ(a + 1)Γ(i + b + 1)Γ(i + k + a + b + 1)Γ( j + l + a + b + 1)Γ(v + k + l + a + b + 1)(2 j + a + b + 1) j!
(i− k)!( j− l)!(l)! Γ(k + b + 1)Γ(i + a + b + 1)Γ(v + k + 1)Γ( j + a + 1)Γ(l + b + 1)Γ(k + l + v + a + b + 1)

(9)

Proof. Please see [28]. �

3. Construction of Algorithm

In this section, we construct an algorithm to get the approximate solution of the Bloch equation.
Using this algorithm, we can then obtain magnetisation in each direction.

Let us take the following approximations:

dαNx(t)
dtα

= CT
1 q(t),

dβNy(t)

dtβ
= CT

2 q(t),
dγNz(t)

dtγ
= CT

3 q(t), (10)

and
Nx(0) = LTq(t), Ny(0) = MTq(t), Nz(0) = NTq(t),

N0

T1
= OTq(t). (11)
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From Equations (10) and (11), we can write

Nx(t) = CT
1 I(α)q(t) + LTq(t), (12)

Ny(t) = CT
2 I(β)q(t) + MTq(t), (13)

Nz(t) = CT
3 I(γ)q(t) + NTq(t) (14)

Using Equations (10), (12), (13) and (14) in Equation (3), we get

CT
1

(
I +

1
T2

I(α)
)
−w0CT

2 I(β) = w0MT
−

1
T2

LT (15)

w0CT
1 I(α) + CT

2

(
I +

1
T2

I(β)
)
= −w0LT

−
1

T2
MT (16)

CT
3

(
I +

1
T1

I(γ)
)
= OT

−
1

T1
NT (17)

where I(α), I(β) and I(γ) are the operational matrices of non-integer-order integration of order α, β and γ,
respectively. Here I is an identity matrix.

The simpler form for Equations (15)–(17) is given as follows:

CT
1 W1 −CT

2 W5 = G1, (18)

CT
1 W4 + CT

2 W2 = G2, (19)

CT
3 W3 = G3, (20)

where
W1 = I +

1
T2

I(α), (21)

W2 = I +
1

T2
I(β), (22)

W3 = I +
1

T1
I(γ), (23)

W4 = w0I(α), (24)

W5 = w0I(β), (25)

G1 = w0MT
−

1
T2

LT, (26)

G2 = −w0LT
−

1
T2

MT, (27)

G3 = OT
−

1
T1

NT (28)

The matrices W1, W2, W3, W4, W5, G1, G2 and G3 are given in terms of known values, so these
matrices are known matrices.

On solving Equations (18)–(20), we get

CT
1 =

(
G1W−1

5 + G2W−1
2

)(
W1W−1

5 + W4W−1
2

)−1
, (29)

CT
2 =

{(
G1W−1

5 + G2W−1
2

)(
W1W−1

5 + W4W−1
2

)−1
W1 −G1

}
W−1

5 , (30)

CT
3 = G3W−1

3 (31)



Appl. Sci. 2020, 10, 2850 5 of 18

Using Equations (29)–(31) in Equations (12)–(14), respectively, we get the system magnetisation
Nx(t), Ny(t) and Nz(t) for Bloch equations in NMR.

4. Convergence Analysis

Theorem 2. If dαNx
dtα εC(m+1)[0, 1] and Rm

(
dαNx
dtα

)
are the mth approximations of dαNx

dtα by using Pm(t) =

span
{
σ0(t), σ1(t), . . . ., σm(t)

}
, then lim

m→∞
‖

dαNx
dtα −Rm

(
dαNx
dtα

)
‖w(a,b) → 0 .

Proof. Since dαNx
dtα εC(m+1)[0, 1], so the Taylor polynomial of dαNx

dtα at t = 0 is given as follows:

M1(t) =
(

dαNx

dtα

)
t=0

+

(
dαNx

dtα

)′
t=0

t + . . .+

(
dαNx

dtα

)m

t=0

tm

m!
. (32)

The upper bound of the error of the Taylor polynomial is given by∣∣∣∣∣dαNx

dtα
−M1(t)

∣∣∣∣∣ ≤ Ktm+1

(m + 1)!
, (33)

where

K = max
t∈[0,1]

∣∣∣∣∣∣∣
(

dαNx

dtα

)m+1

(t)

∣∣∣∣∣∣∣ (34)

Since Rm
(

dαNx
dtα

)
and M1 ∈ Pm, we have∥∥∥∥∥ dαNx

dtα −Rm
(

dαNx
dtα

)∥∥∥∥2

w(a,b)
≤

∥∥∥∥∥ dαNx
dtα −M1‖

2
w(a,b) ,

≤

(
K

(m+1)!

)2 ∫ 1
0 t2m+2+b(1− t)adt,

=
(

K
(m+1)!

)2
(1+a)(3+2m+b)
(4+2m+a+b) ,∥∥∥∥∥ dαNx

dtα −Rm
(

dαNx
dtα

)∥∥∥∥
w(a,b)

≤
K

(m+1)!

√
(1+a)(3+2m+b)
(4+2m+a+b)

(35)

Taking m→∞ in Equation (35), we get

lim
m→∞

∥∥∥∥dαNx

dtα
−Rm

(
dαNx

dtα

)∥∥∥∥∥∥
w(a,b)

→ 0. �

5. Numerical Results and Discussion

In this section, we will numerically simulate our results with known results. For each numerical
simulation, we will consider i. c. Nx(0) = 0, Ny(0) = 100 and Nz(0) = 0. In Figures 1 and 2,
we have presented 3D and 2D plots of the numerical solutions of the Bloch equation for integer
order, respectively. These figures show the dynamics of Nx, Ny and Nz for integer-order relaxation.
In Figure 1, the entire trajectory of magnetisation is shown in 3D for integer order starting at i. c.(
Nx(0), Ny(0), Nz(0)

)
and returning to N0. From Figure 2, it is clear that the magnetisation Nx in

x−direction increases with time, and the magnetisation Ny in y−direction decreases with time.
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In Figures 3 and 4, we have presented 3D and 2D plots of the numerical solutions of the Bloch 
equation for fractional order (𝛼 = 𝛽 = 𝛾 = 0.9), respectively. These figures show the dynamics of 𝑁 , 𝑁  and 𝑁  for fractional-order relaxation. In Figure 3, the entire trajectory of magnetisation is 
shown in 3D for fractional order (𝛼 = 𝛽 = 𝛾 = 0.9)  starting at i. c. 𝑁 (0), 𝑁 (0), 𝑁 (0)  and 
returning to 𝑁 . From Figure 4, it is clear that the magnetisation 𝑁  in 𝑥 −direction increases with 
time, and the magnetisation 𝑁  in 𝑦 −direction decreases with time. 

Figure 1. Numerical solutions of the Bloch equation with parameters: α = β = γ = 1, w0 = 12, T1 = 1,
T2 = 20, a = 1, b = 1.
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Figure 2. Numerical solutions of the Bloch equation in plane
(
Nx vs. Ny

)
with parameters: α = β =

γ = 1, w0 = 12, T1 = 1, T2 = 20, a = 1, b = 1.

In Figures 3 and 4, we have presented 3D and 2D plots of the numerical solutions of the Bloch
equation for fractional order (α = β = γ = 0.9), respectively. These figures show the dynamics of
Nx, Ny and Nz for fractional-order relaxation. In Figure 3, the entire trajectory of magnetisation is
shown in 3D for fractional order (α = β = γ = 0.9) starting at i. c.

(
Nx(0), Ny(0), Nz(0)

)
and returning

to N0. From Figure 4, it is clear that the magnetisation Nx in x−direction increases with time, and the
magnetisation Ny in y−direction decreases with time.
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T1 = 1, T2 = 20, a = 1, b = 1.
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Figure 4. Numerical solutions of the Bloch equation in the plane
(
Nx vs. Ny

)
with parameters:

α = β = γ = 0.9, w0 = 12, T1 = 1, T2 = 20, a = 1, b = 1.

In Figures 5 and 6, we have presented the 3D and 2D plots of the numerical solutions of the Bloch
equation for fractional order (α = β = γ = 0.8), respectively. These figures show the dynamics of
Nx, Ny and Nz for the fractional-order relaxation. In Figure 5, the entire trajectory of magnetisation is
shown in 3D for fractional order (α = β = γ = 0.8) starting at i. c.

(
Nx(0), Ny(0), Nz(0)

)
and returning

to N0. From Figure 6, it is clear that the magnetisation Nx in x−direction increases with time, and the
magnetisation Ny in y−direction decreases with time.
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Figure 6. Numerical solutions of the Bloch equation in the plane
(
Nx vs. Ny

)
with parameters:

α = β = γ = 0.8, w0 = 12, T1 = 1, T2 = 20, a = 1, b = 1.

In Figures 7 and 8, we have presented the 3D and 2D plots of the numerical solutions of the Bloch
equation for fractional order (α = β = γ = 0.7), respectively. These figures show the dynamics of
Nx, Ny and Nz for the fractional-order relaxation. In Figure 7, the entire trajectory of magnetisation
is shown in 3D for fractional order (α = β = γ = 0.7) with the starting initially

(
Nx(0), Ny(0), Nz(0)

)
and returning to N0. From Figure 8, it is clear that the magnetisation Nx in x−direction increases with
time, and the magnetisation Ny in y−direction decreases with time.
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Figure 8. Numerical solutions of the Bloch equation in the plane
(
Nx vs. Ny

)
with parameters:

α = β = γ = 0.7, w0 = 12, T1 = 1, T2 = 20, a = 1, b = 1.

In Figures 9 and 10, we have presented the 3D and 2D plots of the numerical solutions of the
Bloch equation for fractional order (α = 1.0, β = 0.9, γ = 0.8), respectively. These figures show
the dynamics of Nx, Ny and Nz for the fractional-order relaxation. In Figure 9, the entire trajectory
of magnetisation is shown in 3D for fractional order (α = 1.0, β = 0.9, γ = 0.8) starting at i. c.(
Nx(0), Ny(0), Nz(0)

)
and returning to N0. From Figure 10, it is clear that the magnetisation Nx in

x−direction increases with time, and the magnetisation Ny in y−direction decreases with time.
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Figure 10. Numerical solutions of the Bloch equation in the plane
(
Nx vs. Ny

)
with parameters:

α = 1.0, β = 0.9, γ = 0.8, w0 = 12, T1 = 1, T2 = 20, a = 1, b = 1.

In Figures 11 and 12 we have presented 3D and 2D plots of numerical solutions of Bloch equation
for fractional order (α = 0.9, β = 0.9, γ = 1.0), respectively. These figures show the dynamic of
Nx, Ny and Nz for fractional order relaxation. In Figure 11, the entire trajectory of magnetisation is
shown in 3D for fractional order (α = 0.9, β = 0.9, γ = 1.0) starting at i.c.

(
Nx(0), Ny(0), Nz(0)

)
and

returning to N0. From Figure 12, it is clear that the magnetisation Nx in x−direction increases with
time, and the magnetisation Ny in y−direction decreases with time.
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Figure 12. Numerical solutions of the Bloch equation in the plane

(
Nx vs. Ny

)
with parameters:

α = 0.9, β = 0.9, γ = 1, w0 = 12, T1 = 1, T2 = 20, a = 1, b = 1.

In Figures 13 and 14, we have presented the 3D and 2D plots of the numerical solutions of the
Bloch equation for fractional order (α = 1.0, β = 1.0, γ = 0.9), respectively. These figures show the
dynamics of Nx, Ny and Nz for the fractional-order relaxation. In Figure 13, the entire trajectory of
magnetisation is shown in 3D for fractional order (α = 1.0, β = 1.0, γ = 0.9) starting at the initial
level

(
Nx(0), Ny(0), Nz(0)

)
and returning to N0. From Figure 14, it is clear that the magnetisation Nx in

x−direction increases with time, and the magnetisation Ny in y−direction decreases with time.
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Figure 14. Numerical solutions of the Bloch equation in the plane
(
Nx vs. Ny

)
with parameters:

α = 1, β = 1, γ = 0.9, w0 = 12, T1 = 1, T2 = 20, a = 1, b = 1.

In Figures 15 and 16, we have shown the numerical simulation of analytical and numerical
solutions of the Bloch equation for Nx(t) and Ny(t) for integer order, respectively. From Figure 16, it is
clear that the solution has periodic behaviour at low frequency. This solution varies periodically for
Nx(t) and Ny(t) at low frequency.
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α = β = γ = 1, w0 = 14, T1 = 1, T2 = 20, a = 0.9, b = 0.9.
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Figure 16. Numerical simulation of solutions of the Bloch equation for Ny(t) with parameters:
α = β = γ = 1, w0 = 14, T1 = 1, T2 = 20, a = 0.9, b = 0.9.

In Figures 17–19, we have shown the absolute errors for Nx(t), Ny(t) and Nz(t), respectively,
at different values of m = 3, 6 and 9. In Figures 17–19, the absolute errors are denoted by E1, E2

and E3 for m = 3, 6 and 9, respectively. In all these figures, E2 and E3 are multiplied by 104 and
105, respectively.
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parameters: 𝑤 = 1, 𝑇 = 1, 𝑇 = 20, 𝑎 = 1, 𝑏 = 1. 

Figure 19. Errors for Nz(t) at m = 3, 6 and 9, with parameters: α = β = γ = 1, w0 = 1, T1 = 1,
T2 = 20, a = 1, b = 1.

From these figures, we can see that the errors decrease with the increase of m. In Figures 20–22,
we have shown the behaviour of the solutions of Nx(t), Ny(t) and Nz(t) at different values of
α, β and γ, respectively. In Figures 20–22, exact solution means the analytical solution for integer
order (α = β = γ = 1) Bloch equation as given by Equation (2).
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Figure 20. Behaviour of the approximate solution of Nx(t) atα = 0.6, 0.7, 0.8, 0.9 and 1, with parameters:
w0 = 1, T1 = 1, T2 = 20, a = 1, b = 1.
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Figure 21. Behaviour of the approximate solution of Ny(t) at β = 0.6, 0.7 , 0.8, 0.9 and 1, with parameters:
w0 = 1, T1 = 1, T2 = 20, a = 1, b = 1.
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Figure 22. Behaviour of the approximate solution of Nz(t) atγ = 0.6, 0.7, 0.8, 0.9 and 1, with parameters:
w0 = 1, T1 = 1, T2 = 20, a = 1, b = 1.

From these figures it is clear that the solution varies consistently from non-integer order to
integer order.

In Table 1, we have listed the maximum absolute errors (l∞) and the root-mean-square errors
(l2) for two different values of m = 4 and 8 at α = β = γ = 1, w0 = 1, T1 = 1, T2 = 20, a = b = 0.8.
We have calculated these errors for integer order by taking the exact solution as given by Equation (2).
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Table 1. Comparison of (l∞) and (l2) errors at a = b = 0.8, m = 5, 8 for integer order solution.

Ni(t)
m = 5

l∞-Error
l2-Error

m = 8
l∞-Error
l2-Error

Nx(t)
2.0349 × 10−4 4.2101 × 10−8

5.7209 × 10−6 9.2050 × 10−10

Ny(t)
1.9648 × 10−4 6.2953 × 10−10

5.5559 × 10−6 6.2953 × 10−10

Nz(t)
1.7733 × 10−6 5.7426 × 10−10

5.0010 × 10−8 6.8075 × 10−12

From Table 1, it is detected that the errors decrease with the increase of m.

6. Conclusions and Future Scope

In this paper, we have presented the numerical solution and the simulation for fractional-order
and integer-order Bloch equations. Mathematical model for NMR allows us to explore and define
magnetisation for spin dynamics at resonance frequency in a static magnetic field. Implementation of
our proposed technique is easy in comparison to the existing methods because the operational matrices
are easy to construct. The numerical section shows how the solution given by the used technique varies
consistently at different values of non-integer-order time-derivatives. Moreover, for integer order,
the solution by the used technique is identical to the exact solution for the Bloch equation. The error
table shows the accuracy of the proposed method. For future work, we can construct operational
matrices for different polynomials in order to attain better exactness.
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