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Abstract: This paper presents a robust damage identification scheme in which damage is predicted
by solving the cross-modal strain energy (CMSE) linear system of equations. This study aims to
address the excessive equations issue faced in the assemblage of the CMSE system. A sensitivity index
that, to some extent, measures how the actual damage level vector satisfies each CMSE equation,
is derived by performing an analysis of the defined residual’s sensitivity to damage. The index
can be used to eliminate redundant equations and enhance the robustness of the CMSE system.
Moreover, to circumvent a potentially ill-conditioned problem, a previously published iterative
Tikhonov regularization method is adopted to solve the CMSE system. Some improvements to this
method for determining the iterative regularization parameter and regularization operator are given.
The numerical robustness of the proposed damage identification scheme against measurement noise
is proved by analyzing a 2-D truss structure. The effects of location and extent of damage on the
damage identification results are investigated. Furthermore, the feasibility of the proposed scheme
for damage identification is experimentally validated on a beam structure.

Keywords: noise robustness; sensitivity analysis; cross-modal strain energy; damage detection

1. Introduction

Structural damage identification is a fundamental element of structural health monitoring (SHM)
that has become a vital tool in maintaining the safety and integrity of structures [1–7]. Research on
vibration-based damage identification has been rapidly expanding over recent decades. The basic
idea behind this technology is that modal parameters (notably frequencies, mode shapes, and modal
damping) are functions of the physical properties of the structure. Therefore, changes in the physical
properties (such as stiffness reduction caused by damage) will cause detectable changes in the modal
properties. Conversely, these changes can be used to reflect damage.

Vibration-based structural damage identification can be formulated as a linear inverse
problem [8–12], which requires the determination of the unknown input (i.e., structural damage)
to a linear system from the known output (i.e., extracted modal parameters from the vibration
measurements of the structure). The discretization of the linear inverse problem [12,13] typically gives
rise to the linear system of equations with a very ill-conditioned matrix C∗ [14],

C∗α = b∗, C∗ ∈ RNq×Nd , α ∈ RNd , b∗ ∈ RNq , (1)

where the coefficient matrix C∗ and the right-hand side vector b∗ are both assembled by the identified
modal parameters and will be given in Equation (16); α is the unknown damage level vector to be
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solved, whose definition will be given in Equation (13); and the superscript “*” indicates a damaged
version of physical or modal parameters. In other words, these parameters are dependent on α; and
Nq and Nd are the number of linear equations in the system and the potentially damaged elements,
respectively. Usually, Nq ≥ Nd is required to ensure that the linear system of equations has a unique
solution. In general, the computation of a meaningful approximate solution of the linear system requires
that the system be replaced by a nearby system that is less sensitive to perturbations. This replacement
is referred to as regularization. Tikhonov regularization is one of the most popular regularization
techniques that can damp out the small measurement errors and single out a relatively accurate
solution [15]. So far, it has been widely applied to damage detection [16–18] and other related research,
such as model updating [19,20] and load identification [21]. Björck [22] gave a general form of Tikhonov
regularization as follows: (

C∗TC∗ + ξ2LTL
)
α = C∗Tb∗ (2)

where ξ2 and L are the regularization parameter and the regularization operator, respectively. Then,
the solution α of Equation (2) satisfies the minimization problem

min
α∈RNd

{‖C∗α− b∗‖2 + ξ2
‖Lα‖2} (3)

Here and below, ‖·‖ denotes the Euclidean norm. The determination of a suitable value of
ξ2 and L is an important task. In many previously developed methods, ξ2 is selected using an
L-curve criterion [12,15] or the generalized cross-validation method [20,23], but both methods are
time-consuming computational tasks. Besides, the regularization parameter L is usually selected
as an identity operator and thus leads to over-smoothing of the solution, which goes against the
sparse feature of isolated damage at the early stage of structural deterioration [18]. Wang et al. [24]
proposed the iterative Tikhonov regularization (ITR) method specialized for the identification of the
isolated damage to structures. The method has some advantages, including the incorporation of an
adaptive strategy to simultaneously determine ξ2 and L. Additionally, the ITR method shows good
convergence behavior.

Over the past decades, numerous techniques for damage identification have been reported. Carden
and Fanning [25] gave a review of vibration-based condition monitoring that revealed numerous and
diverse algorithms using data in the time, frequency, and modal domains. Yan et al. [26] presented
a general summary of the state-of-art of intelligent algorithms, and their application prospects in
structural damage identification were introduced. Among many reviews of the existing literature
concerning damage identification methods, Fan and Qiao [27] dealt in particular with the subset of
methods related to variations in basic modal properties. Changes or lack of smoothness in mode shape
or mode shape curvature, analysis of dynamically measured flexibility, and updating of structural
model parameters provide different examples of this family of methods. Dessi and Camerlengo [28]
also focused on technique processing information about mode shape curvature or strain modes with or
without knowledge of baseline data. The general modal strain energy (MSE), as an extension of mode
shape analysis, is widely appreciated because of its excellent damage-sensitive features [29,30]. It is
formed by the product of the stiffness matrix and the second power of mode shape:

P∗j,n = (φ∗j)
TK∗nφ

∗

j

(
j = 1, 2, · · · , N j

)
(4)

where N j is the number of measured modes; φ∗j and K∗n are the j-th mode shape and the n-th stiffness
submatrix of the damaged structure, respectively; and P∗j,n is the MSE of the n-th damaged structural
element associated with the j-th measured mode. When damage occurs, the distribution of strain
energy originally stored in the structure will change in a more pronounced manner in the detected areas.
Therefore, changes in the modal strain energy distributions of the healthy and damaged structures can
be used to detect the existence, location, and extent of the damage. A review of MSE-based methods
was given by Wang and Xu [29], and will not be discussed here.
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In this study, a special MSE method named the CMSE method, proposed by Hu et al. [10] and
later improved by Wang et al. [31], is used for damage detection. The adjective “cross” here indicates
that MSE-like terms are product terms extending over the baseline finite element model (FEM) of the
healthy structure and the measured damaged structure, also extending over various modes. The CMSE
is defined as

C∗m,n = (φi)
TKnφ∗j

(
i = 1, 2, · · · , Ni, j = 1, 2, · · · , N j

)
(5)

whereφi and Kn are the i-th analytical mode shape and the n-th stiffness submatrix of the baseline FEM,
respectively, and Ni is the number of analytical modes. In practice, it is easy to obtain the analytical
modes of the baseline FEM, but difficult or expensive to extract the measured modes of the damaged
structure [10]; therefore, one may select a much larger Ni than N j, i.e., Ni � N j.

It is clear that the CMSE does not require matching modes between the healthy and damaged
structures, and thus has more available mode combinations (MCs) than the general MSE, i.e., Ni ×N j �

N j. Like many other damage identification techniques, the CMSE method can establish a linear system
of the same number of equations as the available measured mode or MCs. Therefore, a distinct
advantage of this method is that it breaks through the constraint that the number of available measured
modes is smaller than that of actual damages, i.e., N j < Nd. It further raises the possibility that one can
assume all Ne (Ne ≥ Nd) structural elements are damaged in case of omitting any actual damage only
if sufficient equations

(
Ni ×N j ≥ Ne

)
are constructed. Nevertheless, the disadvantages of constructing

excessive equations are obvious. On the one hand, the damage identification result by solving a linear
system assembled by different equations varies, leading to complicated decisions surrounding the
actual damage state of the structure. On the other hand, the redundant equations do not contribute to
damage detection but complicate the system, and exacerbate the damage identification result.

The main purpose of this study is to address the excessive equations issue faced in the assemblage
of the CMSE linear system of equations. From the standpoint of solving a linear system of equations,
optimizing the assemblage of the system by eliminating redundant equations serves as an effective
tool to improve identification of damage, which has been rarely investigated in previous research.
The ITR method is adopted as a tool for solving the linear system of equations given by Equation (1),
with some improvements to this method also presented. This study contributes towards supplying a
guideline for the elimination of the redundant equations to enhance the robustness of the CMSE system.
A sensitivity index that, to some extent, measures how the actual damage level vector satisfies each
CMSE equation is derived by performing an analysis of the defined residual’s sensitivity to damage.
Finally, the numerical and experimental robustness of the proposed damage identification scheme
against measurement noise is investigated.

2. Theoretical Background

2.1. CMSE Method

If M, K and M∗, K∗ are used to denote the mass and stiffness matrices for baseline FEM of the
healthy structure and the measured damaged structure, respectively, the following can be written:

Kφi = λiMφi (6)

K∗φ∗j = λ∗jM
∗φ∗j (7)

where λi and λ∗j are the i-th and the j-th eigenvalue of the baseline FEM of the healthy structure and
the measured damaged structure, respectively.

The CMSE method is developed under the assumption that the mass distributions of the healthy
and damaged structures are not known, but do not change, that is M∗ = M. In the following derivation,
as λi, φi, K, λ∗j, and φ∗j are presumably known, the unknowns are K∗ and M.
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Pre-multiplying Equation (6) by (φ∗j)
T and Equation (7) by (φi)

T yields

(φ∗j)
TKφi = λi(φ

∗

j)
TMφi (8)

(φi)
TK∗φ∗j = λ∗j(φi)

TMφ∗j (9)

Since M and K are both symmetric matrices, also noting the transpose of a scalar equals to itself,
one thus has

(φ∗j)
TMφi = (φi)

TMφ∗j (10)

(φ∗j)
TKφi = (φi)

TKφ∗j (11)

Assuming that all structural elements are damaged, the stiffness matrix of the damaged structure
can be written as

K∗ = K−
∑Ne

n=1
αnKn (12)

where αn (0 ≤ αn ≤ 1) is the extent of damage of the n-th element. It is difficult to model the damage
in sufficient detail for an unknown type of damage. Here, it is assumed that the damage to a structure
can be represented by a decrease in the modulus of elasticity of each structural element:

E∗n = (1− αn)En (13)

where En and E∗n are the moduli of elasticity of the n-th element of the baseline FEM and the damaged
structure, respectively. Herein, En is regarded as a known constant but E∗n is regarded as an unknown
variable. The objective herein is to evaluate αn corresponding to each structural element.

Dividing Equation (9) by Equation (8), and using the scalar identities of Equations (10) and
(11) yields

(φi)
TK∗φ∗j

(φ∗j)
TKφi

=
λ∗j

λi
(14)

Finally, substituting Equation (12) into Equation (14), the following is obtained:∑Ne

n=1
αnC∗m,n = b∗m (15)

where C∗m,n = (φi)
TKnφ∗j, as given by Equation (5), is the CMSE of the n-th structural element associated

with the m-th MC, and the right-hand side b∗m = (1− λ∗j/λi)C∗m, where C∗m =
∑Ne

n=1 C∗m,n = (φi)
TKφ∗j is

the CMSE of the overall structural system. If the first Ni analytical modes and N j measured modes are
obtained, then Nq = Ni ×N j MCs are available and Nq linear equations can be constructed, which can
be assembled in a matrix of the form as given by Equation (1), where

C∗ =



C∗1
...

C∗m
...

C∗Nq


=



C∗1,1 · · · C∗1,n · · · C∗1,Ne
...

. . .
...

. . .
...

C∗m,1 · · · C∗m,n · · · C∗m,Ne
...

. . .
...

. . .
...

C∗Nq,1 · · · C∗Nq,n · · · C∗Nq,Ne


α =

[
α1 · · · αn · · · αNe

]T

b∗ =
[

b∗1 · · · b∗m · · · b∗Nq

]T

(16)
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If Nq is greater than Ne, more equations are available than unknowns. Hence, it would expected
that the least-squares solution for α can be taken as

α̂ =
(
C∗TC∗

)−1
C∗Tb∗

2.2. ITR Method

The CMSE-based structural damage identification can be treated as a linear inverse problem,
whose discretization gives rise to the linear system as given by Equation (1) with a very ill-conditioned
matrix C∗. This means that a small perturbation in measurements can lead to unrealistically large
perturbations in the predicted damage level vector. For this case, the least-squares solution is not
sufficient. To address this problem, the ITR method that was tested and that outperformed the
generalized least-squares method to provide a proper sparse solution [24] is introduced with the
following solution:

α̂(k) =
{
C∗TC∗ +

[
ξ(k)

]2[
L(k)

]T
L(k)

}−1
C∗Tb∗ (17)

where ξ(k) and L(k) are the iterative regularization parameter and regularization operator, respectively,
in iteration k. In the context of the identification of isolated damage, the actual damage level vector bears
sparse features. Proper sparsity of the Tikhonov solution depends on both the regularization parameter
and regularization operator that have to be optimally selected. In the ITR method, an adaptive strategy
is presented to determine them. The regularization parameter is selected as the intermediate singular
value of interval [σb, σa] as follows:

ξ(k) = σp, p =

[
a + b

2

]
, 1 ≤ a ≤ b ≤ rank(C∗) (18)

where σa, σb, and σp are the a-th, b-th and p-th non-zero singular values of the coefficient matrix C∗,
respectively, and the square brackets can round the inside value to the nearest integer less than or
equal to itself. Moreover, the regularization operator is selected as

L(k) = diag
{[
α̃
(k−1)
1 + ε

]−1
, · · · ,

[
α̃
(k−1)
n + ε

]−1
, · · · ,

[
α̃
(k−1)
Ne

+ ε
]−1

}
(19)

where α̃(k−1)
n is the predicted and adjusted extent of damage of n-th structural element in iteration k− 1;

and ε is a given small parameter in the case that the diagonal entries of L(k) approach infinity when
α̃
(k−1)
n approaches 0. A detailed process of the ITR method can be found in the paper by Wang et al. [24]

In this paper, two modifications to the adaptive strategy of determining the iterative regularization
parameter and regularization operator are introduced, although this is not the main aim of this study.

First, it can be noticed that the regularization parameter is selected as the intermediate singular
value of interval [σb, σa]. When a = b, the calibration of the regularization parameter is terminated
although the iteration continues. In order to continuously calibrate the regularization parameter and
accelerate the convergence of the iteration, a dichotomy method in logarithmic space is introduced

ξ(k) = exp


[
ln

(
η
(k)
a

)
+ ln

(
η
(k)
b

)]
2

 (20)

where
[
η
(k)
b , η(k)a

]
is the range for the regularization parameter selection in iteration k, and in the initial

iteration η(0)b = σr and η(0)a = σ1, where σ1 and σr are the first and last non-zero singular values of
matrix C∗, respectively. Here the reason that the logarithmic space is used is that the singular values of
matrix C∗ usually belong to a log-linear distribution.
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Second, to give a more proper regularization, the regularization operator is modified as

L(k) = diag


[√

α̃
(k−1)
1 + ε

]−1

, · · · ,
[√

α̃
(k−1)
n + ε

]−1

, · · · ,
[√

α̃
(k−1)
Ne

+ ε

]−1
 (21)

according to considerable computational experience.

3. Robust Damage Identification Scheme

From the standpoint of solving a linear system of equations, optimizing the assemblage of the
system by eliminating redundant equations serves as an effective tool to improve identification of
damage. However, this approach was rarely investigated in previous research. Therefore, this section
approaches discrimination and elimination of redundant equations, thereby enhancing the robustness
of the CMSE system against noise.

If the actual and predicted damage level vectors of the measured damaged structure are denoted
as α0 and α̂, respectively, then α̂ = α0 + ∆α is due to measurement errors, in which ∆α is a small
perturbation in α̂. In the context of the least-squares problem, α̂ instead of α0 is the optimal solution
that can minimize the Euclidean norm ‖C∗α− b∗‖2. One would also expect that α0 could nearly
minimize ‖C∗α− b∗‖2 so that α0 can be obtained by solving C∗α = b∗ via a specific tool, such as the
ITR method. In view of this, narrowing the difference between ‖C∗α̂− b∗‖2 and ‖C∗α0 − b∗‖2 may raise
the possibility of obtaining α0. Hence, the following CMSE residual function is defined:

R(α) = C∗α− b∗ (22)

where R(α) collects Nq residual sub-functions Rm(α) = C∗mα− b∗m.
Sensitivity analyses are widely used in engineering to evaluate the effect of changes of one variable

on another variable. Herein, a sensitivity analysis of R(α) with respect to α is performed to measure
the difference between ‖R(α̂)‖2 and ‖R(α0)‖2 to some degree. If R(α) has a large sensitivity at α̂, a
small perturbation ∆α tends to cause a big change of ‖R(α)‖2, or a great difference between ‖R(α̂)‖2
and ‖R(α0)‖2. In other words, α0 will not satisfy the currently assembled CMSE system. Hence, a
linear system that corresponds to a small residual sensitivity to damage, i.e., ‖R

′

(α̂)‖2 is expected.
To further illustrate this point, one considers two special residual sub-functions Y1 = R1(α) and

Y2 = R2(α) in a CMSE linear system. It should be noted that all symbols are presented by a scalar,
indicating the measured damaged structure only has one assumed damage location. The curves of
the Euclidean norm of these two residual functions, i.e., l1 : y1 = ‖R1(α)‖2 and l2 : y2 = ‖R2(α)‖2,
are plotted against α, respectively, as shown in Figure 1. Because α̂ is the least-squares solution of
the CMSE linear system, one assumes that both y1 and y2 have their near-minimum value Rmin when
α = α̂. However, their right derivations, i.e., ‖R′1(α̂)‖2 and ‖R′2(α̂)‖2, are different, more specifically,
‖R′2(α̂)‖2 > ‖R

′

1(α̂)‖2. It can be observed by comparing curves l1 and l2 that, at the actual solution α0,
‖R1(α0)‖2 is closer to the minimum residual Rmin than ‖R2(α0)‖2. This means that α0 can satisfy the
CMSE equation corresponding to residual sub-function Y1 better than that corresponding to Y2. It
can be further envisaged that α0 has a larger chance of being predicted when the linear system is
completely composed of CMSE equations corresponding to Y1 like residual sub-functions.
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The main task hereafter is discriminating and eliminating the redundant equations that correspond
to relatively large ‖R′m(α̂)‖2, which can be obtained by calculating the residual sensitivity of the CMSE
to damage:

R′m(α) =
∂C∗m
∂αT α+ C∗m

∂α

∂αT −
∂b∗m
∂αT (23)

It is assumed that only a few elements are slightly damaged; hence, α ≈ 0. Then Equation (23) is
reduced to

R′m(α) ≈ C∗m −
∂b∗m
∂αT (24)

By considering ∂b∗m/∂αT = [∂b∗m/∂α1, · · · , ∂b∗m/∂αn, · · · , ∂b∗m/∂αNe], ‖R′m(α̂)‖2 can be calculated
and defined as a sensitivity index to ascertain whether the m-th equation is redundant:

Sm = ‖R′m(α̂)‖2 = sqrt

 Ne∑
n=1

∣∣∣C∗m,n − ∂b∗m/∂αn
∣∣∣2 (25)

Substituting C∗m,n = (φi)
TKnφ∗j and b∗m = (1− λ∗j/λi)(φi)

TKφ∗j into Equation (26), it can be
shown that

Sm = sqrt
{∑Ne

n=1

∣∣∣∣(φi)
TKnφ∗j − ∂

[
(1− λ∗j/λi)(φi)

TKφ∗j
]
/∂αn

∣∣∣∣2} (26)

Substituting Equation (13) into Equation (27) yields

Sm = sqrt
{∑Ne

n=1

∣∣∣∣(φi)
TKnφ∗j + ∂

[
(1− λ∗j/λi)(φi)

TKφ∗j
]
En/∂E∗n

∣∣∣∣2} (27)

In order to compute Equation (28), one first considers computing ∂λ∗j/∂E∗n. The derivative of
Equation (7) with respect to E∗n can be expressed as

(K∗ − λ∗jM)
∂φ∗j
∂E∗n

= −

(
∂K∗

∂E∗n
− λ∗j

∂M
∂E∗n

)
φ∗j +

∂λ∗j

∂E∗n
Mφ∗j (28)

Assuming that the eigenvector φ∗j is mass-normalized yields

(φ∗j)
TMφ∗j = 1 (29)
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Pre-multiplying Equation (29) by (φ∗j)
T and substituting Equations (7) and (30) into Equation

(29) yields
∂λ∗j

∂E∗n
= (φ∗j)

T
(
∂K∗

∂E∗n
− λ∗j

∂M
∂E∗n

)
φ∗j (30)

Here, it is always ∂M/∂E∗n = 0 because the mass distributions of the structure are independent of
the modulus of elasticity. Further, defining a purely geometric stiffness submatrix K0

n = K∗n/E∗n, also
noting K∗ =

∑Ne
t=1 K∗t and ∂K∗t/∂E∗n = 0 when t , n, Equation (31) can be simplified as

∂λ∗j/∂E∗n = P∗0j,n (31)

where P∗0j,n = (φ∗j)
TK0

nφ
∗

j is the purely geometric MSE of the n-th structural element associated with
the j-th mode of the damaged structure.

Moreover, as for ∂
[
(φi)

TKφ∗j

]
/∂E∗n, a compact matrix form can be written [32]:

∂
[
(φi)

TKφ∗j

]
∂E∗n

=
[
(φi)

TK 0
] 

∂φ∗j
∂E∗n
∂λ∗j
∂E∗n

 (32)

According to Lee and Jung [33], the eigenpairs derivations for the damaged structure with respect
to E∗n can be obtained by

∂φ∗j
∂E∗n
∂λ∗j
∂E∗n

 =

 K∗ − λ∗jM −Mφ∗j

−

(
φ∗j

)T
M 0



−

(
∂K∗
∂E∗n
− λ∗j

∂M
∂E∗n

)
φ∗j

1
2

(
φ∗j

)T
∂M
∂E∗n
φ∗j

 (33)

As it is still assumed that only a few elements are slightly damaged, the overall stiffness matrix of
the damaged structure can be replaced by the healthy one. Equation (34) can thus be reduced to

∂φ∗j
∂E∗n
∂λ∗j
∂E∗n

 ≈ −
 K− λ∗jM −Mφ∗j

−

(
φ∗j

)T
M 0


−1 K0

nφ
∗

j
0

 (34)

Substituting Equation (35) into Equation (33), the derivative of (φi)
TKφ∗j with respect to E∗n can

be obtained:
∂
[
(φi)

TKφ∗j

]
∂E∗n

= −
[
(φi)

TK 0
] K− λ∗jM −Mφ∗j

−

(
φ∗j

)T
M 0


−1 K0

nφ
∗

j
0

 (35)

Then, substituting Equations (32) and (36) into Equation (21) and simplifying yields the final
expression of the sensitivity index as follows:

S∗m = sqrt


Ne∑

n=1

∣∣∣∣∣∣∣∣∣C∗m,n −
P̃∗j,nC∗m
λi

−

1−
λ∗j

λi

[ (φi)
TK 0

] K− λ∗jM −Mφ∗j

−

(
φ∗j

)T
M 0


−1 Knφ∗j

0


∣∣∣∣∣∣∣∣∣
2 (36)

where P̃∗j,n = P∗0j,nEn = (φ∗j)
TKnφ∗j is an approximation for P∗j,n.

Good robustness of the CMSE system against noise necessitates finding Nm
(
Ne ≤ Nm ≤ Nq

)
CMSE

equations corresponding to the first Nm lowest sensitivity indices. Since the sensitivity index as given
by Equation (37) is computable, these Nm CMSE equations can be selected to reassemble the CMSE
system and identify damage. An interesting question then arises as to what guidelines one can follow
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to determine Nm. Minimizing the level of correlation between the measured and predicted natural
frequencies and mode shapes provides a simple but effective way to indicate whether the selected
Nm is optimal for this case. In this regard, the optimal Nm is the one within the range

[
Ne, Nq

]
that

maximizes the following fitness function:

f (Nm) = −lg

∑N j

j=1

∣∣∣∣ω∗j − ω̃∗j(Nm)
∣∣∣∣

ω∗j
+

∑N j

j=1

‖φ∗F, j − φ̃
∗

F, j(Nm)‖
2

‖φ∗F, j‖2

 (37)

where ω∗j and φ∗F, j are the j-th natural frequency and mode shape partitioned to F measured degrees

of freedom (DoFs) of the damaged structure, respectively; likewise, ω̃∗j(Nm) and φ̃∗F, j(Nm) are the
correspondingly predicted values produced by the selected Nm CMSE equations. Note that compared
with directly using all Nq equations, a larger amount of computation is required in order to ascertain
the optimal subset of equations. However, there is only a small increase in computational costs but a
clear improvement in damage detection performance.

It is also noted from Equation (37) that the sensitivity index S∗m is determined by the
eigen-parameters associated with a unique MC, i.e., the i-th mode of the healthy structure and
the j-th mode of the damaged structure. Therefore, it can also serve as a pre-test tool to select suitable
modes for the CMSE-based methods and, in turn, lead to sensor placement requirements in a built-in
health monitoring system.

4. Numerical Simulation

In this section, the numerical robustness of the proposed damage identification scheme against
measurement noise is demonstrated by considering a truss structure. A comparative study is conducted
between the CMSE method with and without the sensitivity analysis. For convenience, the classical
CMSE method without sensitivity analysis is still called the CMSE method, but the one with sensitivity
analysis is called the robust CMSE (RCMSE) method.

4.1. Description of the Truss Structure

The example adopted in this numerical study is a 2-D clamped–clamped truss structure. As shown
in Figure 2, the examined structure consists of 29 elements comprising 14 horizontal brace elements
(HBs), 7 vertical brace elements (VBs), and 8 diagonal brace elements (DBs). In addition, the sectional
area of each member is 1.5 × 10−3 m2 and the moment of inertia is 3.13 × 10−7 m4. The structure is
made of plexiglass, with a Young’s modulus of 3 GPa, linear mass density of 1300 kg/m3, and Poisson’s
ratio of 0.3. Although only a truss structure modeled by beam elements is used as an illustrative
example to validate the proposed method, it can be applied to any more general structure, such as a
3-D structure that needs to be modeled with solid elements.
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Figure 2. Sketch of the truss structure.

4.2. Damage Cases

As listed in Table 1, six damage cases were simulated involving three types of elements, namely,
HB elements Nos. 6 and 14, VB element No. 19, and DB elements Nos. 17 and 28, as well as three
levels of damage. Damage cases A to D were used to investigate the performance of the proposed
scheme with respect to damage location, and damage cases C, E, and F were used to investigate the
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performance with respect to damage level. For the simulated damage cases, the corresponding natural
frequencies obtained by eigenvalue analysis are listed in Table 1.

Table 1. The simulated damage cases of the truss structure.

Damage Case Location Extent
Natural Frequencies (Hz)

1st 2nd 3rd

Baseline N/A N/A 13.878 22.257 23.832
A 6 30% 13.845 22.074 23.634
B 19 30% 13.877 21.996 23.740
C 28 30% 13.701 22.166 23.601
D 14, 17 30%, 30% 13.837 21.946 23.761
E 28 20% 13.774 22.202 23.686
F 28 10% 13.832 22.232 23.763

In practice, it is easy to obtain the analytical modes of the healthy structure, but difficult or
expensive to extract the measured modes of the damaged structure. Therefore, one may choose a much
larger Ni than N j [10]. Herein, the first 20 analytical modes and the first 3 measured modes are used
for tests, i.e., Ni = 20 and N j = 3, respectively. Hence, there are 60 MCs or equations in total available
for determining the damage level vector.

4.3. Robustness Performance Investigation

A parametric study is conducted to investigate the effects of location and extent of damage on
the robustness performance of the proposed damage identification scheme against noise. In order to
consider noise interference, the measurements of the i-th polluted frequency and mode displacement at
the v-th DOF of the damaged structure, denoted by ω̂∗j and φ̂∗v, j, respectively, are simulated by adding
a Gaussian random error to the corresponding true values:

ω̂∗j = (1 + nωςω)ω∗j (38)

φ̂∗v, j =
(
1 + nφςφ

)
φ∗v, j (39)

where ςω and ςφ are two Gaussian random numbers both with zero mean and unit standard deviation,
and nω and nφ are the modal noise levels for natural frequency and mode shape, respectively. Previous
studies [34] suggest that mode shape estimates have error levels as much as 20 times greater than
those in the natural frequency estimates. Therefore, in this study, the modal noise levels were set as
nφ = 20nω. In the following, the mentioned noise level refers to nφ.

4.3.1. Effects of Damage Location

In this section, damage detection analysis is performed by considering different damage locations.
It starts from damage case A (α6 = 30%) at a 3% level of noise. The least-squares method is firstly used
to solve the CMSE system of linear equations. Figure 3 shows a comparison of the resulting location
and extent of damage by using the classical CMSE and RCMSE methods.

It is observed from Figure 3a that the localization indicator ambiguously locates the actually
damaged element at a 3% level of noise, and both beam elements Nos. 2 and 25 seem to be candidates,
as they are affected by the damage in the same way. Moreover, the estimated damage level of element
No. 6 is far smaller than the expected value of 30%, indicating that the CMSE method cannot correctly
detect stiffness reduction by using all 60 equations together.
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solution: (a) CMSE method; (b) RCMSE method.

For the RCMSE method, a sensitivity analysis of the CMSE residual function with respect to
damage is first performed to discriminate and eliminate redundant CMSE equations. Figure 4 shows
the corresponding sensitivity indices of all 60 CMSE equations corresponding to 60 MCs. It is an
expected result that the CMSE equations associated with the third mode of the damaged structure
have larger sensitivity overall. The fitness function given in Figure 5 suggests that 43 equations are an
optimum number for identifying the damage, so the CMSE system is reconstructed by eliminating
17 equations that correspond to the first 17 largest sensitivity indices, and damage identification
analysis is performed again. It is shown in Figure 3b that the actual damage to element No. 6 is
located accurately by the RCMSE method, whereas the estimated damage level is a little larger than
the expected value, indicating that RCMSE outperforms the classical CMSE method both in damage
localization and quantification.
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Figure 4. The sensitivity index of damage case A versus MCs Ni = 20 and N j = 3, at a 3% level of noise.
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Note that in Figure 5, only the fitness functions corresponding to 32 tested Nm
(
Ne ≤ Nm ≤ Nq

)
are

presented. This is because there are Ne = 29 elements simulated for the 2-D truss structure, which also
means at least 29 equations are required to ensure that the reduced CMSE system has a unique solution.
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It is seen from Figure 3 that the damage identification results obtained by the least-squares
method are not sparse, i.e., massive false-positive alarms of damage caused by noise contamination
are produced, masking the actually damage-induced alarm. Here, an iterative Tikhonov solution can
be tried to address this problem. Figure 6 shows a comparison between the identified results of the
classical CMSE and RCMSE methods. By comparing Figures 3 and 6, the obtained Tikhonov solutions
are clearly sparse and the estimated extents of the actual damage are both closer to the expected value.
This comparison illustrates that the ITR method can eliminate false-positive alarms of damage and is
more suitable for detecting isolated damage to the structure. It is thus exclusively used to solve the
CMSE system of linear equations hereafter.
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It is also noted from Figure 6 that the RCMSE method remains more accurate than the classical
CMSE method both in damage localization and quantification, even in terms of an iterative Tikhonov
solution. This improvement strongly benefits from the elimination of 25 redundant equations according
to the fitness function given by Figure 7. It can also be seen from Figure 7 that the fitness value obtained
by using the corresponding first 35 equations is much larger than that obtained using all 60 equations,
which illustrates that the predicted damage state of the structure agrees better with the real state when
some redundant equations are eliminated.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 23 
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Figure 7. Fitness function of damage case A at a 3% level of noise, for the ITR method.

For damage case B, Figure 8 shows a comparison between the damage identification results of
the CMSE and RCMSE methods. The top panel of Figure 8 illustrates that the damage of element No.
19 can be located by using all equations, but its extent is overestimated. In comparison, the RCMSE
method, as shown in the bottom panel of Figure 8, exhibits enhancement of damage quantification.
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It should be noted that in this case only 40 equations are used to predict the preset damage
location and extent of damage (see Figures 9 and 10), confirming that not all equations contribute to
damage detection but complicate the CMSE system. Furthermore, by performing the analysis of CMSE
equations’ sensitivity to damage, numerous redundant equations are eliminated, thereby simplifying
the CMSE system.
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For damage case C, the analysis of CMSE equations’ sensitivity to damage indicates that
54 equations are most appropriate for solving the preset location and extent of damage (see Figures 11
and 12).
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Following this, the CMSE method employing 60 equations and the RCMSE method employing
54 equations are used to identify the damage, respectively. Figure 13 shows that both methods can
correctly locate the actual damage. However, two false-positive alarms of damage to elements Nos. 5
and 17 are produced when using the CMSE method. At the same time, both methods overestimate the
preset extent of the damage. This reveals that the robustness of the CMSE method against noise is
slightly improved by eliminating six redundant equations.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 23 
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Damage case D is a double-damage case, in which elements Nos. 14 and 17 both exhibit a
30% stiffness loss. For this case, 45 equations are suggested for identifying damage according to the
sensitivity analysis (see Table 2). The sensitivity index and fitness function are not shown here because
of space limitations.
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Table 2. The number of equations (Nm) and the corresponding condition number (κ) of the original
and reduced CMSE systems for damage cases A to D.

Damage Case
Original System Reduced System

Nm κ Nm κ

A 60 126.36 35 95.92
B 60 126.79 40 28.23
C 60 128.45 54 22.31
D 60 123.86 45 55.15

Figure 14 provides a comparison between the damage identification results of the CMSE and
RCMSE methods. It is observed that the CMSE method omits the actually damaged element No. 17 and
the extent of damage of element No. 14 is clearly overestimated. The RCMSE method demonstrates
good damage localization and quantification performances, while it slightly overestimates the extent
of the preset damage.
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All results shown above demonstrate an improvement of damage identification by considering
the sensitivity analysis scheme. It is worth noting that when the equation subsets are eliminated
from the original CMSE system, the corresponding coefficient matrix of the reduced CMSE system,
determining the accuracy of solution to some extent, is simplified. Hence, one would expect to explain
this improvement from an ill-conditioned problem viewpoint. The condition number of the coefficient
matrix C, defined as

κ = ‖C∗+‖·‖C∗‖ (40)

measures how ill-conditioned a CMSE system is, where C∗+ is the Moore–Penrose inverse of C∗ because
it is usually not a square matrix.

Table 2 shows the number of equations and the corresponding condition number of the original
and reduced CMSE systems. It can be seen that in all simulated cases, the condition number is reduced
as some redundant equations are eliminated. Taking damage case A as an example, the condition
number is reduced from 126.36 to 95.92 as 25 equations are eliminated. This might confirm that a
reasonable reduction of the dimension of the CMSE system yields a better-conditioned system and a
better damage identification.

To further investigate the noise robustness of the proposed scheme, 1000 Monte Carlo simulations
are performed by varying the level of noise from 0.5% to 5%. The damage identification probability [24]
is used to measure the prediction accuracy, which is defined as

pd =
nd
ns
× 100% (41)
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where ns = 1000 is the total number of Monte Carlo simulations for a given level of noise and nd is the
number of realizations in which the actual damage is detected.

Figure 15 shows the obtained damage identification probability of damage case A to damage case
C, in which at least two findings are observable.
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First, it is expected that the damage localization performance of the RCMSE method is better than
that of the CMSE method at every level of noise, thereby confirming the effectiveness of eliminating
redundant equations from the classical CMSE method.

Second, it is observed that for the CMSE method, the damage identification probability of DB
element No. 28 and HB element No. 6 is always greater than that of HB element No. 19 in the
examined range of noise level. When using a vibration-based method, the detectability of damage
depends highly upon the modal parameter changes that the damage caused. It is observed by recalling
Table 1 that the overall change in the first three natural frequencies due to the damage of element
No. 19 is the smallest among these three damage cases, which may account for the difference in the
damage localization performance of the CMSE method for different damage locations. However, for
the RCMSE method, the damage identification probability of DB element No. 28 comes last. It is
realized by comparing Figures 4, 9 and 11 that the MCs associated with the third mode of the damaged
structure, on the whole, have larger sensitivity of the residual function to damage. In other words,
the CMSE equations constructed by the third mode of the damaged structure are likely classified as
redundant and eliminated from damage detection analysis. It can also be observed from Table 1 that
the damage of element No. 28 mainly changes the third mode rather than the others. The discrepancy
of the employed MCs may explain the different performances of these two methods.

4.3.2. Effects of Damage Level

In this section, damage detection analysis is performed to consider how varying the damage level
would affect the damage identification performance of the proposed scheme. The results of damage
cases C (α28 = 30%), E (α28 = 20%), and F (α28 = 10%), are shown in Figures 13, 16 and 17, respectively.

Upon comparing the top panels of these three figures, as expected, the damage identification
results of the classical CMSE method gradually worsen as the damage level decreases. Especially
for damage case F, the actually damaged element No. 28 is classified as undamaged at a 3% level of
noise. This demonstrates that the classical CMSE method has weak robustness against noise and its
performance of the CMSE method is highly relevant to the damage level of the structure.
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For the RCMSE method, it can be seen from the bottom panels of Figures 13, 16 and 17 that all
damage cases are located, indicating the RCMSE method outperforms the classical CMSE method
with regard to damage localization. Moreover, it can be seen that the RCMSE method always over-
or under-estimates the extent of the damage. This is because, as mentioned earlier, the damage of
element No. 28 mainly changes the third modal parameters of the structure; these parameters, however,
contribute little to the damage detection analysis.

Table 3 shows the number of equations and the corresponding condition number of the original
and reduced CMSE systems for damage cases E and F. It is also observed for each damage case that the
condition number is reduced as some redundant equations are eliminated. This, again, confirms that
reasonable reduction of the dimension of the CMSE system yields a better-conditioned system and
better damage identification.

Table 3. The number of equations (Nm) and the corresponding condition number (κ) of the original
and reduced CMSE systems for damage cases E and F.

Damage Case
Original System Reduced System

Nm κ Nm κ

E 60 126.30 56 36.61
F 60 124.03 40 25.71

Then, 1000 Monte Carlo simulations are performed to obtain the identification probability of these
three damage cases, and the results are displayed in Figure 18. Two findings are observable. First,
by means of eliminating redundant equations and optimizing the construction of CMSE systems, the
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damage localization performance of the classical CMSE method is significantly improved. In addition,
there is always a lower damage identification probability as the damage level decreases because severe
damage always causes a larger change in the structural modal parameter. This trend also reveals that
the CMSE and RCMSE methods are both sensitive to the damage level of the structure.
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5. Experimental Validation

5.1. Description of the Beam Structure

Experimental data from a cantilever beam structure are used to evaluate the effectiveness of the
proposed damage identification scheme. The cantilever beam, as displayed in Figure 19, has a length,
width, and thickness of 200, 5.0, and 2.8 cm, respectively, and is simulated by 20 equal Euler–Bernoulli
beam elements.
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Figure 19. Beam structure used in the experiment, physical (left) and finite element (right) models.

Twenty accelerometers were vertically installed at every 10 cm on the beam to collect its acceleration
time histories. A shock excitation on the beam was generated by means of an impulse hammer.
To generate a maximum amplitude of the vibration signal, the impact location was selected at the
free end of the beam. The excitation force was not measured. For output-only modal identification,
the acceleration signal was processed by the eigensystem realization algorithm [35] to obtain the
incomplete mode shapes, and Guyan’s method [36] was subsequently used for modal expansion.
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The experiment started by measuring the dynamic responses of the undamaged beam, and a
baseline FE model was constructed to represent the dynamic characteristics of the undamaged beam.
Subsequently, two notches were generated by a saw cut on the beam in the width direction. Again,
the dynamic responses of the damaged beam were measured for modal identification and damage
detection. Three damage cases including two single- and one double-damage cases were considered by
producing two notches. As shown in Figure 19, the location of the first notch was 44.2 cm away from
the clamped end of the beam, approximately at the middle of element No. 5, and the second notch
was located approximately at the middle of element No. 14. Two extents of damage are considered,
including the notch depths of about 1/4 and 1/2 of the beam thickness. The length of the notch along
the beam axis was about 1 mm. In the experiment, the first three modes of the beam were always
identified from the measurement data, i.e., N j = 3. The simulated damage cases and the measured
natural frequencies are listed in Table 4 for clarity.

Table 4. Simulated damage cases and measured natural frequencies in the experiment.

Case Location Extent
Natural Frequencies (Hz)

1st 2nd 3rd

Undamaged N/A N/A 5.524 34.711 97.200
I 5 1/4 thickness 5.473 34.768 96.874
II 5 1/2 thickness 5.299 34.755 95.089
III 5 and 14 1/2 and 1/2 thickness 5.289 33.837 91.485

The essential geometric and material properties of the baseline FE model are as follows. The linear
mass density is 7920 kg/m3 by considering the mass of beam, sensors, and wires; and the Young’s
modulus of the elements at the non-clamped position is uniformly 1.91 × 1011 N/m2, whereas
that of the element at the clamped edge is reduced to 1.80 × 1011 N/m2 to consider the possibly
imperfect connection.

To examine the accuracy of the baseline FE model, an eigenvalue analysis was performed to
obtain its modal characteristics, i.e., the analytical modal parameters. The measured and analytical
natural frequencies and mode shape correlations represented by modal assurance criterions (MACs)
are summarized in Table 5 for clarity. It is evident that the analytical modal parameters match
the corresponding measured values very well, thereby confirming the accuracy of the model
updating process.

Table 5. Measured and analytical natural frequencies and MACs of the undamaged beam.

Data Type
Natural Frequencies (Hz) MACs

1st 2nd 3rd 1st 2nd 3rd

Measured 5.524 34.711 97.200
0.999 0.997 0.998Analytical 5.523 34.644 97.079

5.2. Results and Discussions

In this experiment, the first 15 modes of the undamaged beam calculated from the updated
baseline FE model as well as the first 3 modes of the damaged beam identified from the measured
data are used for damage identification. That is to say, a total of 45 CMSE equations can be formed.
Therefore, for the classical CMSE method, 45 equations are always used to identify the damage, whereas
for the RCMSE method, an analysis of the residual function’s sensitivity to damage is performed first
to discriminate redundant equations.

For damage case I (1/4-thickness notch), Figures 20 and 21 give the 42 equations that are most
appropriate to solve the actual location and extent of the damage. Then, these equations are selected to
construct the CMSE system.
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Figure 20. Sensitivity index of damage case I versus MCs Ni = 15 and N j = 3.
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Figure 22 shows a comparison of the resulting location and extent of damage by using the classical
CMSE and the RCMSE methods. It is evident that the damage of element No. 5 can be located by the
RCMSE method but cannot be located by the CMSE method, indicating an enhancement of damage
identification by eliminating three redundant equations.
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method; (b) RCMSE method.

It is worth mentioning that the performance of the CMSE and RCMSE methods with regard to
damage severity estimation is not discussed here. This is because the actual stiffness reduction of the
beam is unknown.

For damage case II (1/2-thickness notch), 43 equations are used to identify damage for the RCMSE
method. One can observe from Figure 23 that damage at element No. 5 also can be located clearly by
the RCMSE method. However, for the classical CMSE method, although the actually damaged element
can be identified, a false-alarm of damage at element No. 15 is also produced. The difference between
the results, again, illustrates the effectiveness of the elimination of redundant equations.
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Furthermore, by comparing Figures 22b and 23b, it can be seen that RCMSE also produces a
false-positive damage at element No. 1 for damage case I, hinting that smaller damage always results in
a smaller change in the structural modal parameter (see Table 4) and leads to lower damage detectability.

For damage case III (1/2-thickness notches), 23 equations are used to identify damage for the
RCMSE method. Figure 24 shows that both methods cannot yield a sparse solution. In other words,
both methods produce several false-positives of damage except for the correct indications of damage
at elements Nos. 5 and 14. This illustrates that double-damage is difficult to identify for both methods.
However, it is also shown that the estimated extents of damage at the actually damaged locations by
the RCMSE method are greater than others. In other words, the actually damaged elements are not
masked by false-positives. In addition, the estimated extents of these two damaged elements, i.e., for
both 1/2-thickness notches, by the RCMSE method are almost the same, implicating an improvement
in damage identification performance as compared to the CMSE method.
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6. Conclusions

This paper presented a CMSE-based damage identification scheme. An analysis of the defined
residual function’s sensitivity to damage was performed to measure how the actual damage level
vector satisfied each CMSE equation. A sensitivity index was formulated to discriminate and eliminate
the redundant equations that do not contribute to damage detection but complicate the system.
The numerical and experiment robustness of the proposed damage identification scheme against
measurement noise was investigated. Two main aspects were emphasized by the results.
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First, the damage identification performance of the classical CMSE method was clearly improved
by eliminating redundant equations from the original CMSE system, confirming the validity of the
sensitivity analysis process. The improvement of damage identification might inherently benefit from
an improvement of the originally ill-conditioned problem by a reasonable reduction of the dimension
of the CMSE system.

Second, for the proposed CMSE-based damage identification scheme, the detectability of damage
depended highly upon the modal parameter changes that the damage caused. For different locations
of damage even with the same damage level, the resulting modal parameter change in different modes
varied, and the employed modes were also different. This is the reason for the discrepancy of the
damage localization performance for different damage locations. Besides, the damage identification
probability gradually decreased as the damage level decreased. The phenomenon is due to the fact
that smaller damage always results in a smaller change in structural modal parameters and leads to
lower damage detectability.

Overall, this study provides a contribution towards a clear and simple guideline for eliminating
redundant equations in order to enhance the robustness of the CMSE system, which is solved by the
ITR method to obtain spare solutions. Since a broad range of regression techniques [37,38] that can
solve the CMSE system are now available, it is extremely necessary to compare the performance of the
ITR method and these state-of-art techniques.
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