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Abstract: In the architecture, engineering, and construction (AEC) industry, creating an indoor model
of existing buildings has been a challenging task since the introduction of building information
modeling (BIM). Because the process of BIM is primarily manual and implies a high possibility
of error, the automated creation of indoor models remains an ongoing research. In this paper, we
propose a fully automated method to generate 2D floorplan computer-aided designs (CADs) from
3D point clouds. The proposed method consists of two main parts. The first is to detect planes in
buildings, such as walls, floors, and ceilings, from unstructured 3D point clouds and to classify them
based on the Manhattan-World (MW) assumption. The second is to generate 3D BIM in the industry
foundation classes (IFC) format and a 2D floorplan CAD using the proposed line-detection algorithm.
We experimented the proposed method on 3D point cloud data from a university building, residential
houses, and apartments and evaluated the geometric quality of a wall reconstruction. We also offer
the source code for the proposed method on GitHub.

Keywords: building information modeling (BIM); 3D reconstruction; 2D floorplan CAD;
3D point clouds

1. Introduction

The creation of 2D floorplan computer-aided designs (CADs) of the existing buildings is a
challenging task in the architecture, engineering, and construction (AEC) industry, as the as-built
condition of buildings can differ from original plans due to undocumented renovations. The creation
of an indoor model from existing building has been widely researched with building information
modeling (BIM) and has been increasingly requested in various applications [1]. Currently, BIM
processes are well established for new buildings, but most existing buildings are not maintained,
refurbished, or deconstructed with BIM [2]. The advantage of the implementation of BIM in existing
buildings is significant, especially for restoration, documentation, maintenance, quality control, and
energy/space management.

Thus, the most important aspect is the creation of BIM without a prior model, as existing buildings
usually do not have a model. To create BIM for existing buildings, 3D reconstruction is required,
and a key aspect of 3D reconstruction is wall geometry modeling because it forms the basis for other
elements of buildings. Currently, these objects are created manually based on large unstructured 3D
point clouds acquired from the built structure. However, this process is labor-intensive and is prone to
human error. Another challenge related to automated reconstruction is that 3D point clouds contain
various types of clutter, such as furniture, and 3D point clouds lack semantic information [3].

In order to resolve these issues, we propose a fully automated method to create 2D floorplan CADs
from 3D point clouds without a prior model. In the proposed method, we generate 3D reconstruction
model of walls based on assumption of Manhattan-World (MW) buildings, which assumes that most
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man-made structures can be approximated by planar surfaces that are parallel to one of the three
principal planes of a common orthogonal coordinate system [4].

We then generate a 2D floorplan CAD based on the 3D reconstruction of the elements. In detail,
to reconstruct the wall geometry, the proposed algorithm initially detects planes from 3D point clouds
and classifies them as belonging to floors, ceilings, or walls. A 2D image which contains only wall
candidate points is then created and wall lines are detected. There are several line-detection algorithms,
such as RANSAC [5], the Hough transform [6], and the least-square (LS) method [7]. In this paper,
we propose an efficient line-detection algorithm for wall detection.

This paper is organized as follows. In Section 2, the background and related works are presented.
Section 3 presents the proposed method, including the steps of data preprocessing, floor segmentation,
wall detection, and 2D floorplan CAD generation. In Section 4, experimental results are discussed,
including the evaluation metrics and datasets used. Finally, the concluding remarks follow in Section 5.

2. Backgrounds and Related Works

The main process when generating a 2D floorplan from unstructured 3D point clouds is to create
BIM objects from 3D point clouds. This process can be divided into two steps, i.e., 3D reconstruction
and conversion into a BIM format such as the industry foundation classes (IFC) format.

3D reconstruction commonly consists of three parts after the acquisition of the point cloud:
data preprocessing, plane segmentation, and plane classification. First, the 3D point cloud data are
preprocessed to create structured data in order to save time during the process and achieve more
efficient results. In 2D methods, the point cloud is represented as a set of images consisting of a
slice of points or other information [8,9]. In 3D methods, the point cloud is restructured as a voxel
octree which allows efficient neighborhood searches [10]. Subsequently, the point cloud is segmented.
Typically, lines are used for point cloud segmentation in 2D methods such as RANSAC based [8,11,12]
and Hough transform based [13–15] methods, while planes are used for point cloud segmentation in
3D methods [10,16,17]. Finally, the segments are classified into categories such as floors and walls by
using heuristics or machine learning techniques [18–21].

After 3D reconstruction, wall geometry modeling is the most important part of the next step.
There have been several studies of the reconstruction of wall geometries. Xiong et al. and Adan
and Huber reconstructed planar wall boundaries and openings based on machine learning [18,22].
Michailidis and Pajarola reconstructed severely occluded wall surfaces using Bayesian graph-cut
optimization based on cell complex decomposition [23].

The relationship between elements in a building leads at the end to the BIM establishment.
Additionally, element topology can serve to describe building elements. Topological data assign
spatial relationship information, whereas the dimensions and locations of elements are represented
by geometrical data. Types of elements and relationships with other elements are associated
with these processes. Several proposed models determine topological relationships among objects
automatically. Nguyen et al. presented an approach that automatically analyzes the topological
relationships of building elements [24]. Belsky et al. implemented a prototype system for the semantic
improvement of prior factual model files [25]. In their system, shared and slab collection concepts were
acknowledged and topological, geometric, and other generic operators were used in collections of rule
sets. Anagnostopoulos et al. presented a semi-automatic algorithm which calculated the boundaries
and adjacency of objects in 3D point clouds [26]. It generated depictions of objects in the IFC format.

3. Proposed Method

The input to our method consists of unstructured 3D point clouds, and the output is the 2D
floorplan CAD having topological relationships between the walls. The proposed method is composed
of the 3D reconstruction and 2D floorplan CAD generation parts. In the first part, walls are detected
as follows:
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1. 3D point cloud data preprocessing
2. Floor segmentation based on horizontal planes
3. Wall proposals based on vertical planes for each floor
4. Wall detection using the horizontal projection of wall proposals
5. IFC file generation from the detected wall points

In the second part, we create structural elements from the IFC file, after which, based on this
information, we generate the 2D floorplan CAD. Our approach is fully automated and implemented
using the PCL (point cloud library) the most popular library that works with 3D point clouds [27].
Figure 1 shows the overall flow of the proposed method. The code for the proposed method is available
at https://github.com/joyjo/to-generate-2D-floorplan-CAD-from-3D-point-clouds.

Figure 1. Overview of the proposed method that automatically creates a 2D floorplan CAD from
unstructured 3D point clouds.

3.1. Data Pre-Processing

We used unstructured 3D point clouds as an input data from LIDAR scanners. Therefore, our
algorithm requires preprocessing of the 3D point clouds in order to save time during the process
and to gain more insight for meaningful element extractions, such as for floors and walls. For data
preprocessing, 3D point clouds are spatially re-sampled at 1 cm and rotated to follow the proper
orientation for a wall detection algorithm.

3.2. Floor Segmentation

After data preprocessing, floor segmentation is performed. We consider the assumption that
floors and ceilings are horizontal and parallel to the x–y plane. Therefore, the largest horizontal planes
are extracted using a parallel model of the RANSAC algorithm because the floor and ceilings would
contain the highest points in every possible horizontal plane. Then, detected planes are ordered by
z-coordinate and analyzed with floor altitude threshold. Each plane is identified as a floor or a ceiling
based on the altitude threshold and the 3D points of floors and ceilings are then removed to detect

https://github.com/joyjo/to-generate-2D-floorplan-CAD-from-3D-point-clouds
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walls. The ceilings may contain clutters such as lamps, air conditioning, or ventilation openings,
but these clutters are considered as a part of ceiling and removed with ceilings together.

3.3. Wall Detection

Detecting walls is a more complex process than detecting floors and ceilings. After removing
floors and ceilings, 3D point clouds contain points belonging to walls as well as points belonging to
clutter, such as furniture (e.g., desks, chairs and bookshelves). Detecting a wall is highly sensitive
in cluttered data. In order to solve this problem, wall proposals are conducted by removing most of
the clutter from the 3D point clouds. As shown in Figure 2, wall proposals, Wp = {wp1, ..., wpn}, are
calculated based on the assumption that walls are vertical and parallel to y–z or x–z planes. Therefore,
all possible planes are extracted using a parallel model of the RANSAC algorithm. Then, our proposed
algorithm retains the planes with altitudes higher than a threshold, as follows:

wpi_height > thres ∗ (CeilingminZ − FloormaxZ) (1)

Here, wpi_height is the height of the i-th plane, thres is a constant value that describes the minimum
plane height, CeilingminZ is the minimum point of the z-axis for a ceiling, FloormaxZ is the maximum
point of the z-axis for the floor. Therefore, (CeilingminZ − FloormaxZ) becomes the height of the
current floor.

Figure 2. Result of wall proposal for seventh floor of the Robot Convergence Building at Korea
University: (a) 3D point clouds after removing the floor and ceiling, and (b) 3D point clouds of wall
proposal planes.

After the wall proposals, walls are detected with two steps. In the first step, we create depth
image based on points of wall proposal planes that are projected onto the x–y plane using Algorithm 1.
The expected result is described in Figure 3a. Algorithm 1 works as follows:

- Inputs are 3D point clouds of wall proposals and the grid size (default value for the grid size:
0.01 m).

- 3D point clouds are projected into the x–y plane (lines 1 and 3), meaning we set all z-axis points
to zero.

- Create a grid structure from projected 3D point clouds (lines between 4 and 12). The projected
3D point clouds are initially sliced on the x-coordinate with range [i, i+gridSize] and then on the
y-coordinate with range [j, j+gridSize], where i is an x-coordinate value of i-th point and j is a
y-coordinate value of the j-th point. Then, the point density of each grid cell is then saved in a grid.

- Create an empty image with the height and width of the grid (line 13).
- Calculate the image intensity based on the described grid (line 14). In an image, intensity defines

the pixel value; i.e., the pixel can have a value from 0 to 255 in a grayscale image.
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Algorithm 1: Create Depth Image from 3D Point Clouds.
Input: 3D point clouds pt, size of grid gridSize
Output: Depth image depthImg

1 for each i in pt.points do
2 pt.points[i].z=0;
3 end
4 Create an empty array grid;
5 for each coordinate i ∈ [pt.minX, pt.maxX] in pt.x do
6 i = i + gridSize;
7 Set colX to slice points from 3D point clouds pt in given range [i, i + gridSize];
8 for each coordinate j ∈ [pt.minY, pt.maxY] in pt.y do
9 Set gridCell to slice points from sliced points colX in given range [j, j + gridSize];

10 Push size of gridCell points to grid;
11 end
12 end
13 Create an empty image depthImg with the same size of grid;
14 Set depth image intensity depthImg[i][j] = (grid[i][j]/maxValueO f Grid) ∗ 255;
15 return depthImg

In the second step, walls are detected using the created depth image with Algorithm 2. To solve
the problem of missing 3D points when the building is scanned by a LIDAR, we propose an efficient
line-detection algorithm from the created depth image. The proposed algorithm finds all horizontal
and vertical lines in the depth image if a line contains at least one point. All possible wall candidates
are defined in each horizontal and vertical line, as presented in Figure 3b. We then detect actual walls
from the wall candidate lines. The expected result is presented in Figure 3c. Algorithm 2 has the
following steps:

- Inputs are the depth image that results from Algorithm 1 and the thresholds, i.e., minimum points
for the wall line, minPoints; minimum length of the wall line, minLen; and determined area,
detArea.

- Define the wall candidate lines, clines (lines between 1 and 6). If a pixel, depthImgi j, has an
intensity value greater than 0, i.e., the pixel is not black, then the pixel is a part of the wall
candidate lines. Therefore, the horizontal and vertical lines that pass the pixel are drawn. In detail,
the horizontal and vertical lines are described by two points: (0, j) and (depthImg.cols− 1, j),
and (i, 0) and (i, depthImg.rows− 1). This process is repeatedly done for all pixels in depthImg.

- Define actual wall lines from wall candidate lines (lines between 7 and 20). First, we check the
pixels in each wall candidate line, clines. If there are points around the pixel within the predefined
area threshold (the default value is 50 pixels), it means that the pixel can be a part of the wall line.
We set an area threshold value because there are some missing points and noise from the LIDAR
sensor. We set pLines[i] to 1 if the i-th pixel satisfies the condition, and set it to 0 otherwise. As a
result, we obtain the pLines vector, which is a sequence of 0 and 1 for each wall candidate line.
The size of the pLines vector is equal to the width and height of the depth image for the horizontal
and vertical wall candidate lines, respectively. Based on the pLines vector, we determine the actual
wall lines using the thresholds, i.e., minimum points on the wall line, minPoints, and minimum
length of the wall line, minLen. For example, if pLines = {1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1}, we
can see two sequences of ones. If these two sequences meet the threshold condition, they are
determined to be actual wall lines.
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Figure 3. Result of the wall detection process for seventh floor of the Robot Convergence Building at
Korea University: (a) result of the depth image, (b) results of horizontal and vertical lines, and (c) results
of walls.

Algorithm 2: Detect Wall Lines from Wall Candidate Lines.
Input: Depth image depthImg, threshold of minimum points in wall line minPoints, threshold

of minimum length of wall line minLen, threshold of determined area detArea
Output: Wall Lines contains wall informations

1 Create array contains horizontal and vertical lines clines;
2 for each pixel in depthImg do
3 if (a pixel value of depthImgi j) > 0 then
4 Save points corresponding horizontal and vertical lines, (0, j) and

(depthImg.cols− 1, j), (i, 0) and (i, depthImg.rows− 1) to clines;
5 end
6 end
7 Create an array wallLines;
8 for each line l in clines do
9 Create a zero array with the same size of l, pLines;

10 for each pixel i in l do
11 if there are points around i within detArea then
12 pLines[i] = 1;
13 end
14 end
15 Detect sequences of 1 from pLines;
16 if sequence has more points than minPoints and is longer than minLen then
17 Store detected sequence to wallLines;
18 end
19 end
20 return wallLines

3.4. IFC File and 2D Floorplan CAD Generation

Using the proposed method, walls are identified successfully with information that includes
the position, direction and altitudes, but they are still in the form of 3D point clouds. Therefore, 3D
reconstruction of the structural elements of the building must be performed. There are two necessary
steps when reconstructing walls and exporting the result into a BIM format. In the first step, we
describe the 3D geometry of the elements based on information for which the wall is described as
either a volume composed of eight points and six facets or as a surface composed four points and
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one facet. The second step consists of translating the 3D geometry of the elements into an IFC file.
The elements describe what is expected in the building information model. A conversion phase is thus
necessary to be able to integrate the results in BIM software. The IFC format is chosen as the format
for the output in this approach. The IFC format is a standardized object-based file format used by the
AEC industry to facilitate interoperability between building actors. Both elements and relationships
between elements are described in this type of file. In order to generate a file in the IFC format from a
3D geometry of structural elements, we use the open-source library IfcOpenShell [28].

After creating the IFC format, a 2D floorplan CAD file, such as an SVG format file, is generated
using the IfcConvert method in an IfcOpenShell library. The IfcConvert method converts IFC files
into various output formats, which include geometrical models and which are tessellated and easy
to understand.

4. Experiments

The proposed method was experimented on university building, residential houses,
and apartment data. We evaluated the wall geometry quality using the recall and precision metric.
This section explains the experimental environment and results.

4.1. Experimental Environment

We developed our method focused on the data of the seventh floor of the Robot Convergence
Building of Korea University collected by a handheld laser scanner (ZEB-REVO). This data consists of
multiple rooms with various types of clutter such as desks, chairs, and sofas as presented in Figure 4a.
Therefore, we experimented on another three datasets, as presented in Figure 4b–d, to prove that the
proposed method works robustly even for unseen data which were collected by different scanners.
The data in Figure 4b are the second floor of the residential house collected by LIDAR (Velodyne
HDL-32E), and this 3D point cloud data are very noisy and contain multiple rooms, clutters, and highly
missed points in walls. The data in Figure 4c,d are residential house and apartment which are from
research that Liu et al. created a benchmark for a new vector-graphics reconstruction problem [29].
They provide 155 scans collected by Google Tango phones (Lenovo Phab 2 Pro and Asus ZenFone AR).
We selected two pieces of residential data from these datasets that have multiple rooms, little clutter,
and the highly missed point in walls. In this paper, we referenced these two datasets as “Tango Scan-1”
and “Tango Scan-2”. The details of each data are presented in Table 1. The proposed algorithm used
all 3D point clouds as an input, as presented in Figure 4. In the preprocessing step, we decreased by
nearly 30% of number of input point clouds and conducted structuring in voxels with a leaf size of
0.01m in order to save time and retrieve more structural data.

Figure 4. Input 3D point clouds: (a) seventh floor of the Robot Convergence Building at Korea
University, (b) second floor of residential house , (c) Tango Scan-1 and (d) Tango Scan-2.

We evaluated the position and length of the detected walls by means of precision and recall,
as used in pattern recognition, information retrieval, and classification. The main concept of these
methods is the fraction of relevant instances among the retrieved instances. We computed these
metrics based on the overlap between the areas of the ground truth and detected walls. We evaluated
true-positive, false-positive, and false-negative cases. True-positive (TP) refers to the area of a detected
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wall that is a wall in the ground truth, false-positive (FP) refers to the area of a detected wall that is
not a wall in the ground truth, and false-negative (FN) is the area that is a wall in the ground truth
but is not detected as a wall by the proposed algorithm. Based on TP, FP, and FN, we calculated the
precision and recall as follows:

Precision = TP/(FP + TP) (2)

Recall = TP/(FN + TP) (3)

Table 1. Details of datasets.

Dataset Scanner # of Rooms # of Points Floor
Size

Degree of
Clutter

Degree of
Missing Points

Seventh floor of the Robot
Convergence Building of
Korea University ZEB-REVO 7 1,969,106 300 m2 High Low

Second floor of residential
house

Velodyne
HDL-32E 5 14,756,398 66.6 m2 High High

Tango Scan-1 Google Tango
phones 4 1,000,193 - Medium High

Tango Scan-2 Google Tango
phones 5 1,000,077 - Low High

We defined thresholds by considering common buildings. During the wall detection process,
thres = 0.9; in Algorithm 1, gridSize = 0.01 m; and in Algorithm 2, detArea = 50 pixels which is identical
at 50 cm because gridSize is 0.01 m, minPoints = 2500, and minLen = 100 cm.

4.2. Experiment Results

During the overall wall detection process, we initially removed the floor and ceiling from the input
3D point clouds. Figure 5 shows the detected floor and ceiling point clouds of the seventh floor of the
Robot Convergence Building of Korea University. Then, using Algorithms 1 and 2, we detected lines
from point clouds. We proposed an efficient line-detection algorithm by considering missing 3D points
and noise from sensor input. The proposed algorithm is more efficient than existing algorithms such
as the faster line detection and Hough transform algorithms. Furthermore, the proposed algorithm
does not require any post-processing such as the Hough transform. Figure 6 shows the comparison
results of line-detection algorithms on the seventh floor of the Robot Convergence Building of Korea
University and Table 2 shows the processing time for each algorithm using an Intel i7-7800X and 64 GB
of memory.

Figure 5. Result of detected 3D point clouds of the floor and ceiling: (a) floor, and (b) ceiling.
Experimented on the seventh floor of the Robot Convergence Building of Korea University dataset.
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Figure 6. Comparison result of the line-detection algorithms: (a) Hough transform algorithm with
post-processing, and (b) the proposed algorithm.

Table 2. Results of the processing time using the proposed algorithm and the Hough transform
algorithm when detecting walls.

Processing Time (s)

Hough transform 15.7166

Proposed algorithm 15.6943

Table 3 shows the final wall detection result. We detected 97% of the ground truth and
reconstructed the detected walls in the IFC file format, as shown in Table 4.

Table 3. Wall detection evaluation results.

Seventh Floor of the Robot
Convergence Building of
Korea University

Second Floor of
Residential House

Tango
Scan-1

Tango
Scan-2

TP 92.8% 91% 92.2% 97.5%
FT 5.8% 7.1% 5.5% 1.6%
FN 2% 2.3% 2.2% 0.08%

Precision 94% 92.7% 94.3% 98.3%
Recall 97.8% 97.5% 97.6% 99.1%

Table 4. Result of the proposed method.

Dataset 3D Reconstruction BIM 2D Floorplan CAD [SVG]

Seventh floor of the Robot
Convergence Building of

Korea University
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Table 4. Cont.

Dataset 3D Reconstruction BIM 2D Floorplan CAD [SVG]

Second floor of residential house

Tango Scan-1

Tango Scan-2

5. Conclusions and Future Work

Here, we proposed a fully automated algorithm for generating 2D floorplan CADs from
3D point clouds. First, the proposed algorithm automatically detected walls. We proposed an
efficient line-detection algorithm in the wall detection section. The advantages of the proposed
algorithm compared to others are it does not require any post-processing and only needs certain
predefined thresholds. Second, the proposed algorithm reconstructed detected walls in the BIM format,
which can be edited in CAD programs. Finally, a 2D floorplan was generated using IfcOpenShell.
We experimentally tested the proposed algorithm on the 3D point cloud data gathered from the
seventh floor of the Robot Convergence Building of Korea University using LIDAR and second floor
of residential house using LIDAR and open source residential house using Google Tango phone.
More than 97% of the walls in the ground truth were detected, and the 2D floorplan was generated
successfully. However, the proposed method had limitations in input data because it was more
sensitive to data that have missing points in the wall. Our line detection algorithm solved this issue
but still if more than approximately 55% of wall points per each wall were missed that wall was not
detected as a wall line correctly. In the future, we will develop an algorithm that considers stairs and
openings in buildings, such as doors and windows.
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