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Abstract: Android is gaining popularity as the operating system of embedded systems and recent
demands of its application on industrial control are steadily increasing. However, its feasibility is still
in question due to two major drawbacks: safety and security. In particular, ensuring the safe operation
of industrial control systems requires the system to be governed by stringent temporal constraints and
should satisfy real-time requirements. In this sense, we explore the real-time characteristics of Xenomai
to guarantee strict temporal deadlines, and provide a viable method integrating Android processes
to real-time tasks. Security is another issue that affects safety due to the increased connectivity in
industrial systems provoking a higher risk of cyber and hardware attacks. Herein, we adopted a
hardware copy protection chip and enforced administrative security policies in the booting process
and the Android application layer. These policies ensure that the developed system is protected
from physical tampering and unwanted Android applications. The articulacy of the administrative
policies is demonstrated through experiments. The developed embedded system is connected to an
industrial EtherCAT motion device network exhibiting operability on an actual industrial application.
Real-time performance was evaluated in terms of schedulability and responsiveness, which are critical
in determining the safety and reliability of the control system.
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1. Introduction

Industrial control systems (ICS) comprise heterogeneous hardware and software components for
control, sensing, and actuation, that are interconnected with specialized industrial networks. These are
typically employed in environments for industrial control and automation. Owing to the remarkable
advances in technology, ICS has expanded to various application domains including energy and power
systems, transportation, avionics, and robotics [1-4]. Although traditional ICS main controllers are
based on high-end powerful computers, in the last decade, the rapid development of embedded
systems and their consistent increase in performance has made them valid as strong alternatives.
Indeed, embedded systems are able to provide better solutions, especially in practical applications,
owing to their portability, low power requirements, and relatively inexpensive costs compared to their
high-end counterparts. This paradigm shift enables the smaller and low-cost design of control systems
while remaining competitive in terms of performance. Embedded systems as the main controllers in
various cyber-physical systems for industrial automation are also considered as one of the backbones
of the fourth industrial revolution [5]. ICSs are “safety-critical” systems, which means that any task
failure can lead to catastrophic results that can damage properties, infrastructures, or even people.
Thus, ICSs should be bounded with stringent temporal constraints and should guarantee hard real-time
performance [6] to avoid such accidents or malfunction.
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Due to the complex combination of numerous hardware devices and control algorithms,
the underlying software should be robust to any changes. Thus, the traditional super-loop
concept [7] or single task software development is not advisable. Operating systems were introduced,
offering standard application programming interfaces (API) to ensure easier interaction with
different devices in various application domains. They also provide a multi-tasking environment,
separating functions into self-contained processes, executed depending on the governing scheduler.
Operating systems are divided into two major classifications. General purpose operating systems
(GPOS) are more concerned on the best-effort performance of the system with more relaxed timing.
In contrast, real-time operating systems (RTOS) conserve strict timing in executing tasks, which are
scheduled based on priorities. Simply put, tasks with lower priorities can run only if there are no
available high-priority tasks. This behavior guarantees the determinism and predictability of executing
real-time tasks, which are critical requirements in satisfying the safety of ICSs.

Android is gaining huge popularity as the leading operating system of embedded systems
owing to its open source nature. Android was developed as a software stack on top of the Linux
kernel. As Android is a GPOS, its ability as the main controller of an ICS is still in question.
Currently, there is a huge effort from various researchers to evaluate the viability of Android and
its utilization in real-time embedded and industrial applications [8-10]. According to these studies,
the feasibility of Android-based industrial controllers is still an open problem due to two major
drawbacks: safety (real-time characteristics) and security. Several studies have addressed the
timeliness and real-time constraints of Android. Yan et al. [11] proposed RTDroid, a real-time variant
of Android with most of the internal components redesigned. This provides a deterministic response
of Android applications by replacing both the kernel and runtime with their respective real-time
alternatives. RTDroid was tested mainly for real-time sound processing, and the measured sound
latency performance is presented in their extended work [12]. However, its extendibility to industrial
applications is moot as most industrial software tools and libraries are designed for the standard Linux
kernel. Porting these libraries to Android requires significant amount of development costs and time.
In this regard, the most common approach is running Android on a remote guest system connected to
a host controller with an RTOS. Truong et al. [13] presented the remote monitoring and control of an
industrial CNC machine via a wireless network on an Android platform. This is remarkably similar
to the solution of Mateo et al. [14], called Hammer, an Android-based teach pendant application,
to control industrial robotic arms. These approaches can cause performance bottleneck on the host
system, depending on the governing communication protocol. Manufacturing cost is also an issue
because these solutions require more than a single hardware platform. To this end, we aim to address
the safety issues of Android by developing a single-board embedded system which can guarantee
hard real-time constraints and integrate Android applications to real-time tasks.

Security is another issue that affects safety due to the increased connectivity in industrial systems,
which causes a higher risk of cyber and hardware attacks. In an ICS, attacks are divided into three
major categories: physical, communication, and software attacks. Physical attacks refer to any change
in the hardware that includes physical contact, such as the removal of a chip package or tampering
with any devices. In communication attacks, the attacker can manipulate, intercept, or spoof any
message coming from a device within a network. Software attacks are mostly executed by accessing
restricted resources through malware, system bugs, or any unexpected call sequences. For embedded
systems based on the ARM architecture, ARM TrustZone [15] has been widely available on selected
platforms that provides protection for the software that executes within the platform. It also provides a
secure boot sequence that only loads authenticated kernel images. Aside from the limited availability
of supported hardware, the developers of the technology do not disclose technical details, resulting in
difficulties in its implementation. Its application on Android is also questionable due to it being
inaccessible directly from Android processes or applications. For Android applications, security is
handled in the software stack or in the ecosystem [16]. Attacks on the software stack result in the
direct acquisition of root privileges, giving the attacker complete access to and control of the entire
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system. In contrast, the ecosystem form of attacks refers to the attackers tricking naive users into
downloading and installing bogus applications to gain control of the device. To prevent any intrusion
and corruption to the software stack (specifically the kernel), Samsung Knox offers Real-time Kernel
Protection (RKP) [17]. However, RKP is highly dependent on the ARM TrustZone, along with its
flaws, and the system is still vulnerable to ecosystem attacks [18]. Several researchers have addressed
this issue, focusing on the different forms of ecosystem attacks, namely privilege escalation [19],
advertisements [20], and application repackaging [21,22]. Although most of these studies increase the
security of Android, they require changes to the native code and could exhibit additional performance
overheads to the end users. In this sense, we aim to enforce security schemes ensuring that the
embedded system is protected from physical tampering, and also ensure that attackers could not run
unauthorized Android applications.

In this paper, we develop a safe and secure Android-based embedded system applicable as a
main controller of industrial control systems. To address the safety and real-time issues of Android,
the real-time characteristics of Xenomai [23], a dual-kernel approach of real-time Linux, were explored
and implemented on our own developed NXP i.MX6-based embedded platform, namely JECS-600ITX.
Although the Linux kernel and Android sources are provided as board support packages (BSP) by NXP,
compatibility with Xenomai and other patches is trivial. Thus, we provide complete development
details on developing a real-time environment, considering the version compatibility of Linux, Android
and Xenomai for easier reproduction. In a dual-kernel configuration, running the Linux system calls in
the Xenomai domain result to mode switching. This causes the real-time tasks to be non-deterministic,
resulting in a system freeze or a kernel panic. To deal with this issue, we developed a communication
interface between Android applications and Xenomai, utilizing the shared memory mechanism of
Android Interface Definition Language (AIDL) and a variant of our previous work in [24]. This interface
ensures integration and smooth communication between Android applications and Xenomai real-time
tasks. An open source EtherCAT master was implemented on top of Xenomai [25] to connect with
actual ICS networks.

Dealing with the security issues of Android, we have adopted a hardware copy protection chip
called Algorithm License Permmituition Unit (ALPU) by Neowine [26]. As the chip only comes with a
library supporting Linux, encryption APIs were developed for both the bootloader and Android to
enforce four administrative policies. To prevent hardware breaches, such as tampering with the ALPU,
the following policies are implemented in the booting process: (1) the booting process is initiated only
in the presence of the ALPU, and (2) the booting process is initiated only if the stored encryption key
in the embedded platform matches the ALPU. With the ultimate goal of protecting the embedded
system from running unauthorized applications in Android, the following policies are enforced in the
Android application layer: (3) third party software, which should include the developed authentication
library, and (4) only applications with the encryption key are executable. These policies ensure that the
embedded platform is protected from any physical breaches such as modifications to the firmware of
the embedded system and avoids any form of unwanted software intrusion in the Android software
stack. Experiments were conducted to demonstrate the articulacy of the administrative policies and
the JECS-600ITX is connected to a series of industrial motion devices (EtherCAT servo drives) to show
operability in an actual working environment. The real-time performance of the embedded platform is
evaluated in terms of schedulability and responsiveness, which are extremely critical to determine the
safety and reliability of the entire ICS.

The remainder of this paper is organized as follows. Section 2 introduces the software architecture
and the details of the development environment of the Android-based industrial presented in this
work. This section also includes the communication interface integrating Android applications and
Xenomai real-time tasks. In Section 3, an overview of the policy-oriented security scheme and the
ALPU is provided. Section 4 presents the experiments and results, demonstrating the practicality of the
developed embedded system in terms of the articulacy of the administrative policies, operability on an
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actual industrial network, and real-time performance. The last section summarizes the concluding
remarks of the paper.

2. Android-based Industrial Controller for Safety-Critical Applications

Safety is an essential requirement for ICSs to avoid system malfunction or accidents in a working
environment. In this paper, we define “safety” from a functional point of view, such that all functions
must be executde correctly at the correct time or within a specific temporal deadline to be safe.
This means that ICSs should adhere to hard real-time constraints to avoid system failure. To meet
such requirements, the main controllers of ICSs were traditionally developed based on powerful
computers with high-performance RTOSs. As the current trend of developing main controllers based
on embedded systems becomes a paradigm, there is an increasing demand for Android in industrial
applications. Researchers have evaluated and proposed various solutions to enable its use as a platform
for safety-critical and real-time applications [11-14,27-29]. In this section, we provide the complete
development details of a real-time environment employing Xenomai as the dual-kernel approach of
real-time Linux and the implementation of an open-source EtherCAT master for our own developed
embedded platform, namely JECS-600ITX. Due to mode switching [23,24], a communication interface
integrating Android applications with Xenomai real-time tasks is also introduced.

2.1. Software Architercture

Figure 1 shows the simplified software architecture of the Android operating system for our own
developed embedded system, namely JECS-600ITX. As depicted in Figure 1a, the standard Android
software consists of the runtime and libraries, the application framework, and the application layers
and the Linux kernel. For the Android with versions later than 5.0, the runtime consists of the core
libraries and the Android Runtime (ART). Each Android application runs its own ART and runs
multiple virtual machines optimized for a minimal memory footprint. Core libraries provide support
for the Java programming language. Developing Android applications requires system components
and services provided by the native libraries, which are written in C and C++. The Android framework
layer exposes these native libraries to be used in applications. The standard Linux kernel was modified
to handle the rest of the Android layers and does not support any real-time features, as the scheduler
values “fairness” over priorities of processes [30].

[ Applications ] [ Applications J [RT Tasks]
[ Application Framework ] [ Appllcatlon Framework ] Echaesr&Ar
Runtlme Runtime
Native L',\'b""rg'}’lis ART
LIbI’aI’IeS Core lerar|es Xenoma
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| Linux Kernel )
[ Linux Kernel ] [ ADEOS-IPIPE ]
[ JECS-600ITX ] [ JECS-600ITX ]
(a) (b)

Figure 1. Simplified model of Android: (a) Standard Android; (b) Xenomai-integrated Android.

The issues of real-time for Android attract various researchers. Maia et al., in [27], evaluated the
real-time capabilities of Android and presented different architectural models including the usage of
an RTOS kernel instead of the Linux kernel and the possibility of developing a real-time hypervisor
or a real-time Java machine. In this regard, RTDroid was developed by Yan et al. [11]. However,
its extendibility to industrial applications is an open problem considering that industrial software tools
and libraries are mostly designed for compatibility with Linux. Porting these to Android requires a
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significant amount of development time and manpower. To address this issue, various researches
implemented a host—guest approach, where an RTOS is running on the host and Android on the
guest system, respectively [13,14]. This would result to an increase in manufacturing costs due to the
requirement of multiple hardware platforms. Thus, we present a unique solution integrating Android
applications to real-time Xenomai tasks for a single hardware, as shown in Figure 1b. Modifications to
the standard Android architecture are represented by the shaded blocks.

Xenomai is an RTOS implemented as a dual-kernel approach of real-time Linux. It provides a
multi-tasking environment for real-time tasks (RT Tasks) with a priority-based preemptive scheduler
and inter-task synchronization mechanisms. Adaptive domain environment for operating systems
(ADEOS-IPIPE) abstracts hardware interrupts and other operations enabling the existence of both
Xenomai and Linux on a single hardware. ADEOS-IPIPE ensures that Xenomai holds the highest
priority and should preempt any non-real-time Linux processes. Meaning, Linux only runs if there are
no pending Xenomai processes. The performance of Xenomai on an i.MX6-based embedded platform
similar to JECS-600ITX is presented in our previous work [31]. As EtherCAT is becoming the standard
network protocol in ICSs, an open source EtherCAT master, IgH Etherlab, was stacked on top of
Xenomai to establish a connection with an actual industrial network. In the literature, numerous studies
are present related to the implementation and performance of EtherCAT on different variations of
real-time Linux [25,32,33]. To our knowledge, this work is the first attempt on implementing EtherCAT
on an Android-based embedded system. The complete details of the real-time software environment
for the JECS-600ITX are organized in Table 1. As the board was developed based on the reference
platform, i.MX6 SABRE-SD, the same board support package (BSP), which includes the bootloader,
Linux kernel and Android, is implemented. In case of the kernel, the device tree binaries were modified,
considering the physical address of the onboard random-access memory. The BSP was cross-compiled
on a host machine complying with the Android open-source project requirements. The resulting
Android image was flashed to the internal embedded multimedia controller (eMMC) memory of the
JECS-600ITX. To implement Xenomai, an ADEOS-IPIPE patch compatible with both the Linux kernel
and Xenomai itself is required, however, the patch for Linux 4.1.15 is not available in the Xenomai
repository. Thus, we have modified the closest available patch source namely, ipipe-core-4.1.18-arm9,
ensuring that all patch hunks are successful. After patching the Linux kernel with ADEOS-IPIPE,
kernel options related to power management, kernel debugging, memory page migration, and CPU
frequency scaling were disabled to ensure that the unwanted voltage and frequency scaling that can
affect the real-time performance of Xenomai will not occur [31]. Thereafter, the Xenomai-enabled
kernel is flashed to the JECS-600ITX.

Table 1. Real-time environment for the JECS-600ITX.

Software Component Version
Toolchain gec-arm-android-gnueabihf-5.4
Bootloader U-Boot 2015.04
ADEOS-IPIPE ipipe-core-4.1.18-arm-9
Xenomai Xenomai 3.0.7
Linux Kernel Linux 4.1.15
Android Android 6.0.1 Marshmallow
IgH Etherlab IgH Etherlab 1.5.2

The latest official distribution of IgH Etherlab is only compatible with the earlier versions of both
Linux kernel and Xenomai (earlier than 4.0 and 3.0, respectively). One advantage of open software is
that the source code is available to all developers and everyone can contribute to the improvement
of the project. An unofficial patch set for the IgH Etherlab is available, solving the compatibility
issues with our development environment, and is currently awaiting approval for mainline merge
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available at [34]. IgH Etherlab was compiled, enabling the generic device driver, as the real-time device
drivers for .MX6 platforms are not currently available. The user space libraries of both IgH Etherlab
and Xenomai were compiled and copied to the filesystem of the Android environment. As Android
does not support typical Linux operating system commands, the IgH Etherlab scripts for loading the
EtherCAT master module and device drivers were modified. Instead of using modprobe, we employed
the insmod and rmmod commands to load and unload kernel modules, respectively. Although we
have successfully leveraged a real-time environment for the JECS-600ITX, Android should be able to
communicate with Xenomai tasks to be applicable in safety-critical industrial applications. The next
section offers a solution, integrating Android applications with Xenomai RT tasks.

2.2. Integration of Android Applications and Real-Time Xenomai Tasks

In the dual-kernel configuration presented in the previous section, the entire system consists
of two parts. The non-real-time part includes Android running on top of the Linux kernel and the
real-time part, which is Xenomai. Accordingly, user space tasks can be divided into non-real-time
Android applications, standard Linux tasks, and the Xenomai RT tasks. Each part has its own private
memory address space and software abstractions, due to the hardware abstraction of the ADEOS-IPIPE.
This means that direct communication between Android applications and Xenomai real-time Xenomai
tasks is restricted. Moreover, using non real-time libraries or system calls within RT tasks results to an
event called mode switching. This results in a chaotic scenario where RT tasks lose their hard real-time
capabilities, causing the entire system to become unstable and non-deterministic. In our previous
work, we implemented a cross-domain datagram protocol (XDDP) to address the communication issue
between standard Linux and Xenomai [23].

Although XDDP provides communication between non real-time and real-time tasks, the same
approach cannot be applied to Android due to its architecture, which does not allow direct device
access to regular applications. However, Android provides an interface definition language that allows
users to define a programming interface between applications to communicate through inter-process
communication mechanisms. In this work, we have selected the anonymous shared memory mechanism
(ashmem) as the communication channel between Android applications and standard Linux tasks.
Figure 2 shows the thread model of integrating Android applications with Xenomai RT tasks, leveraging
both XDDP and ashmem mechanisms. All the operations and components of the non-real-time part
are represented by the white blocks, while the shaded blocks represent the real-time ones.
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..............................
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Figure 2. Thread model of integrating Android applications with real-time Xenomai tasks.

For the purpose of simplification, we assume a single connection between an Android application
(App Looper) and a standard Linux task (Message Handler) via ashmem. The App Looper acts as
a server, which creates a file descriptor for the shared memory and includes the message-passing
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activity. Implementing the interface requires the developer to create a user-defined Android library to
map the ashmem and pass file objects between processes through the Java native interface. We have
created an Android library consisting of two message-passing functions to access the shared memory
called jGetMsg() and jSetMsg(), which are responsible for reading and writing messages, respectively.
The processing logic for these message passing functions is highly dependent on the application,
which is specifically defined by the developer. In our case, we have developed the library to pass the
string datatype of messages.

For the Linux side, the Message Handler is a non-real-time task that accesses the shared memory
through the device file, /dev/ashmem, using the standard Linux open() function. Accordingly, we have
developed getMsg() and setMsg() functions as the respective counterparts of jGetMsg() and jSetMsg()
in the Linux domain. To date, communication between the App Looper and the Message Handler is
successfully realized. Given that the Message Handler task should act as a bridge between Android
applications and Xenomai real-time tasks, we employ the XDDP mechanism [23]. XDDP serves as the
communication interface between Linux and Xenomai tasks. Herein, the Message Handler is linked to
an XDDP port by accessing the real-time inter-process communication (RTIPC) driver through the
/dev/rtp* character device (* represents the minor number of the device file). XDDP ports are identified
by this minor number and, by default, there are 32 useable XDDP ports. After opening the respective
device file, the standard Linux read() and write() functions are used to access the stored message in the
XDDP port. Note that the Message Handler is a cyclic task, therefore the opening of both ashmem
and XDDP device files is executed before entering the infinite loop. Inside the loop, the Message
Handler waits for messages from the App Looper with the getMsg() function and sends it directly to
the Xenomai domain using write(). Feedback from the real-time task, acquired using read(), is sent
back to the App Looper with setMsg().

On the other hand, a Xenomai RT task accesses XDDP through socket operation. The RT task
is bound to a socket with the port number, depending on the minor number of the character device
accessed by the Message Handler task. This means that port 0 in the RT task is connected to the
device file /dev/rtp0. AF_RTIPC and IPCPROT_XDDP switches are also enabled for the socket
domain and protocol, respectively. To access the stored messages, socket recvfrom() and sendto()
are called to acquire and set messages, respectively. In case of the recvfrom() function, we have
enabled the MSG_DONTWAIT flag to enable non-blocking operation and ensure that messages from
the App Looper would not affect the real-time performance of the Xenomai task. Note that this
approach can be implemented in a multitasking environment, where multiple Android applications are
interfaced to their respective Message Handler task in the Linux domain and RT tasks in the Xenomai
domain. Xenomai also offers inter-task communication (ITC) mechanisms for synchronization and
communication between RT tasks.

This method opens up possibilities for industrial applications that require the integration of
Android with hard RT tasks. For example, safety-critical application with hard real-time constraints
such as feedback control with sensors and actuators can be implemented in the Xenomai domain,
while being monitored and manipulated by graphical user interface monitoring and control software
in the Android domain.

3. Policy Oriented Security Scheme

Security is another issue that affects the safety of an ICS due to the increased connectivity in
industrial systems causing a higher risk of cyber and hardware attacks. In this section, we introduce
a policy-oriented security scheme employing a hardware copy protection chip called the Algorithm
License Permmituition Unit (ALPU) developed by Neowine [26]. Administrative policies were
implemented in the bootloader and Android user space level to protect the developed embedded
system from any form of hardware and cyber-attacks.
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3.1. Algorithm License Permmituition Unit (ALPU)

The ALPU is a high-performance illegal copy protection chip applied in different electronic systems
such as dashboard cameras, navigation systems, and industrial controllers. It is very suitable for
embedded systems, considering its small size and low power requirements. The encryption module is
based on a Rijndeal AES-128 standard with 192-bits programmable parameters. The module consists of
several blocks which are the AES-128 encryption module, the encryption parameters, feedback buffers,
and the hash generator. Figure 3a shows our own developed embedded system, namely JECS-600ITX,
attached with an ALPU.

j
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Figure 3. JECS-600ITX with Algorithm License Permittuition Unit (ALPU): (a) actual hardware;
(b) authentication process.
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The ALPU offers three modes of authentication: bypass mode, feedback encryption mode,
and hash generator mode. The bypass mode is only used in testing the communication between the
ALPU and the main controller—in this case, the JECS-600ITX. The ALPU will perform exclusive or
(XOR) operation with 0x01 on the received data and return it back to the JECS-600ITX. On the other
hand, feedback encryption and hash generator are encryption methods developed by Neowine. In this
paper, we focus on the hash generator mode, which is a variation of SHA-256 and is the strongest
encryption algorithm available within the ALPU. Aside from the ones stored in the ALPU itself,
these algorithms are distributed as a library, and used for encrypting the authentication key stored in
the main controller. The authentication key is only known to the user and is unique for every ALPU
chip, ensuring that the authentication process fails in cases where a different ALPU chip is attached.

Figure 3b illustrates the authentication process of the ALPU. The stored authentication key in the
JECS-600ITX is encrypted depending on the selected mode of encryption. Together with the mode
of encryption, the encrypted data (ENC Data) are transmitted to the ALPU through IC protocol.
Users can set the number of passes to apply the encryption algorithm, which makes the key more
difficult to analyze, thereby increasing security.

The complete steps of the authentication process are as follows:

e  The stored authentication key in the JECS-600ITX is encrypted using the encryption library
depending on the selected mode. The encrypted data are then transmitted to the ALPU;

e  Upon receipt, the ALPU decrypts the data and process them with the encryption module based
on the stored key value and parameters. The results are transmitted back to the JECS-600ITX;

e Back in the JECS-600ITX, the encrypted authentication key is compared with the response from
the ALPU. The authentication process is successful when both are the same;

e In contrast, the authentication fails if one of the keys is different from the other, which can invoke
a system halt or shutdown depending on the procedure implemented by the developer.

Due to the encryption library being specifically made compatible only with the Linux operating
system, we have ported it to be compatible with both the bootloader and Android. In the case of the
bootloader, we have created a new bootloader command including the ported encryption library and
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the IC interface files to implement the authentication process as explained above. The new command
is added to the list of bootloader commands and the board initiation process.

With the ultimate goal of protecting the embedded system from running unauthorized applications,
we have developed an Android API including the encryption library that can be added to
user-authorized applications. Note that the encryption key is compiled within the developed
encryption library to prevent numerous developers from accessing it. This means that a unique
library should be compiled for each ALPU. To distinguish between unauthorized and authorized
applications, we have developed a security manager daemon that continuously checks whether an
application contains the developed encryption API. An application without the encryption API is
forcibly terminated. By implementing the encryption library ported in both bootloader and Android,
we enforce administrative policies to protect the embedded system presented in the next subsection.

3.2. Administrative Policies

In this section, we discuss the administrative policies implemented on the JECS-600ITX attached
with an ALPU. The policies were enforced with the aim of protecting the developed system from
distinct types of attacks including hardware tampering, unwanted access to the device filesystem,
and the execution of unauthorized applications, which are critical in operating industrial automation
and control systems. These policies are implemented either before the booting process or in the
Android application layer. For the booting process:

1.  Booting process is initiated only in the presence of the ALPU;
2. Booting process is initiated only if the stored encryption key in the embedded platform matches
with the ALPU.

The booting process of the JECS-600ITX starts when the board is connected to a power supply
invoking a system startup. The first level bootloader is loaded from the CPU read-only memory to the
internal memory. This initiates the CPU and the board level memory. The system bootloader stored in
the eMMC is loaded in the random-access memory, which initializes the entire system. The enforced
booting process policies ensure that the system checks the I?C bus for the existence of an ALPU chip.
(1) If the ALPU is not present, the booting process fails invoking a system restart. If the ALPU is
properly recognized, on the other hand, (2) the ALPU encryption key is compared with the one stored
in the bootloader environment by implementing the authentication process through the encryption
library. If the ALPU chip’s credentials do not match with the one stored in the embedded system,
the booting process will fail. For the Android application layer:

3. Android software and applications should include the developed encryption API;
4. Only applications with the correct encryption key are executable.

Only if the booting processes succeed will the system load the kernel and the Android operating
system. The developed security manager daemon, which is responsible for checking whether
applications contain the encryption API, will run as soon as Android finishes loading all essential
drivers and processes. When a new Android application is opened by the user, the activity manager
service performs a fork system call to the security manager daemon to run a new process. (3) If
the daemon detects applications without the developed authentication library, the whole process
will be killed, and the application will be terminated. Otherwise, (4) the application will start and
run the authentication process with the ALPU chip. The authentication process checks whether the
encryption key compiled in the Android application matches with the one stored inside the ALPU.
The authentication process will fail, and the application will be terminated if the ALPU does not
recognize the encryption key. This prevents execution of the application in case a different ALPU is
connected to the JECS-600ITX.

In the next section, we will discuss the behavior of these policies in the presence of various threats
in both the system level and the Android application layer.
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3.3. Adversary Model

Here, we consider an adversary model where the attacker tries to physically tamper an embedded
system connected to an industrial control network in order to bypass the booting process and obtain
access to the Android operating system. Once the adversary has access to the operating system, all the
connected devices can easily be manipulated, and confidential data such as control algorithms and
machine specifications can be modified or downloaded. To achieve this goal, the adversary can either
remove the ALPU chip or attach a similar one. In our developed system, we have enforced two
bootloader policies, explained in the previous section, in order to prevent the adversary from booting
to the Android operating system.

To restrict the adversary from tampering with any of the bootloader environment variables,
we have disabled the command line interface, which results in an infinite system reset procedure.
The flow diagram and the adversary model of the booting process policies are shown in Figure 4a.
The standard boot procedures are depicted by the white blocks, while the shaded blocks represent the
implemented booting process policies using the ALPU.

Startup
CPU-level
bootloader

System
bootloader

Start Application
Even

Activity Manager

ervice

Security Manager

Daemon
Remove Run Malicious
ALPU ALPU ALPU ﬁ Applications
exists? No library?
Yes Attach other] Yes

Start Application
Different

& ALPU keys

ALPU
N
Yes
Load Linux kernel

[ Load Android J [ System reset J [ Run Application ] [ Kill Process ]
(a) (b)

Figure 4. Flow diagram and adversary model of the policy oriented security scheme: (a) Booting

process; (b) Android application layer.

In the figure, the adversary can try to bypass the authentication process by removing the ALPU
from the embedded system. However, with the first bootloader policy enforced, the entire system will
fall into an unlimited reset procedure unless it is powered off. In case the adversary can get hold of a
similar ALPU chip and attach it to the embedded system, the second policy ensures that the system is
protected by executing the ALPU authentication process. This means that the system will boot only if
the encryption key in the ALPU is the same as the one stored inside the embedded system.

If, by any chance, the adversary is able to bypass the bootloader policies, the system is also
enforced with administrative policies in the Android layer. Here, we assume an adversary trying
to indirectly access the embedded system by executing unauthorized and malicious applications,
as shown in Figure 4b. Through the developed security manager, the Android application is checked
to ensure that it was developed with the encryption API in compliance with the third policy. If not,
the security manager kills the entire process and prevents the execution of the application. If the
adversary develops an application by reverse engineering the encryption AP]I, the entire system will
still be secured by the fourth security policy. The malicious application will not be executed as long as
the correct encryption key is not compensated.
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4. Experiment and Evaluation

The main purpose of the experiments is to validate the feasibility of the JECS-600ITX in industrial
applications. First, to ensure that the embedded system is secured from physical and cyber infiltration,
we demonstrate the articulacy of the enforced administrative policies, discussed in Section 3. Then,
the embedded system is connected to a series of EtherCAT-based servo motors to prove operability on
an actual industrial network. Finally, real-time performance is evaluated in terms of periodicity and
the response time of the RT tasks to prove that the system is applicable in safety-critical applications.

4.1. Experiment Environment

To measure and evaluate the real-time environment and safety policies of the JECS-600ITX,
we have tested our implementation in an actual working environment, as shown in Figure 5. The board
is connected to four EtherCAT servo drives manufactured by LS Mecapion. Each servo drive was
attached with AC Motors with built-in 19-bit absolute encoders. The EtherCAT slaves were configured
to handle 24 Bytes of process data consisting of the status and control commands, velocity commands,
and encoder feedback running in the cyclic synchronous velocity mode.

Figure 5. Actual working environment.

4.2. Articulacy of the Administrative Policies

To evaluate the articulacy of the enforced administrative policies, we conducted experiments
following the scenarios given by the adversary models in Section 3.3. To demonstrate an adversary
attack in the bootloader level, we performed test scenarios such as removing the ALPU and attaching
another ALPU with a different encryption key. The behavior of the booting process policies is shown
in Figure 6. In Figure 6a, the ALPU bootloader command line command tool was used to check the
existence of the ALPU by checking the device address. As shown in the figure, the authentication
process was successful, which means that the ALPU is attached to the embedded platform. When the
ALPU is removed from the system, Figure 6b results in a failure, which invokes an infinite system reset
without the ability to interrupt the bootloader command line in the booting process.

To demonstrate the second policy, the encryption key of an ALPU chip is stored as a variable in
the bootloader environment. As the ALPU chip is configured to run in the hash generator mode, the
key encrypted with the SHA-256 encryption algorithm should match the one stored in the respective
ALPU. When another ALPU chip with a different encryption key is attached to the embedded system,
the authentication process continuously fails, also leading to an infinite system reset. On the other
hand, Figure 6d demonstrates a successful boot when the correct ALPU is attached to the JECS-600ITX.
These results show that the bootloader security policies can protect the JECS-600ITX from any form of
attack in the bootloader level.

To evaluate the articulacy of the policies in the Android application layer, we assume the
worst-case scenario: that an adversary has bypassed the booting process security schemes. Accordingly,
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we temporarily disabled the bootloader security schemes to boot into Android and imitate an adversary
attack. Due to the fact that applications without the encryption library or the encryption key abruptly
terminate, we focus on demonstrating the authentication of the ALPU key value in the Android
application layer. We created a simple Android application, implementing the encryption library to
verify the key value stored in the ALPU. The application encrypts the key with SHA-256 algorithm
and sends it to the ALPU for verification through the I?C port. Figure 7a shows that the ALPU
authentication is successful when the correct ALPU is connected to the embedded platform. However,
the process fails with a different ALPU, as shown in Figure 7b.

> alpu encryption

Standard SHA TEST Success!!!
Result )

Chip Standard SHA : ©xd2 Gxa3 @x28 @x10 0x04 Oxca o| [> 21Pu encryption
B Oxf3 Ox59 Oxb7 Ox0c Ox83 0x70 Ox70 Ox6e Oxbd 0x22
Be Ox66 Ox60

Mcu Standard SHA : 0Oxd2 Oxa3 0x28 0x10 0x04 Oxc4
B4 Oxf3 0x59 Oxb7 OxOc Ox83 0x70 Ox70 Oxbe Oxbd 0x22|
k3e Ox66 Ox60

Standard SHA TEST Faill!!

(a) (b)

Standard SHA-256 Encryption Success!!!

Hit any key to stop autoboot: @

boota mmc@

Standard SHA-256 Encryption Fail!! kernel @ 10808000 (4630924)

Normal Boot Iramdisk @ 11800000 (500066)

Booting Android Image at 0x12000000 ...

Standard SHA-256 Encryption Fail!! ernel load addr ©x10808000 size 4523 KiB
Normal Boot ernel command line: console=ttymxc®,115200 android
. X init=/init video_mode=extension video=mxcfb@:dev=h
Ni':::‘]’a;:n f““'m Encryption Faill! fbl:dev=1cd,1920x1080M@60, bpp=32 video=mxcfb2:off
roidboot.hardware=freescale pcie_testmode=off

Loading Kernel Image ... OK

tarting kernel ...

(©) (d)

Figure 6. Demonstration of the booting process policies: (a) With ALPU; (b) Without ALPU; (c) ALPU
with different key value; (d) ALPU with the same key value.
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Figure 7. Demonstration of the Android application layer policies: (a) ALPU with the same key value;

(b) ALPU with different key value.
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With these results, the embedded platform is protected not only at the bootloader level, but even
in the Android application level. As the authentication process with ALPU chip is only performed once,
when the application is executed, there is less overhead compared to the existing software security
techniques in [17-22]. Implementation is also relatively easier when developing a new application
because only one line of authentication function is added to the original application.

4.3. Operability on an Actual Industrial Network

To validate the operability of the developed system on an actual industrial network, we have
connected four industrial servo drives slaves to the JECS-600ITX via EtherCAT. A simple Android
application enforced with the Android application layer security policies was created, leveraged with
the shared memory procedures discussed in Section 2. The application sends the target velocity as
a message to a standard Linux Message Handler task that bridges the Android application and a
Xenomai RT task. The RT task runs constantly with a cycle period of 1ms and configured to the highest
priority of 99 in accordance with Xenomai specifications. It is responsible for receiving the target
velocity from the Android application through an XDDP port. The trapezoidal velocity profile is
generated according to the target velocity received from the Android application. The task also handles
the initialization of an EtherCAT master instance by utilizing the functions and services offered by
IgH EtherLab.

The experiment was conducted for 60 s, resulting in 60,000 samples, and the results are shown in
Figure 8a. The same reference velocity was supplied to all servo drives to easily observe whether any
of the EtherCAT slaves could track the given reference. We have configured the Android application
to periodically send target velocities of 940 and —940 RPM every 15 s. These commands were sent
to the Message Handler task, which then transmits them to the RT task via XDDP. To measure the
end-to-end transaction time, we have measured the timestamps before the velocity commands are sent
from Android and after they are received in the Xenomai RT task. The average transaction time for this
one-way communication is 67 ps. In the figure, the generated reference velocity profile is represented
by the black solid line. All of the slaves were able to follow the reference with a minimal tracking
error, as shown by the overlapping lines representing each of the slaves. In our observation, the main
cause of this error is the high ratio (1:100) of the reduction gear connected to each motor. Figure 8b
illustrates the first 5 s of the experiment to give a closer look of the results. Based on these results,
we verified the operability of the developed Android-based industrial embedded control system when
connected with an actual industrial EtherCAT network. According to Yang et al., [35] systems that meet
hard real-time constraints can track a given reference accurately in comparison to their non real-time
counterparts. Thus, these results verify that the system can satisfy real-time requirements, which is
essential in determining the safety operation of industrial control systems. For the quantitative results
of the real-time performance, we have performed real-time analysis in the next subsection.

4.4. Real-time Performance

An important metric to evaluate the real-time performance of the system is the periodicity and
response times of the RT task. Conducting the same experiment in the previous section, the periodicity
and response times of the RT task were measured following the detailed evaluation procedures
presented in our previous works [25,36]. The periodicity and response time of an RT task determines
whether the task is schedulable or not. The response time is defined as the duration from the start of the
task until all the required jobs are done. The jitter is defined as the difference between the configured
task period, in this case 1 ms, and the actual measured value. In hard real-time applications that are
safety-critical, such as industrial control, all the tasks should be schedulable and deterministic to avoid
unwanted accidents and ensure safety. During the experiment, the system is kept isolated from the
data acquisition and processing systems to avoid unwanted data perturbation (noises and interrupts),
which could affect the validity of the results. The timing data were measured and stored in a buffer
for offline processing/analysis. The samples were captured when the system was in steady-state,
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discarding the EtherCAT master—slave configuration and synchronization stage. We focus all the
measurements of the real-time EtherCAT control task. The results of the timing analysis are shown in
Table 2 with the statistical average (avg), maximum (max), minimum (min), and standard deviation (o)
values of each timing metric.

1000
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Py 0
o
o
@ -500
>
-1000 | I 1 | 1 I
0 5 10 15 20 25 30 35 40 45 50 55 60
Time [Second]
(@)
= J
Q.
= J
z — Reference
S ——Slave 0
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> Slave 2 1
—— Slave 3
1.5 2 2.5 3 3.5 4 4.5 5
Time [Second]
(b)
Figure 8. Comparison between the reference velocity and the encoder feedback: Span of (a) 60 s;
(b) initial 5 s.

Table 2. Real-time performance of the JECS-600ITX for an EtherCAT control task.

Task EtherCAT Control (99, 1 ms)

Metric Period (ms) Response (us) Jitter (us)

avg. 1.000000 91.017 0.968

max. 1.157667 1073.000 159.000

min. 0.841000 75.333 0.000
o 0.001645 9.944 1.330

The results show that the RT task was able to run periodically with an average of 1 ms. The response
time also shows an average of approximately 91 us, which is the overall time duration of receiving the
target velocity from the Android application, generating the instantaneous velocity command, and the
EtherCAT communication processes. Due to the unavailability of a real-time device driver for the
JECS-600ITX, we have selected the generic EtherCAT driver that uses standard Linux system calls.
This results in the maximum response time exceeding the required period (1073 ps), which is vital in a
multi-tasking environment. However, according to a presentation in ROSCON 2019 entitled Safety in
Time [37], guaranteeing deadlines is typically impossible in most modern systems, and they should
be given as probabilities. In this sense, the three-sigma probabilistic limit of the jitter is considered
exceptional with approximately 4 us. Depending on the real-time application, developers can improve
the response time by attaching an external network interface card with the necessary real-time
driver [25,36], or by developing a real-time device driver for the on-board Ethernet controller, which is
outside the scope of this paper. Considering the average response times, we can determine that the
average CPU utilization of the EtherCAT control task is 0.09. According to the schedulability analysis
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presented in our previous work [31] and the utilization bound test, RT tasks are schedulable if the
overall CPU utilization is less than the Liu and Leyland bound, which is 1 for a singular task. Thus,
the EtherCAT control task is schedulable. This also means that the developed Android-based ICS
can provide a viable method of integrating Android applications with RT tasks with hard real-time
requirements such as EtherCAT control.

In conclusion, all the experiment results show that the developed system adhere to hard real-time
requirements, ensuring that tasks are governed by hard temporal deadlines. This behavior is essential
to avoid system malfunctions and operational accidents, thus ensuring the safety of the entire system.
Meanwhile, the enforced administrative security policies completely protect the ICS from various
forms of cyber and physical attacks both in the bootloader and Android application level.

5. Conclusions

In this paper, we present an Android-based industrial embedded control system addressing the
safety and security issues of Android. We defined “safety” from a functional point of view such
that all functions must execute within a specific temporal deadline to be considered as “safe”. Thus,
ICSs should satisfy hard real-time requirements. This paper provides a real-time environment based on
integrating Android with Xenomai, the most popular dual-kernel approach of real-time Linux. Due to
the hardware abstraction of the dual kernel configuration, direct communication between Xenomai
and Android is restricted. Therefore, we presented a communication interface integrating Android
applications with Xenomai RT task based on XDDP and the Android shared-memory mechanism,
ashmem. An open source EtherCAT master was implemented on top of the real-time environment to
establish a connection with an actual industrial network. To our knowledge, this is the first attempt
in the literature to implement an EtherCAT master on an Android-based embedded control system.
Security is another issue affecting safety considering the increased connectivity of industrial systems.
We leveraged a hardware copy protection chip, namely ALPU. We created encryption libraries for the
bootloader level and Android application layer to enforce the following administrative policies:

1. Booting process is initiated only in the presence of the ALPU;

2. Booting process is initiated only if the stored encryption key in the embedded platform matches
with the ALPU;

3.  Software and applications should include the developed authentication library;

4. Only applications with the correct encryption key are executable.

Experiments were performed on our developed embedded system, namely JECS-600ITX.
Two different adversary models were formulated, demonstrating the articulacy of the enforced
policies in both the system level (booting process) and the Android application layer. Operability in an
industrial application was evaluated by connecting the embedded platform to an actual industrial
network with EtherCAT slaves. Moreover, real-time performance was measured in terms of the
periodicity and responsiveness of the entire system. Results show that the developed embedded
controller displays a secure environment for safety-critical industrial applications. Our next step is
to implement a real-time multi-tasking and multi-application environment which requires further
evaluation of the internals of the Android architecture.
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